Weli-Founded Orderings for Proving
Termination of Systems of
Rewrite Rules

David A. Plaisted

University of 11Vinods
Urbana, I11inais

{\?-E,P::r"f_ Z-75-93L ..Tui}j' (7 78

Abstract: Hell-founded partial orderings can be used to prove the termina-
tion of programs, and can also be used for algebraic simplifica-
tion. A new class of well-founded orderings is presented which
can be used to prove the termination of programs expressed as
sets of rewrite rules., The orderings are syntactically defined
in terms of a lexicographic ordering and an erdecing on multisets
and require an prdering on the function and constant symbols to
be specified. This technique of proving termination appears to
be of practical importance, beceuse it 75 able to harndle rewrile
rules that arise from typical recursive programs. Several effi-
cient algorithms are presented which allow the terminavion of a
set of rewrite rules to be verified In Tinoar time, fn cases to
which this mothod applfes. These pesults can be viewed 1n terms
of an incomplete system of logic Ip which shart termination
proofs exist. The well-Tounded orderings may also be useful
for proofs by mathematical induction in various areas of
mathematics. A geperal characterization of a clazs of rewrite
rules 15 presented, for which termination can be proved
using these ovderings,

rey words and Phirases: proof of termination, total correctness, well-
founded sets, resrite rules, term rewriting
systems, Lree replacemont systems, ecuational
systems, reductions, mathematical induction,
sorting, algebraic sinplification, theorem
proving, recursive programs, recursive sche.-
mata, partial orderings.

CR Categories: 4,22, 5.21, h.24, 5.7.

This research was supported in part by the Mational Science Foundatian
tndor Grant MCS 77-22830.

Authors' address: Department of Comouter Science, Un rsity of I11inois,
Urbana, I111inois 61801,

T. Intraduction

Many programs can conveniently be expressed as sets of Cerm
rewriting rules. For example, a program to compute the factorial function
can be expressed as follows:

fact{s{x)) -+ s{x) * fact(x)
fact (0) + 1
The append function in LISP can be expressed this way:

append (cons(x,y),z) + cons(x,append{y.z))

append (NIL,z) + 2
We are interesied in efficient, general methods for proving that such sets
of rewrite rules always terminate. Although this is in gengral an un-
decidable problem [6], we have found & method that works well in many
cases of practical interest. For relsted work, see [4], [5], [7]1s [10], [11].

Suppose that

is a sel of rewrite rules. We have found a class of partial orderings
on terms with the following properties:
1. If t, < s; in the ordering for 1 <1 = n, then the set
of rewrite rules is guaranteed to always terminate.
2. Given s; and t,, there is an efficient procedure for
deciding if by < 85 in the ordering.
This paper presents an efficient, simple method for proving termination of
sets of rewrite rules in many cases of practical interest. Common cases

that our method cannct deal with are also presented.

L3

Partial orderings of the kind we investigate are useful in
devising general methods Tor algebraic $+mp11f1catinn. Same of the most
powerful theorem provers currently in use rely heavily on general sim-
plification procedures ([1]. [2]. [3]. [12]. [13]). Also Lankford [9]
has described a complete theorem proving strategy for the first-arder
predicate caleculus which is based on the concept of simplification., See
[&] for another application of such orderings.

Our approach is related to that of Dershowitz [4]. He

presants many speclalized methods, some of which can provide: termina-

tion proofs that our approach cannot provide. We present a single,

general method which can handle cases not covered by Dershowitz's

techniques. Huet [6] 18 primarily concerned with showing that term re-
writing systems are “confluent", and not with exhibiting particular well-
founded orderings. Iturriaga's work [7] 95 hard to understand and not
generally available. Lipton and Snyder [10] give another method for proving
termination.

Of a1l the above approaches, only Dershowitz's approach and the
approach presented here are sultable for proving termination of rewrite
rules of the kind obtained when writing recursive programs, Dershowitz's
nested multiset ordering is directly applicable only to one function symbal
at a time, whereas the ordering presented here i directly applicable to
many function symbpls at the same time, Also, we give explicit programs
for computing the ordering and analyze their time Eﬂmnlﬁx{tf. In addition,
we give a general characterization of a class of rewrite rules all of which
can be handled by our ordering. Both of these technigques seem to be naw
in this area, although Dershowitz may use the latter. Perhaps Iturriaga's
ordering can be adapted Lo our purpeses, but he gives neither an explicit

program nor a general characterization fo is wrdaring.

2, Simplification Orderings

Definition & term is an expression formed from function symbols,

constant symbols, and variables, properly combined, Thus fi#,gtc,yh} is
‘a term. We consider constant symbcls as function symbols having no
arguments. A térm without variables in it is a ground term, We use the
usual notion of substitution. A substitution is considered as a multiple
replacement, simultanecusly replacing all variables of a term by terms,
Thus {x « f{x), ¥ +ale)} is a substitution. We assume all function and
constant symbols are taken from some set F of symbols.

Definition: We say an ordering "<" {5 wel]-founded if there

is no inTinite sequence t1. toy g0 oue such that t, > t. ., for all

f21. (Such a sequence tq, t,, tyy ... 15 called an infinite descending
sequence.)

Definition: A partial ordering "<" on terms is a simplification

ordering 1f it has the following four properties:

1. It 45 & total ordering on ground terms,

2, It is a well-founded ordering. (That 15, there are no
infinite descending sequences.)

3. (Consistency with respect to substitution) If t1 and tE
are terms and t] < tE in the ardering, then for all substituticons @, t1E
<t,8 in the ordering.

4. (Consistency with respect to subterm replacement) If $1 is
a subterm of £y and t, obtained from t, by replacing s; by 5o and 54
< =., 1n the ordering, then t; < &, in the ardering.

Intuitively, these are desirable properties for a simplification

ordering to have. Property € guarantees that the simplification process

must terminate. Property 4 guarantses that ﬁimplﬁfying a subterm will
also simplify the whole term, so simplification can be done "locally.”
Definition: A partial ordering on terms is a partial simplifi-

cation ordering if 1t has properties 2, 3, and 4 as above, Thus it need

not be a total ordering on ground terms,

Theorem 2.1, If s s a subterm of t then s 1% never greater

than t in any partial simplification ordering.

Theorem 2.2. 1f s is o ground term and t 1s & non=ground

term, then s is never greater than t in any partial simplification ordering,

A replacement is an equation that can only be used in one
direction. We write s, =+ s; to mean that any instance of 51 can be
replaced by the corresponding instance of S0

Definition: A replacement s, + s, fs a simplification with

respect to a simplification ordering if 5y 15 less than 5 wWith respect
to the ordering.

