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We consider the termination problem for Markov-like algorithms,

described by a set of productions and a set of expressions to which

productions may be applied.

algoritims for:
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The

or

i

and binary operators + , -,
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: vl+(v2/v5) - (Vl*V5+V2)/V5
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; vl_(VE/VB) - (V]_*VB—VQ)/V5

o]
Ul

p7: vl*(VE/VB) - (vl**vg)/v5

2. The

Ea
or

from variables, constants, binary operators +

operator D

D (vl+v2) - Dv +Dv,,

D <variable not x> —> 0

D <constant> -0 .
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differentiating (with respect to a variable

D(vl*vg) -V

simplification of symbolic arithmetic expressions, e.g.

rationalizing expressions formed from variables, constants

and / :
P (nyfvphtvs = (vyrvghvy)/v,
Ry (vy/vp)-vy = (vy-vs*v,)/v,
g (vi/vp)/vs = vy / (v ¥vs)

Pg: (vl/ve)*v5 - <vl*v3)/v2 .

and * , and the

* +v_ ¥
5 Dvl Vl DV2

Dx -1

application of operators toc symbolic arithmetic expressions, e.

N

Common examples of such algoritizms include

(48]

X ) expressions formed

mnary

[oR8s-4

3. The simplification of symbolic logical expressions, e.g. for convertin
formulas of the propositional calculus into conjunctive normal form:
VDV, Vv, v, = v2-—)(v13v2) A (vggvl)
A~ vl) - vy
~(vl v v2) S~ vy A~V > A(vl A v2) S~V Vo~
(Vl/\ vg) Vs = (leVB)/\ (V2VV3) ViV (Vg/\ VB) - (vl\/vg)/\ (VlvV5>

* 9
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We say trnat such an algorithm terminates 1f the process of appliins

productions repeatedly to any expression eventually nust produce an
expression to which no production applies, regardless of the crnoice of

wiich production To use and wnich subexpression to apply it to at each

L)

is often convenient to use the notion of transformation seaquence

of a given expression; e.g. the two transformation sequences of
a+((v/c)/d) with respect to the rationalizing algoritim (see Zxample (1)
e

P,
a+((o/c)/a) =7 ((a¥d)+ b/C))/d =7 ((((axa)*e)b)/e)/a =° (((a*d)*e)+o)/(exa) ,

Pé Pl
at((b/c)/d) =~ a+(v/(c*a)) == ((a*(c*d))+b)/(c*d) .

Then we may say that a Markov-like algorithm terminates if every

transformation sequence of every expression is finite.

Proofs of termination

The problem of proving the termination of algoritims like those given
above is known to be undecidable in general.é/ It first arose in connection
with the Markov-like algorithms of Formula Algol, and was studied at some
length by Iturriaga. —/ He found an effective sufficient (but clearly not
necessary) condition for determining termination. We have extended his
result. 1In this short paper we present only the flavor of our results by
means of examples.

Our proofs of temination use the notion of well-ordered sets. A set
W 1is well-ordered by > if > 1is an irreflexive, asymmetric, and
transitive relation on W such that any decreasing sequence x., > X. > x5 -

é/ 1 2

of elements of W thas only finitely many elements. The most familiar
and useful example of a well-ordered set is the set In of all n-tuples
of natural numbers (for fixed n ) with the usual lexicographic ordering,
i.e. (xl,...,xn) > (xi,...,xﬁ) if there exists an i, 1<1i<n,

such that X, = Xi""’xi-l
we have the set of natural numbers Il when n =1.

= Xi 10 and X, >x! . As a special case

l'/A. A. Markov, The Theory of Algorithms. Akademiya Nauk SSSR, 195L
(Russian). Israel Program for Scientific Translation, 1962 (English).

~

/R. Tturriaga, Contributions to Mechanical Mathematics. Ph.D. Thesis,
Carnegie-Mellon University, 1967.

