illl
et
X |
|{-'
' N I.'
:
rd
A namefree lambda calculus with facilities
for internal definition of expressions and
segments
by
N. G, de Bruijn
i

} '_i
}
1A
‘:1 |

Abstract.

The paper starts with a formal definition of a lambda calculus with
abbreviation facilities, including a set of single-step reductions which
can be used to effectuate substitution and beta-reduction. A novelty is
the abbreviation of segments of formulas. Later reference to such a segment
involves duplication of the segment variables. These variables can be local,
global, formal or somehow disguised by other segment abbreviations, and there-
fore it would be hard to describe without namefree references what the system

would be.

A large part of the paper consists of informal explanations.

AMS Subject Classification 02C20

. Introduction. We deviate from the usual way of presentation, shifting
introductory material to the end of the paper (section 6). This makes it
clear that such material, although it provides a background, is in no
way used in the main sectionms.

The calculus consists of a syntax (section 3) and a set of primitive
reductions. At present there is not much available in the direction of a
theory about these reductioms. It is quite conceivable that it may turn
out to be better to alter syntax and reductions in order to make room
for a more satisfactory theory. Therefore this note has to be considered

as a first step rather than as something final.

2. Notation. We adopt the metalinguistic notation explained in [6]. (The
notation is essentially the same as in [5], except for the fact that in
[5] the "combs" have been replaced by something else, just for printability.
In [4] the notation is essentially different.) A short explanation follows
here. v

u/ais a finite non-empty set, called the alphabet. S(/3) is the set
of all finiteuﬂhwords. In S(/9) we have concatenation as basic operation;
with this operation S(3) is what is usually called the free monoid over./?.
For k=0,1,2,... we denote by SkGﬁ% the subset consisting of all words of k
letters. There is a trivial bijection from./3 to S1(J). S0¢9 consists of
the empty word only. That empty word is denoted by .

From now on we put S(3) =S, $1¢d) = Sy, and we no longer mention /9
and its elements. The elements of S are to be denoted by mathematical
symbols (like the elements of any other set), and a symbol used for an
object in S usually does not reveal the elements of /4 the object consists
of.

If pe S then the index k with pe Sk is called the length of p.

Concatenation of p and q (with pe S, qe S) is denoted by FS_TEL
and similarly we write E_TE_T;I etc.

We also use notations like this one: if P c §, gqeS, Rc S8, se8,

te S then

lEJq IR_'s‘t—’={|P|Q|rls[t—f[peP,reR} (2.1)

3. The set T. We write N = {1,2,3,...}, NO =40,132,55:); NN is the set
of all mappings of N into N.

M is the set of all pairs (k,8) where kezND, and where 6 is a mapping
e A1, . k) into No. (If k=0 then 6 can only be the empty mapping).

We introduce a number of elements and subsets of S; and mappings into

S, which will be fixed from now on.

X0,X1,X2,... are mutually disjoint subsets of S;.
£ is an injection of N into XO.

w is an injection of M into X .

¢ is an injection of NN into X;.

n is an injection of N, x O into X;.

A,6 are elements of X;,X,, respectively.

The sets

EQ) 000, 6@, n@N_ x M), (A}, {8}

are assumed to be pairwise disjoint. The whole situation is pictured in

fig. 1.

We define the subset T of S as the minimal solution of

T=Xo uR][T v RKJT[T|v[X[T][T][T]u ... (3.1)

By recursion we define mappings ¢ : T + {0,1,2} and p : T +Ng. If

XpeXpg, X1 €Xy, X0€Xp,..., teT, tieT,... we agree that
o(xg) = 1 if x5 e w(M), and o(xp) = 0 if X dw(M),

o(fxqle D) = {2 if %, € 6@ A o(t) = 1

o(t) otherwise

U(Ix2[t1 |t2 |) = U(t2) ’
G(|x3't1|t2lt3l) - U(t3),

etc.

As to p we agree that

p(xy) = 0,

p(XTE]) = p(t) + 1,

o([nCk,m) Tt 1) = o(t) + k if kelNy, meN,
o(TxTE 1) = o(t) if x;eX1\ (A} \ n@, x IV),
ol [xplerTe,1) = p(ty),

o (m) = p(t3),

ete.,

For interpretation we refer to section 6.16.

4. Reductions. We define a relation >; on T. The relation is called "single-
step reduction" and will simply be defined by a list of cases.