Definition: A term t is abtained from term s using the
replacement 51 » 43 if there is some substitution @ with the following
properties:

siﬂ is a subterm of s, and t is obtained from s by

replacing one occurrence of $40 in s by £50,

Note that if ti < 8 in some partial 5imp]if1cat&un ordering
then t.8 < 5.0 also by consistency with respect to substitution. Hence

t < 5 by consistency with respect to subterm replacemant.

We say that a set 81 % tye 5 by, Lily 5.+ b, of rewrite

rules fails to terminate on input Uy iF there is an infinite sequence

i
using some replacement in the set, If no 'such infinite sequence

Ups gy Uy wos such that for all § > 1, by 41 is cbtained from u,

exists, we say the set of rewrite rules terminates on input Uy

Theorem 2.3, Suppose 5+ L]. cray 5o * tn 15 &4 set of

rewrite rules. Suppose there is a partial simplification erdering
<" such that t; < s, in the ordering for 1 < i <n, Then the set of
rewrite rules terminates on all inputs.
Proof: Assume the rules fail to terminate on input iy
Let Uys Ugs Ugy oo be an infinite sequence of terms such that for all
1l 0 5 Uy4q is obtatned from Uy by using some replacement in the set
of rewrite rules. We showed above that Usyp <ty in the ordering,
for all 7. Hence Uys Moy Uge wa. 15 an infinite descending sequence
in the ordering. But this is impossible, because a partial simplification
erdering i1s well-founded. Thus the given set of rewrite rules is

guaranteed to terminate on all {nputs,

4. Multisets

A multiset is a set in which an element can occur more than once.
We write multiset union as ¥ or usually V. The number of occurrences of
an element in a multiset A U B is the sum of the number of its occurrences
in Aand B.

Definition: A sequence of function symbols (or sequence) is a

seguence of function and constant symbols from F,

A

Definition: If term t is of the form f(t,, t.]) then

f is the top-level function symbol of t. Also, {ty, ... , t] zre

top-level subterms of t.

Definition: If t is a ground térm of form f{t1. T nﬂ} tnen
a path in t fs a sequence beginning with f and followed by a path from
same top-level subterm of t.

Definition: If t is a ground term then Paths (t) is the multi-

set of paths of t. Thus
f

Patha{f{t1. ~EA tn}] m {f} W Patha{tij.
im

Paths(c) = {¢) for constant symbols c. Thus Paths (flc.g{a,k))) = {fc,
fga,Tgb!l.

Definition: If o 15 a path then Subseq(a) is the multiset of
subsequences of a.

Thus Subseq(fa) = {f.h) Subseqla)
= {f)} Subseq(a) & Subseq(a)
where A denotes the empty sequence and concatenation denotes subsequence
concatenation. Hence Subseq(fg) = (f,g.fq.Al).

Definition: If $ 1s a finite multiset of elements ordered by
some total order relation, let List (3) be a 1ist {Sy, S50 ovo o S0 OF
the elements of S in non-increasing arder. Each element must appear the
same number of times in List (5) as in 5.

Given a total ordering on some set S, we define a tota) ordering

on finite multisels of elements of 5 a5 follows:

Suppose U and V arc multisets of elements of 5. Suppose U# V.,

Let {u]. Uny v w, } be List (U} and Tet {vys Voe oo ; vL} be List{V).

I List (U) is a proper prefix of List(V), we say U < ¥V, [IF List (V) is:a
proper prefix of List (U}, we say V < U, Otherwise, Tet j be minii: ug # v;l.
Thu; wee say U < ¥V if uj < Vi U=vif ”j > ?j'

Mote that if the ordering on 5 is well-founded, so is the order-
ing on multisets of elements of 5.

We assume that there i5 a total ordering on the function and con-
stant symbols F appearing in terms t that we are dealing with., If g > f

in this ordering, we intuitively think of g 25 being more complicated than

f, and we say g is larger than f,

We order sequences of symbols lexicographically. Suppﬁse'? m
(fgs Fyo oo fi) and G = O Gps ove s g,) are two such sequences of
symbols. Suppose F 4 G. If Fis a prefix of G, we say that F < & in
the lexicographic ordering. If G is a prefix of F, we say G < F. Other-
wise, let § be min{ic 1, 1 gyl e say F <& if ﬁj < 9 F > © otherwise.
Although this s net a well-founded ordering on sequences, useful well-

founded orderings can be obtained from it.
4, A Subsequence Ordering on Paths

We order multisets of sequences by extending the seguence ordering
to multisets as dindicated above, If a and 8 are paths, we Say a < @ in the
subsequence ordering iT Subsegla) < Subseg(z) in the multiset ordering for

subsequences.

Note that the subsequence ordering on paths is a total ordering.

Theorem #.1. For all paths o, & and for all function symbols T,
Subseqle) < Subseq(s) iff Subseq(fa) < Subseq(fa).

The proof is quite simple.

Definition: If n is a path and g is a function symbol, let
fg{qj be the number of occurrences of g in .

Dafinition: If o is a path, let maxf(x) be the maximal
funttion symbol in «. Let masf{a,B) be the maximal function symbol in
aor f, if « and B are paths,

Let R{a,8) be the following relation on paths o and B:

Suppose g 15 maxf(a,B). Suppose a is AL PL ERRL CRE and
B s ByO8,9.. B 96 where #gﬁul=m and #giﬁ}rn1 Then R{a.8) is true if

men or if (men and H{nd,ﬂj} is true, where f=max{f:a;76:1).

Theorem 4.2. Suppose o and g are paths. Then

a) & < g in the path ordering iff Subseq{a){f} < Subseq(a)(f}
in the path ordering and
b) « < p in the path ordering iff R{a,8) is true.

Proof: By induction on maxf{a,8). I[f these values are the

same, then by induction on max{ﬂﬁ{uj,#gia}}.

Note incidentally that it is easy to show that R{a,p) implies
Rlaf,gf) for all function symbols f.

Assume that a s CER: P PR L and g is ﬂigﬁzg"'ﬁngﬁn+1
where #g{n}=m and #g{ﬂj=n and g is mexfla, 8).

Me show R{a,p) iff a < p. If m < n, then Subseg(e) < Subseq(g)
easily. If men, then List{z) begine with g" List{a,,) and

. . -
List (g) begins with g List{e .;).