See, for example, P. R. Halmos, Naive Set Theory. Van Nostrand, 1960.
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We prove the termination of a given Markov-lixe elgorithm Tty sp
=) o Dec

a well-ordered set W and a mapping @ Irom the set of all expressiong

into W , such that @(el) > @(ez) whenever e, can te transformed ic

Ty some production. Since all decreasing sequences in a well-ordered ses«
are finite, the above condition implies. that all transformation seguence
must be finite, i.e. that the algorithm terminates.
To prove the termination, we chocse a well-ordered set W , an
) . ) . . X N Y " - no
assign a monoctone increasing (in each variable) function Fg: W oW
to each n-ary operator © and a constant ceW to the atoms of th

€
. 4
1
@
13

expression. If for any assignment of value a, of W to v, , the Iy
@ t is an atom
a. t dis v,

5y

l ke
FG(@(tl),...,é(tn)) tois S(tyyeeest))

3
N
cr
S~
1]

satisfies @(t) > @(7') whenever T —7T' is a production of our algoriinn
then it follows by a simple proof that the algorithm terminates. In
practice, one can assign simple unspecified functions to the operators -- ¢
taking W as I. and ¢ > 1, assign a linear function F@(x) = ox+3

1
(@ >1, g >0) if 6 1is a unary operator or Fg(x,y) = ox+By+y (a8 > 1, >
if © is a binary operator -- and find the required coefficients by
solving an appropriate set of inequalities, as illustrated below.

=,

bxamgles

1 iati ok
1. (Vl+v2>+v _;Vl+(v2+v5). (tne associative rule)

3

Choose W = I, . Letting F+(x,y) = ax+Ry+y , We require that

aloa tgasty)tpasty > aaptplaastpasty )y

i.e. for every al,a5 >c,
2 +Rat > oa.t 2a +
& &y B 3 QY 1 = 3 By
2 2

which is satisfied if o >, B8 >8 and oy >87 , with strict
inequality in at least one of the three cases and with constraints
a3 >1, 7 >0 . One solution is therefore a =2, 3=1, 7 =0,
i.e. F+(x,y) = 2x+y , with ¢ =1 . We note that Iturriaga's conditicn

is not sufficient to show the termination of this production.

25 The algorithm given above for differentiating.
Choose W =1I, . Letting F+(x,y) = axtpyty , F(x,y) = atx+atyty!

and FD(X) = o"x+y" , we require (fram the second production) that

lj/i.e., for any j (1 <j<mn): x> x! implies

Fg(xl""’xj""’xn) > Fg(xl,...,xs,...,xn) .
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Mata rtagty iy > alata st (aMahy " Fy ) H3(ata, tat (afe by M )yt ey -
i.€.

Pt -~ "t . "yt a A \ a [ N PN A WM b
21ale,retatat(ytateyt) > (optattaat eyt (atHasta et (agty oy a8 sy )

> ¢ . 3ut the constraint o,B,a',3',a" >1 implies that

.
ato' < of+23'" , so the inequality cannot be satisfied. However, we can
Y

baj

D(x) be quadratic rather than linear; a

simple check saows that F,(x,y) = F (x,y) = xty , Fo(x) = x° Wit

b

. vV, F vtV - Vo ¥tV ¥
> 1 ( c 5) 2

1 173

(the distributive rules)

" .

(vl+v2) Vs = VRV RS

Choose W =1I, . Letting F (x%y) = axtpyty and F (x,y) = a'x+atyey’

we require (from the first production) that

ara *Bt (e tBasty )ty > alataplagty  Ja(ata tataty )y
i.e.

a'a tagta taglagtatytyt > (cottealJa taptateptast (ars)y Y,

for every 8158585 > C . But the constraint ao,B,a',p' > 1 implies that
S = —

a' <ox'tpat , so the inequality cannot be satisfied. However, we can

prove termination by letting F*(x,y) be quadratic rather than linear;

a simple check shows that F+(x,y) = x+y+l , F*(x,y) =x*'y with ¢ =2

is a solution.

i The productions given above for rationalizing.
Choose W = I, - Letting F (xy) = F_(%,y) = axtgyty ,
QrxERTy+yt and.ﬁ?(x,y) = o"x+g"y+y" , we find that the solution

xty and Z?(x,y) = xt2y+1 with

il

X,¥)
x,y7) = F _(c,y) = 2x+2y, F*(X:Y)

Fy

(
7, (
¢ =1 gives the desired inequalities for Py through Pg > but gives
equality for 1 and pg . Therefore we let F!(x,y) = F!(x,y) = Fi(x,y) =
oxtgy+ty  and F}(x,y) = a*x+a'y+yt , and try to find constants which assure
inequality only for o, and pg . A solution is FI(x,y) = F'(x,y) =
F!(X,y) = 2x+2y and F)(x,y) =xty , with ¢ =1 . Therefore let W

be I2 rather than Il ’ o
first component of the pair and Fé to compute the second component.

choose ¢ = (1,1) , and use F_. +o compute the

Cenclusion

Our effective sufficient conditions for termination determine subclasses
of algorithms for which we can show the existence of ¢ and Fg's which
satisfy the appropriate inequalities.
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