In this list, w; and wy stand for arbitrary elements of S, which are
such that the thing on the left of > is an element of T. The right-hand

side will be in T as a consequence.

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

oAt

‘wl[ﬁe) 1X9|W2[>1 |W1|X0 Wzl

if g, xpeXg \ EM) \ w(™).

[y loce) [E) | wy [> lW1 lee(n)) | w, |

20 ol el

(w1 10(8) | w(k,00) 1wyl 5 [lw(k,000) | wy |

if BEENN, (k,087) € M; here 681 is the composition of 6 and 8 .

[wi6(0) | x1|wa| >y lwylx1]6(8) [wy |

if 0, x X\ n@p x M\ 6@\ 1) .

[wiloce) I ncieom) [|51 Jwy Ince,0em) | oo™ | w,l

if eeN‘N, keNj, melN; here 6"is defined by 8 (j)=j if

1<j<k, 6¥°(j) = k + 0(j-k) if i > k.

| wiléCe) [oCey) | wal >yl wileceny) [wyl

if 6,6, ENN; here 86, is the composition of & and 6, .

| IW1|¢(9)| 1| wy | > ‘ w2 [6(8™) | w,

if 8 el; here 8* is defined by 8" (1)=1, 8*(j) = 1 + 8(j-1)

if j4="1.

Fwilo(e) [xpft [wa| > [wy]xa[e(8) [£]e(8)] “’21

ifBeNN, %X, € Xp, teT,

| wiloe) [x3]t] ealwy | >1 [wixale(®) Tty To(e)] ea[6 (8 wa |

if BEEN!N, x3 € X3, t1,tp € T; similarly for X, ,Xg,...

(B1) lwy [8 e]a [xg W] >y EREE

if Xoexo\ E;([N)\ wM), teT.

32 Jwlsle[aTemTw, 1> [Te@D [w |

if teT, nelN, n> 1.

@) fwlsleaTeTw, 1 > [TwlcTwy]

if teT, o(t)=0.

@) w s [e[aTo@Tw]>1 [w o8 v

if 9N and 1 ¢ 6@N); here 6, is defined by 8,(j)= 6(j)~1 for
all jeN,

(B5) Lwrls [t TaTuGk,0) vyl > [wy [wlk,00) [wy]

if (k,0) €M and 1 ¢6({1,...,k}); here 81 is defined by 6,(j) =

= 8(j) =1 for j = 1,...,k.

(B6) lelﬁltlllxllwz—l > lwllxllaltlklwﬂ

if tST, xlexl\ n(mo ><[N)\ ¢GN|N)\ {l} .

B Lwlele AxTaTw,l >y [wy [xT6leCop) Tt 2 loCep) T wa |

if teT, where 9; is defined by 8,(j) = j+I for all jeN,

and 6, by 82(1) =2, 8,(2) =1, B,(3) = j if 3 & 2.
@) [wls [e [xTne,m Twy| > [wlntk,mD) [6 [6¢6) [t 1a[60) [wy |
if teT, kelNg, melN, m > 1; here 6, is defined by 8:(3) = j+k
for all j eMN, and 82 by 8,(3) = j+1 (1 < j < k), 8p(k+1) =1,
05(3) = j if j >k + 1.
®9) lwlele Talnte,nTw, | >) Tyl Toco9) ToTocony T To] $(62) | wy |

if teT, kelNg, o(t) =1, t =[s w(k,o I; here 6; and 8, are defined

as in (B8), and 63(j) = 6(j) if j < k, 63(j) = j + p(t) - k if j > k.

(810) [w T8]e [Txple;lwy | >y [wilxplo TeTa Teglale Il w,

if t,tlET, XZ € Xza

(B11) [[[t (33 €y 1talwg | >y | wilxa |61€ 1A Teg]6 e A ltyl8leh hoy |

if t,ty,tp e T, X3 € X3; similarly for X,,Xs,...

5. The reduced form. We define the set R as a subset of T, consisting of all

those words of T which do not contain any ¢(8)'s. In other words it is the

minimal solution of

R= Xou |X{|R|u|X|R|R|U [Xs| R| R[R|U ...

where Xf = X\ ¢(IN£N).
We define a mapping rf : T - R. If teT then rf(t) is called the reduced

form of t. It is defined by recursion:

-

. . * . .
(1) .If melN, xmeXm ifm#l1, xnexm ifm=1, and if tlsT,...,tneT, then

efClx (oo fe D= f= Tetepd] ...] rf(t).