=7 [}

Let j be max{i: a; # 851 If 5=m+1 then a < g iff

] < Poel. Suppose m = n and jJ < m + 1. Then Subseq{a) =
:Suhseqin'udgv] and Subseq(s) = Euhseq{ﬂ'angJ for some y where

jg{Ti =m~= j. Suppose nj < Ej in the path ordering. MNow, Subseq(a) =
Subsbqtn’njfj Ut Eubseq{u‘uj][g]5ubseq{7} and Subseq(s) = Euhaeq{E'EiT] Ll

Suhsaq{E'Hd?{q} subsegly). We can assume inductively that

R{a'ujykﬂ'ﬂjyj iff u'uj? < E'ij since u'an and ﬁ'ﬂdr either have

no g at all or else have fewer g than o and g .do. Now, u'ujv is
qlguzg,,.gujﬂj+1g...umgnm+1 and E'EJ? 1% ﬂ]gﬂ?g-.-gﬁjﬂj+1g...ﬂm9ﬂm11-
Also, gl ™ By v 4] = ﬁj+1. Hence Hia'uJT.ﬁ*ﬂJv} is true iff
Rlagogiqe ByByaq) 15 true, doe., 977 Riagugays Byage) 15 true,
By repeated application of the note following the theorem, Rﬂujﬁd+1' Ejuj+1}
is true. Hence R{u'ij. ﬂ'ﬁjv} fs true and so by inductive application
of b}, a'nj? < E'EiT in the ordering on paths.

It 15 not difficult to see that EubEEq{u'uj}[g] Subseqfy) <
Subsuq{E'Bj}{gl Subseq(y) 1ff Suhseq[uji{gi Subseq(y) < EUHSEQiﬂj]{E?
Subseq(y).

This is because these two expressions are the same on all subsequences
beginning with j or more g's. Their ordering will therefore be deter-
mined by subsequences beginning with exactly (j-1) g's. Of these,
all subsequences will be the same in both expressions except those

beginning with the first j-1 g's.

Now; we can assume inductively by a) that
Euhﬁéqinj][g} < Subseq{ﬂj}tg}. (Since we assumed By Bj*J We want to show
that for all sequences x, Subseq{uijfgx} <
Sfubf_-ﬂﬁiﬂj}{gx}. Note that for y,z EEuhseq{nj} w
:-:'ubseq'[-uj}. ygu < zax iff yg < 29,
This is because g does not occur in y or 2z, hence neither of yg and

zg 1s a prefix of the other.

We thus have a 1-1, order-preserving mapping between
Suhseqtuj}{g} W‘Suhseq{ﬂjligj and EUDSEq{uj]{EH} Cl Euhseqtﬂd}{gx]. Hence
EubSEQIuJme} < EuhEEq{Hj}ng} iFf Suhseq[nih{gl < Eubﬁaqfﬂj}{gl.

Since this 45 true for each x in Subseq (y). we obtain that
Eubseq{ndl{glsuhseqtfj < Subseqtﬂjj{glﬂubsﬂqfwﬂ. Hence 5uh5eq{a'uj}[g]
Subseg(y) < Suhseq{E'EjJﬂiSuhseq[w}. Therefore Subseq{a) < Subseqig},
and we have shown b) by induction.

We now show a). Assume j is as above. If fgtu} < #g{ﬂ} and
f 2= g, then a) follows easily. Suppose #g{a} < #gﬁﬂ} and f = g. Then
List{a) begins with f,m*gf, {g}*ggf.,,.. and List(g) begins with F;n*gf*{g]*ggf..,..
Hence if m<n and > g, Subseq(a)(f} < Subsea{s)(f}. Suppose f#qla) = fgln),

Suppose f=8. Then List(Subzeq(e}{fl) and List(Subseq(p){f}) will both begin with f,

m*gf.[g}*ggf.....fur1}gm'1fi "F. After this, they will agree on all

sequences having § or more g's at the beginaing. Also, they will agree

Fs

§

£ : -12-

;fo_pn all sequences having j-1 o's not &1l of them chosen from the first
§-1'g's. Hence the ordering on a and § will be determined by the ordering
:nn-Euhseq{ngvJ{f] and SUESeqﬂjﬁT}{f} for suitable y. As before,
ﬁuhseq{ujg?}{f}= Suhﬁeqtujri[fi Ui Subanq{aj]{g} Subseqfy Y{f) and
5ub5eqfﬂng}{F} = SubaentJT}{F} it Euhseq{ﬁjllgl Subseqfy J{f}. Using
Anduction and an argument as above, we obtain that Subseq{a){f} < Subseq{a}{f}.

Suppose #g{u} a #giﬂ} and f < g. In this case; Subseq{u}(f]
and Subseq{g)(f} agree on a1l subsequences beginning with J or nore q's.
They also agree on all subseguences beginning with j-1 g's not all
chosen from among the first j-1 g's, Hence the ordering on
Subseq(a)}(f} and Subseq{p)(f} is determined by the ordering on Euhseq{nJET?{f}
and Subsaqﬁﬁﬂ?}{f]. as above. Using induction and an argument as above,
we obtain that Subseqle)(f} < Subseq({p)(f). This completes the proot.
Corollary 1: For all paths o,¢ and all function symbols
F, Subseqia) < Subseq(g) 177 Subseq(af) < Subseq(af).
Proof: Subseqlaf) = Subseq{a) ¥ Subseq{a){f} and Subseq{pf) =
Subseq(s) w Subseq(g)(fl. Also, Subseq{a){fl < Subseq(a){f} iff Subseq(a) <
Subseq(p) by the above theorem.
Corollary 2: The subsequence ordering on paths is a well-
founded ordaring.
Proof: By the above theorem, Subseq(a) < Subseqf{a) iff R{a,8).
But it is easy to see that the relation R is a well-founded partial
ordering on paths,
This result is slightly surprising, since the multiset ordering
on arbitrary multisets of sequences is not well-founded. However, 771
we Testrict ourselves to nultisets of sequences obtained from paths,

this ordering s well-founded.

13-

Definition: If a 1% a path, let Descla) be the multiset of

non-increasing subsequences of a.

Theorem 4.3. For all paths o and p, Subseq{a) < Subseq(g)

iff Doscla) < Dosc (@),

Proof: Dy induction on maxfle.p). Let a bo @y 0850, ¢ oo Qo e
and et g be ByBBa8. - B 08y where q = maxf{a,s) and #g{u] = m and
#HEE} = T

He show Subseqla) < Subseq{p) implies Descla) « Desc(a).
It is clear that Subseq(a) = Subseq(p) implies Descla) = Desc (g),
and Subseq{a) > Subseq(p) fmplies Desc(a) » Desc(p) by symmetry.

Assume that Subseq(a) < Subseq(s). If m<n, then the maximal
element of Descla) 1s of the form g"h' and the maximal element of
Desc{@) 15 of the form q"8' where #g{a‘} = 0 and #g{ﬂ'] =0, Since
g'a' < g"g' in the lexicographic ordering on sequences, Desc{u) < Desc(p).

Suppose that m=n. Let J be max{ita;#8;). We know then that
Eubseq{uj] < 5uh5eq{ﬁj}, Also, Descla) and Desc(g) will agree on all
subsequences beginning with J or more g's, and on all subsequences
beginning with j-1 g's not all chosen from the first 3-1.g's of a and
B. Hence the largest subsequences on which Desc(a) and Desclg) will
differ will begin with sij“'f followed by & subsequence not containing
any g's. Hence Descla) < Desc{pn) iff gj-1ﬂﬁﬁﬂ{ujuj+1...nm+T] <
uj'1ﬂﬁsﬂ{ajaj+1.piﬁm+13-
We know that 8441 Ej*l""‘nm+l = Bpype Also, SubEEq{uiJ{

Suhseq{ﬁdl. Hence Euhseq{uju) < Subseq(g

410) jie1ee By)
We can assume inductively, therefore, that Eesﬂ{gju

J

j_l_'l--'r{'l."_H_lt]' =
-1 -1
ﬂEEE{Eij+1...Em¢1]. Hence g DESE{ujuj+1p.,unﬁ1} < g Dest{ﬂjﬂj+]._,ﬂm+]}

and the theorem is proven,

Sja

hNote that the lexicographic nrder?ng on non-increasing
sequences of function symbols 15 a well-founded ordering. Hence the
Snduced multiset ordering on multisets of such sequences is also well-
founded. This gives us another way te show that the subsequence ordering
on paths 75 well-founded,

We now derive some results which are related to an efficient
algorithm for computing the subsequence ordering on paths.

Theorem 4.4, Suppose x 15 the maximal subsequence of a path
a: Then x is a non=increasing sequence and the last symbol of x is the
same as the last symbol of a.

Theorem 4.5. Suppose x and y are the maximal subsequences of

a and p, respectively. Suppose the last symbols of a and @ are dif=
ferent, Then x and y differ, and so Subseqla) < Subseq(s) iff x < y.

Theorem 4.6. Suppose o and 5 are paths, and f and g are

symbols. Suppose that o < &g in the path ordering, and f < g in the
symbal ordering. Suppose that the last symbel of a is not g. Then
af < g in the path ordering.

Proaf: Let f]f ...fm_he the maximal subsequence of «,
and let =P PR be the maximal subsequence of ga. HNote that both
subsequences will be non-increasing sequences, Since the last symbols
of o and pg differ, the sequences fle...fm and P PR differ, so
fifz"'fm < Gq8g. 008, in the lexicographic ordering. Since g is ¢
and 9395 -9, is a npn-inereasing sequence, g; = g for all i, 1<i<n.
The maximal subsequence of af will be fifE"'fjf for some j, O<i<m, We
know that f% < f for ail 1, J<iem. i 20y -0y is not identical

to fTFE"'Fj then 9y0pe -y > f1f2,.,fjf since 919+ -9y 2 fle...fm.

5T -3

Suppuse 9,9,...95 15 identical to fif,...f,. Then j < n, because j = n

qmplies o > g in the path erdering. Since f < g, we have f < g. ., and
50 fIfE‘*'fjf < 9195504054 00y Thus af < gg in the path ordering.

Theorem 4.7. Suppose that a and & are paths. let o = & ¥

and 8 = g'y where v is the longest common suffix of a and g, Let

x and y be the maximal elements of Desc{a') and Desc(a'), respectively,

in the Yexicographic ordering on subsequences. Then Subseq(a) < Subseq(g)
iff x <y in the lexicographic ordering on subsequences. [(In fact, x

and y are the maximal elements of Subseq(n') and Subseq(p'), respectively.)

&. A Path Ordering on Terms

Given ground terms t] and Loy We order them by the multiset order-

ing on their paths. That is, we order paths o and £ by the subsequence

ordering, i.e., a < f iff Subseg(e) < Subseq(s). Wa then order ty ond t,
by the multiset ordering on Puths{t1} and Fnth[tE}. Thus, 7 List{Paths
(ty)) = Lags gy <on o) and List{Paths(t,)) = (Bys Bpy o oue s B), we say
ty =ty if List {Faths{tI}ﬁ is a proper prefix of Lfit[P&thS{tEj} o §f
Subseqinj} < Suhseq{ﬂjj where § = min{i: o # ;). Hence we are really
using two levels of multisets to order t, and bt multisets of paths,
each path considered as a multiset of sequences,

Note that this gives 2 well-Tounded ordering on ground terms,
since we are grdering multisets of paths and the ordering on paths is a
well=founded grdering.

Definition: The path ordering on terms is dofined as follows:

a) I¥ £ and tE are ground terms, ty< ty if Faths[t1] <

Faths{tEJ in the above ovdering,

b)) If t.t and ty are non-ground terms, t; < Ly iT for all & such
F that ty8 and ol are ground terms, Paths[t1&} < Fath{tEE} in the above
ordering.
Theorem 5, The path ordering on terms is a partial simphification
ardering, Hote thal we may have Fathﬁ{tﬂ = Paths{tEJ pven §F ty and ty
are not fdertical, For example, fla,b) and f(b,a} have the sanme multiset

of paths. IT t and ty are ground terms ond have unequal multisets of

paths, then either t] < o or tE < t1 in the path ordering on terms,

6. Computing the Orderings

Given paths o and B, we present an algorithm to compute whether
Subseqla) < Subseq(g). Let || be the length of o, 1.e.. the number of

occurrences of synbols in a. Let a[i] be the {th

symbol in a, and assume
that the first symbol is «[1].
procedure arder{a,i);
m= |ali
n+ lgls
whilg a[m] = @[n] and m> Qand n =D do (m+m- 15 n+n~- 1}
if m=0and n=0 then return ("o = 8");
f+«1: 3+
while 2 mand j = n do
(if ali] > 6[3] then § + J + 1 else
if ali] < g[d] then i « i + 1 else

(1 =54+ T;9 3+ 1)

if 1 > m then return ("8 > =") glse return ("= > §8%)}

end order;

=

This method requires at mbst |a| + |8] - 1 comparisons to compute
the ordering on nw and g. It 15 easy to show that any comparison-based
method of computing this ordeving requires at least la| comparisons an in-
puts @, B such that o < B in the subsequence ordering on paths.

We now show that the procedurs "order" 1s correct, Let y bo
the Yongest common suffix of o« and g. Suppose n@a'y and g=g'y . At

« If a=a then

the end of the first while statement, m=|a'| and n=|g'
men=o and the procedure will return "a=g".

We show inductively that the second while statement, started

on strings a' ‘and g' which do not have the same last character, will
work correctly. IT o'=A and g'#A or 1F ao'fFh and g'=A, it 15 clear that
the program works correctly, Suppose a'#A and g'#% Let o' be oy 9yt
and let g' be p,0,8,, where g, is maxf{a') and #g1tu1}nn. Mso, g, is
maxfias') and #gztﬁ]}=u. Thus we have specified the first occurrences of
9 and Gg in o' and g', respectively.

suppose @y > g. Then i will stop scanning at |u1| + 1 but
J will continue a1l the way through g' and so eventually j > n and
the algorithm will return "o»g", which is correct. Similarly, if
9y > 9y the algorithm will return "g=a", which is correct.

Suppose g1=gE. Then a=g iff By * BE' by previous results
and the fact that ay # By. We eventually have 1 = [a [+ 1 and
j= |H1| + 1. This causes the statement (1+1#1; j=j+1) to execute.
From then on, the while statement behaves as if it were started an g
and EE' We can assuma im:lur:t'f1..r|z-'|_'_.f_I therefore, that the program will
output "a > 8" if o, > By, and "a < g" if a; < By, BUt @, > B, ifF
a > g and P HE 1ff « < g, 50 the program is correct., This completes

the proof.

The following algorithm orders two paths o and 2 in the
subsequence ordering on paths. It scans o and g from back to front
rather than from front to back. Hotation 15 as in the previous algorithm.

procedure orderd(a,8);

Tlul;

J«lals

whilk a[1] = B[J] and 120 and j=0 do (¥<1-15 J«j-1};

if =0 and J=0 then return("a=g"};

1f 1=0 and j>0 then return{®=<g"};

1= |

120 and =0 then return("e=g");

—a
—_

Li: is0 then

|

[T=1-1
4f o [11<8[3] then goto L1 else goto L2)
else roturn("a<s");
L2: 1T =0 then
(Jd-13
if ali)>p[j] then goto L2 else goto L1)

alsa vaturn{"a>g");

end orderb;

The reason this algorithm works is the following:

Let |"'||:"|"-| .‘rE} be the following relation on paths 8 and Yo

‘r.l < ¥, in the subsequence ordering, but \'1 = I:TE with the
first symbol removed) fn the subsecuence grdering.

Than for all paths Yy ¥, e have that Hf‘ri, g.fE] and f < g
impiies HI['Fr]. ETEL Hh‘l‘ ';-.rgjl and T > g imnlies HEL]TE.FT.i}. In the
above algorithm, let vy be the Tongest common suffix of @ and A. Suppose

a=a'y and 8=p'y. Let ay be alilali+1} . .alm] and et By he

o

8la1s[3+11...6[n 1, where w={a'| and n={g'|. Then at L1, Rlay, &) is

always true and at L2, HEEI. “I} is always true.

Given ground terms 5 and Ly, we compute the path ordering on t
and t, as Tollows:

Let 571 be Faths{t1] and let 52 be Fathsttzj. If §1 = 52 then ty
=it in the prdering. If §1 ¢ 52 and 51 © 52 then i] <ty in the ordering.
1T 51 4 52 and 52 € §1 then t, < t; in the ordering, Otherwise, sort 5| and
52 in non-increasing order Lting the above procedure to compute the subse-
gquence ordering on paths. We thus obtain List(5) = {u1* s wor umJ
and List(S2) = (B4 Bys «vv 5 B o). Let § be minfi: a; 1 Bl Then t,
< EE in the path ordering on terms if oy < HJ in the subsequence ordering
on paths. Otherwise t) >ty

Let Size(t) be the number of occurrencos of function and constant
symbols in a term t. Suppose Size{tl} = 4 ard Eizeftzj gl P Then 51
has at most q, elements. Also, each element of 51 is of length at most
€y. Hence each comparison done wWhile sorting 51 requires at most qu =1
comparisons of symbols, and we can sort S1 in D{{q1 109 ql}{Eq] - 1)) ar
ﬂ{q% log q1l comparizons, Similarly we can sort 52 in qug 100 q?} cempari -
sons. Finding J requires at most min(qgi qgj comparisons and comparing i
and ﬂd reguires at most 0 +_q2 - 1 comparisons, 5o the entire algorithm
is of complexity U{q? lag ay + ug Tog a,) canparisons.,

It is possible to do beiier thon this. He present a sethod
wiich can sort n poths in Lime O(L min(logk,l6agn)) where L is the sum of
the lengths of the | (ths and k is the number of distinct function symbols.

We present a relat -thod Tor computing the path ordering on ground

-0

terms ty and t,. The time required is O(Lwin{logk,legl)) where L is size (t)
+5ize {tE] and ¥ is the number of distinct function symbols. Hence

thic 15 a linear time method if the set of functien syimbals §s fixed.

Given in paths, the following algorithm will output them i
arder, smallest first, according to the subsequence ordering on paths.
The time required is O(L min(logk, logn)) where L is the sum of the
lengths of the paths and k is the number of distinct function symbols,

The algorithm considers v(j) to be the jth path, for
) < § «n, and v(j) 15 considered to be a stack. Thus f=v(J) removes the
first function symbol from v(j) and assigns it to f. Tne function
symbols are fdentified with the integers {1,2.....k}. The function
symbols are crdered by the usual ordering cn the integers. Thus
1<2, 2«3 et cetera. The algorithm makes use of k queues qj, qz. FERA ﬂk
together with another queue T, The empty queue {or stack)} is denoted by A.
Stack and queuve operations are indicated in the usupsl way by = ., Thus
J=T means remove an element from tho queue and assign it to §. Statements
such as Te4 and T1Qi are not queue pperations but ordinary assignment
statements. Thus T+<x sets T to be the empty queuve, and 'l'-+|'.}_1 sets T
to be the current configuration of the gueus ui' The algorithn outputs
a 1ist 2y, 25, ..., @, of integers such that the initial values of
v{alﬁ. v{aEJ. o u{an} constitute the 1ist of paths in nondecreasing
arder,

At any time in the execution of the algorithm, the Tist qTUE"‘qk
of paths is in increasing order, where each queue 8 1isted from front
to back and where we only consider the subsequence ordering on the portion

of the path already seen.

=2 =

It would be interesting to know if there is a similar algorithn

which outputs the paths largest first.
procedure sort{v,n);

flag+true;

T+A3

for j«1 to n do T=j,

for j+1 to k do Qu+hs

while flag do

(while T#A do
L3,
if v{j}=A then output(j)
else (fev(i); Qe=i)ili

if{HJJ{ﬂjHﬂ} then
(femin{$:Qu#0); [Use a priority guese for this]
T{'Q.E s ':]'.,i "'l'l.}

else flag+false;)s

end sort;

To show that procedure "sort" works, it suffices to show that
on any patr w(1), v(3) of fnput strings, it behaves the same as procedure
"order". For strings with differing last characters, this is easy to do.
For strings with common nentrivial suffixes, this is more difficult but
stil11 can be dene by considering the velative position of w{i) and v(j)

L

within a queye, if they are in the sams gueus.

g

The following aleorithm alse sorts n paths v(1), vb2¥ e win)
and outputs the integers {1, 2, ..., n} in an order correspanding to
a listing of the paths in non-decreasing order. Notation is as in procedure sort,

The difference is that the paths are scanned from back to front rather

than from front to back, That is, fev(j) means "Let f be the last symbol

in path v[3) and delete this synbol from the end of w(j)." However,
the queue operations J = |.'}1 et cetera are as befere. This aloorithm

i& more useful than the préeceding one in certain situations.

procedure sortb(v.n);
for J=1 to k do ﬂj*hi
for =1 ta n do
if v{i)=A then output(j) else
{fev(i): Qg=ils
while {3i}{UijJ da
{i+m1nlj:ﬂ1#h}; [Use a priority queus for this)
3=
if w{d)es then output{j) else
(fev{d)s Qg=d)s)i
end sorth;
We can v;rify that "sortb" works by showing that it treats
input strings w{i), v{j) the same way that "grderb" does. Cormon
nontrivial suffixes do not present a problem because the strings are

scanned from back to front,

R

ke present an algarithm which Hi1lt given a set {t1....,tn} of
. ground terms, sort the multiset 1§1 Paths {t1} in time O{Lmin(logk, Togl))
where L = iEl Eize{t1} and k 15 the number of distinct function symbols in
the terws .. For purposes of this algorithm, we associate subterms of a
term t with prefixes of paths in t. If the same subterm occurs more than

the subterm in t.

Suppose t is of the form F{v1.....v With t itself we associate

o)
the path consisting of the single function symbol f. Suppose w 15 a
subterm of vifﬂr sum 1, lei<m. Suppose that a is the path associated with
W as a subterm of vy Then fe is the path associated with w-as a sub-
term of t.
For example, if t is f(gla,b).,c) then the path associated with
b is fgb, the path associated with g{a,b) 1s Tg, and the path assocfated
wWith t 1tself is 1.
Sorting iQI Paths(t;) is therefore equivalent to sorting the occurrences of
constant symbols in ‘the terms i I=i<n. This 15 because there is a
1=1 correspondence between elements of Paths{t) and constants in t,
using the above association of paths and occurrences of subterms.
Recall that the top-level subterms of a term f{v1.....um]
form a multiset {v1.v2.....vm}. Assuma the function symbals are the
integers {1,2,...,k}, and let notation be as in procedure sort.
The following algorithm will output in non-decreasing order
the elements of igl FuthSItiJ, each path represented by an occurrence
of a constant symbol in some term ty. We assume that enough information
is kept with each occurrence of a constant symbol to identify which path
it corresponds to when it 15 printed out. The last "for" statement must

deal with each occurrence of a top-level subterm v of t separately.

#24-

procedure sortt{ity byt 1)

T+h;
for j+1 to k o Qs+hs
for §+1 to n do
{f+=top-level function symbol of t34
Qpty)
while (3,1(0,7A) do
(i +1min {j:ujfn}; [Use a priority queds for this]
Tellys Qpens
while T#A do
[t=T;
if t s a term consisting of a single constant symbol then
output(t)
else
for all top-level subterms v of t do
(fetop=-l1evel function symbal of v;
Qpevlilids

end sortt;

This algorithm can be used to compute the path ordering on teo
ground terms in linear time, assuming that the numbeér of function symbols
1s bounded. MWe do not know whether this technigue can be extended to
sort a set of arbitrarily nany ground terms in linear time, assumfng
that the number of function symbols is bounded,

The output of procedure sortt can be simplified, for most

n
PUrpOsEs. Suppose o, Ggs -es @y is the 1ist of paths of e Fathsitij

=25~

in non-decreasing order. Suppose path Oy COMES from term L
(1, 2, ooy nt forall J.)<isp. Then all we usually need is the list
¢a1, blhiaz. pf ..‘{ap. b"ﬁ where Ii:ul is arhitrary and hj =1 if o
and ay.y are identical, by =0 otherwise. If path o5 GCCUrs in more
than one term, we are assuming that i1 95 counted the right nunber of
times as coming from each term. By scanning this 11st in reverse, we
can easily find the largest term in {t], tE‘ o tn} in Tinear time.
It is not difficult to modify the procedure sortt so that it computes
the bits hJ correctly.

Define Paths(t) for a non-ground term L as Tol)lows:
Paths{x) = (%) for variables x
Paths{c) = {c} for constant symbols ¢

Paths{fltay vos o t.3) = {F} W Paths(t;)
.-I] .i 'I-

Thus Puthslfigixlnni. xE}} =
[fgx1¢ foc ,fxg}.

Dafine Size(t) for a non-ground term t to be the numbor of
occurrences of function and constant symbols and variables in 1t.

Given npot necessarily ground terms L and to. We compute the path
ordering on Y and tE as follows:

Let Paths(t,) be SJ U SI U ... U S| U Ry and let Paths(t,) be
2 ? - i
51 u 52 LS hE u HE' where S} and Hi are all mltisets. Alseo, {x1. R

“h] is the set of variables appearing in t, or t,, and 53 = fe: ax, © Paths

tti}}. In addition, Ry is the set of paths of Ly ending with a constant symbod.

Thus, if t = f{g{x],c}.xgj then 5} = {fg}.ﬁé = (T}, Ry = {fgcl

<25

Theorem 6.1. ty < tE in the path ordering on terms iff both of

the following are true:

a) Forall j, 1 <4 <k, 5} < 5§ in the ordering on multisets

L

of paths,
b) L0 =< t,09n Lhe ordering on terms, where 8 i5 the substitu-
tion replacing all variables by the minimal constant symbol of F,
“he direct method of applying this theorem yields an algorithm whoss worst
case complexity s D[q? log q * qg log qz} Where q, = Stze(t,).
Using techniques similar to those mentionod above, we can compute the
ordering on non-ground terms in 1inear time, assuming that the set of
function symbols 1s fixed.

We now develop some results leading up to a proof of the obove
theorem, and present an efficient algorithm for computing the path erdering
on non-ground terms.

Theorem 6.2, Suppose Sy¥T, > 5,wT, in a mltiset ordering,
where 51, T1. 52. and TE are multisets of elements from some totally
ordered saf. Suppose TI 3-T2 in the multiset erdering. Suppose a 15 a2
mapping on elements of T.I and TE which is 1-1, order preserving, and
monotong increasing on T.I (L] TE* Then 5‘-H {T1u} > 5E C ETzﬂ} in the
multiset ordering.

Proof: 1t suffices to consider the case in which 51 n SE =
B and T, n 15 = B since elenents which occur the same number of times
in 5y and S, or Ty and T, don't affect the argument. Assume then that
5! n 52 = @ and T.I M TE =8,

Let sy, 554 ty. and t, be maximal elements in Sy, S,, Tys

and T?. respectively. Then >ty since TI 3-TE‘ Also, tiu': tEu

s

since ¢ 15 1-1 and order preserving. In-addition, t1u > tl-and oo > tE
since o 1% monotone increasing. Furthermore, ti“ and tEu are the
maximal elements of T]u and TEn. respectively.

suppose that 12 tl' Then 31 = 5? Since nmn{sl, t1J 3_max{52, tEJ
and 51 g EE = @. Also, tyn > tE“ as noted above. Hepce max{51. tlu} >
maR{SE. tE”} S0 51 W Tya 52 w-TEu.

auppose that By t1. Then 2 8y since max{51. t1] »
IME{EE.. tﬂ}i Hence tyu » 5, since a 1s monotone increasing. Also,
tja > oo since a is 1-1 and order preserving. Hence tio > max(s,, t,a)
S0 Sy W Tyw » SE W TE“‘

Corollary: Suppose 5, W ?1 WL, EY 52 N, L, W Hn
in a multiset ordering as above. Suppose Uj > ”j L") e G T (Yo |
Suppose the mappings ay are 1=1. order preserving, monctone increasing
mappings on Uj 1 Hj for j =1, 2, ..., n. Then §y & u]n] W Voo W0, WV a >
Do W My W Waas W s W WA

Proof: By repeated application of the above theorem.

Proof of Theorem 6.1.: Assume ty < L. Then by definition of
the path ordering on non-ground terms, 1,0 < t,0 where 8 15 a5 in the

thearem,. So b) is true,

Z
J
of paths. Choose substitution « to replace ”j by a very large term and

Suppose that for some j. 5; * &, in the ordering on multisets
X by very small terms, for 1 § j. Tha1t]n > tza‘ Hence a) is true
if 1‘.1 < t.'.‘,.

Assume &) and b) are true. We show that ty < t; in the path

ordering on terms. Let &' be a substitution replacing all variables

cen H by ground terms Vie sres Yo respectively. We show that
i1ﬁ' < tza' in the path ordering on terms.

suppose ¢ 15 the minimal constant symbol dn F. We know by

t) that I*a1:|13{t.|}{c? < F'.'iLhEI{T.EJ[r:], where Pathift]ﬂc} denotes {xcixe Pnthﬁl:f.-t]

and similarly for Fath{;EJ[c}- By a}, 5}[:] < S?{c} for 1.2 § <k,
]
Hence njisj[cl < nJ*Eg{c] for 1 « § < k, where Ny 18 the number of paths

in PathﬂﬂuT}. (Here nJ“Slﬂc} neans n, copies of E;Ic] unioned together,

J
1 : 9
and Sj[c} means {xc i xuij.}
k

Thus j“ﬁ nj*ﬁj{c}1u R1 < o) w R by tha above remark

P
k 1 i J
and b). Thus 1:1 j Paths(u) H 14 Si Pathstvj} e R by the above
corollary. (The mappings we are using are those that replace a path of
form e by a path of form gy for some ¥ ¢ Paths{vj}. v # (e}, Such
a mapping 15 1-1, order-preserving, and monotone increasing, as required.)

K
Hote that Pﬂthﬁ{t]ﬁ'} = jT15; Fathsivj} W Ry and P&tha{tED'J =

h
jﬂ1 j Paths{vj} W Ry, Hence t1u' < tEﬂ' in the path ordering on terms,

Since this 1s true for all g' such that t1ﬂ' and tED' are ground terms,
ty < tE in the path ordering on terms. This completes the proof.
If t, and t, are not necessarily ground terms, then we can
still compute the path ordering on t; and t, in Tinear time using the
above theorem, assuming that the number of function and constant
symhols occurring in t1 and t, 1s bounded. We perform a simple modification
to the algorithm for ground terms, as follows: Let X5 S}, and 8 be
as in the above theorem. We modify the algorithm s that it prints
out two lists:]
1. The paths of Faths{tlal ([Fnths{tEu] in non-decreasing

order, each path jdentified as coming from ti or tE'

-28-

2. The paths inE;ISH w[jlzﬁﬂﬂ in non-decreasing urduj:r.
whers each path is identified as belonging to a particular set 5}.
That is, the values of i and j are also given,

Both of these 1ists can be computed during the same scan of i,
and Lo Alsg, by reading these lists in reverse order, it can easily
be determined in 1inear time whether the conditions of the theorem
are trug. Hence we can compute the ordering in lingar time, assuming
that the number of function symbols 1s bounded.

A stight subtlety in this and the preceding algorithm is that
when scanning the output in reverse, we don't really need to know the
whole path for each path on the 1ist. A1l we need to know is whether
the path is identical to the preceding element of the list. Hence the
14sts can be' printed and scanned in linear time, since we only nesd
a constant amount of information per path (assuming that the relevant

integer indices don't get too big).

The replacemants that the path ordering can handle are very
similar to those which Dershowitz's nested multiset ordering can deal
with [4]. However, the path oerdering can deal with more than one

function symbol being "pushed in"™ at the same time.

7. Examples

The following replacements are all simplifications in the path
ordaring on terms. Assume function symbols are ordercd alphabeticaliy.

Thus a = b, b < ¢ ot cetéra.

==

g(f(x,y)) + Tlalx).aly))
efdlx,y)) = dlelx}.ely))
gif{xy)) + Tf{ale(x)).alely)})
g{f{x.y)) = F(flalx).aly)) . flalx).gly)))
gle(x)) -+ flx.g(x))
e{e(x)) -+ dlx,e(x))
Hote that the same ordering can handle all of these replacements

_—

at the same time.

8. General Characterization

We now present a method of obtaining a fairly general class

of simplifications in the path ordering on terms,

Definition: I Sy @nd s, are pround terms, then the replacement
"y ™ 55 ds 8 strong simplification in the path ordering 4f the maximal
element of Paths [EE} is less than the maximal elemsnt of Paths {51}
in -the ordering on paths.

Definftion: If s, and s, ave not necessarily ground terms, then
the replacemnecnt §1* Sg is. a strong simplification in the path ordering 1T
far all substitutions o such that 540 ang 5,0 are ground terms, $10 5,0
is @ strong simplification in the path ordering.

Examples: The followine replacements are all strong simplifications

in the path ordering on terms, assuming @ < b, b < ¢, et cetera:

iy ¥} =+ &
eld{x.y}} = elx)
eld(x,¥)) = efe(x))

In general, if EE is a subterm of 51 Lhen 5] =5, is a strong simplification
in the path ordering. Also, the preceding six examples of simplifications

are all sirong simplifications in the nath ordering.

AL

Theorem 8.1. Let notation be as in the theorem characterizing

the path ordering on non-ground terms. Then tE + t.l s a slrong
simplification in the path ordering iff both ‘of the following conditions
are true:

a) For all J, 1sji=k, the maximal element of 5} is less than
the maximal elemant of '5; in the ordering on paths.

b) The maximal element of Paths {t]m} {5 Tess than the maximal

element of Paths (t,0) in the ordering on paths.

We have the following characterization of a Trequently occurring

class of replacements, al) of which are simplifications in the path ordering
on terms:

variables in them. Suppose h is the top-level function symbol of £, Also,
suppose that t - t; is a strong simplification in the path ordering, for
i=1.2,...in. Suppose {f1¢..+.rkl is a set of function-and constant
symbols all of which are simpler than h in the symbol ordering. Let u be
any term formed from any number of occurrences of tl,tE.,..,t“ dand any
number of occurrences of the symbols [fyveeesfile Then the replacement

t= uis g simplification (in fact @ strong simplification) in the path

erdering on terms.

Thus we can deal with replacements such as the follawing:

fact(s(x)) - s{x)*fact{x)
count{cons(x.y}} + count{x) + count(y)
h{glx),g9{¥)) » hix,y)

hulx)iely)) = T(h{x,x}ihxip))
halx)aaly)) = rh{e(x),e(y)),nlelx),e(x)))

b

We still cannot deal with replacements in which only one argument of

h gets simpler, however. Here is an example of such & replacement:
hla(x),a(y)} = elhlglx).y))

If we could find a general ordering in which such replacements wers

simplifications, then we could probably handle the distributive replace-

monts of multiplication over addition.

The following result helps us to prove the above theorem:

Theorem 8,3, Suppose o and § are paths such that Subseq (a) <

Subseq {B). Let f be a function symbol which is less than the first
function symbel of & fn the symbol ordering. Then Subseq (fa) < Subsen {&).
Corollary: Suppose a and £ are paths such that Subseq {a) <
Subseq (6). Suppose 3 is a path composed. entirely of function symbois
which are less than the first symbol of @ 4n the symbol ordering. Then
Subseq (3a) < Subseq {(#).
tle still cannot deal with the following two useful replocemants

using this crdering:

(xty) 4 z = 2 + {y+z)
¥ (Y] >R By b oWk

We are developing other methods which can handle these replacements in
addition to replacements such as those discussed above. In fact, we
have recently developed methods which can handle the: second of the
above replacements, in addition to replacements similar to those in-

cluded in the above characterizaiion.

=33

‘@, Summary and Conclusions

We have described a simple class of well-founded partial
orderings which can be used to obtain short pri of termination of
systems of rewrite rules, in many cases which ur to be of practical
interest. These "path of subtern" orderings are based on multisets
of seguences of function symbols Trom the terms we are working with,

We have given explicit programs which can decide whether 5 < t in

such an ordering, given terms s and t. These programs run Tn 1inear
time, assuming that the set of function symbols is fixed. Also, we have
described a general class of replacements, all of which are simplifi-
cations in the ordering presented. We have presented some Timitations
of this method of partial ordering. In future work we plan to discuss
recent results extending these ideas to overcome some of the Timitations

of the path of subterms ordeving, at the expensze of some simplicity.

[1]

[2]

[3]

[4]
[5]

[6]
L7]

[&]

[9]

[10]

[11]

[12]

[13]

- 34

References

Ballantyne, A. M., and Bledsoe, W. W., Automatic proofs of theorems
in analysis using nonstandard technigues. J. ACM 24:3 (1977),
pp. 353-374.

Bledsoe, W. W., Non=resolution thegrem proving, Artificial
Intelligence 9:1 (1977), pp. 1-35,

Boyer, Robert 5., and Moore, Strother J., A lemma driven automatic
theorem prover for recursive function theory. Proceedings of the
5th International Joint Conference on Artificial Intelligence,
Massachusetis Institute of Technology (1977).

Dershowitz, N., personal communication.

Huet, Gerard, Confluent reductions: abstract properties and
applications to term rewriting systems. Proceedings of the
18th Annual Symposium on Foundations of Computer Science (1977).

Huet, Gerard and Lankford, Dallas,On the uniform halting problem
for term rewriting systems. Report Ne, 283, IRIA (March 1978).

Iturriaga, R., Contributfons to mechanical mathematics. Ph.D.
Thesis, Carnegie=Mellon University {1967).

Enuth, 0. E., - and Bendix, P. B., Simple Hord Problems in Universal
Algebras. Computatfonal Problems in Abstract Mgebra, Leech, Ed.,
Pergumon Press (1970), pp. 263-297.

Lankfoyd, Dallas 5., Canonical algebraic simplification in compu-
tational legic. Report No. ATP-25, Southwestern University,
Department of Mathematics, Georgetown, Texas (May 1975),

Lipton, R, J., and Snyder, L., On the halting of tree replacement
systems, Proceedings of a Conference on Theoretical Computer
Science, University of Waterloo, Canada (1977).

Manna, 2., and Mess, 5., On the termination of Markov algorithms.
Proceadings of the Third Hawaii Interpational Conferepce on System
Sciences (1970).

Suzuki, MNorihisa, Automatic program verification II: wverifying
programs by algebraic and 1&?1¢61 reduction. Report No. STAN-C5-
74-473, Stanford University [1974).

Weyhrauch, R. W., A users manual for FOL. Stanford Artificial
Intelligence Laboratory Memo AIM-235.1 [1977).