(ii) If t has the form of one of the left-hand members of (Al),...,(A9)
with w; = e, then rf(t) is defined as the rf of the right-hand member.

Theorem 5.1. If te T then rf(t) € R,
If teR then rf(t) = t,

Theorem 5.2. If te T, GENN then

% r£([o(0) [t]) = c£([¢() [cE() D).

i Theorem 5.3. If te T then there exists a natural number m such that every

sequence

Lol Y >1 to &y t3 >3 h SRy tl'l.

with reductions taken from (Al),...,(A9) satisfies n < m, moreover rf(ty) =
= rf(ty) = ... = rf(tn), and either tn = rf(t) or the reduction sequence can

be continued until rf(t).

6.1

These theorems are easily proved by induction with respect to the
length of t. At a certain point of the proof of theorem 5.2 it plays a
rdle that the operations occurring in (A5) and (A7) satisfy (8162)* =
=0,78,".

Explanations and comments. In the previous sections we described a system

(or, as one might prefer to say, a language) which we shall now denote by
CAE¢wn. We shall try to explain the purpose of all this, and to connect it
with related systems and their notations. We start with a simple formula .

language, to be called CV.

The language CV. The system CV has formulas like this:

p(f(g(x,y), h(y,c,g(x,c)))). (6.1.1)

Here p,f,g,h,c are constants, and X,y are variables. There is no difference
between constants and variables until we introduce the notion of substitution,
where variables are replaced by formulas (all x's by one formula, all y's by

a second formula, etc).

In case of long formulas it helps to represent them in tree form; (6.1.1)

X
-/E/Zfz“y 35)("° {),’x (6.1.2)
p st < : < —c
£ - h g

It is what combinatorialists might call a "planted planar tree", oriented

becomes

towards the "root" p. In further pictures we shall omit the arrows: we agree
that the arrows always have to run from right to left.

Every node in such a tree has an "indegree'", i.e. the number of arrows
entering from the right. Quite often one requires that one and the same comstant
has the same indegree at all its occurrences, like the g in (6:1:2)%~(This is
not required in AUTOMATH, but that is irrelevant at this moment). The variables
X,¥s+.. all have indegree 0.

The correspondence between formulas like (6.1.1) and trees like (6.1.2) is
one-to-one. However, if the indegrees are known (either known from some list, or
indicated in the formula itself) one can represent (6.1.2) without parentheses

and commas:

B & & x yByy ¢ g %z @ (6.1.3)

ey X SO0 30 0 Y270 0

Parsing is easy. Read p, write p(...) and try to interpret the remainder of
(6.1.3) as a formula to be placed on the dots. Next read f, write f(...,...),
and try to interpret the remainder of (6.1.3) as two formulas, to be placed
in succession on the dots, etc. For such transformations of various tree
representations we refer to Knuth [8].

It would not be a very serious restriction to require that the indegrees
are at most 2. We can always simulate the general case by means of indegrees

0,1 and 2, e.g. replacing A

-B J//.A‘//-BZ//C
C by .-D .
£ £, £y

o D

The system CV is a subsystem of Cléwn, at least as long as we do not
think of reductions, and provided we represent the formulas of CV in the
form (6.1.3), and as ldng as we agree that all identifiers of indegree 0 are

taken from a set X

indegree 1 from X , indegree 2 from X,, etc.. The sets

s > s
XO’XI"" are disjgint, and therefore ii is no longer necesiary to indicate
the indegrees in the formula (like in (6.1.3)). Now (3.1) just defines the
set T of all formulas of CV, The £,w,n,¢,1,8 of section 3 play no rdle.

The relation between CV-formulas and trees can obviously be extended

to formulas of Cif¢wn. Example:

w
£(2) b
(6.1.4).
A /l- / . /5(3)
g A n(l52) g

f A A ¢(e) & A

where b e KG’ fe X], gE'Xz, Befﬁm. It certainly helps to think of the elements
of T (of section 3) as such trees, and in particular to see the reductions of
section 4 as reductions of such trees.

The above embedding of CV into CAE¢wn is a matter of the syntactic struc-
ture of the formulas only. If we bear in mind what our formulas will be used
for, it is better to distinguish between the variables and the other constants
of indegree Q. Let us order the variables: first x, then y, etc. Instead of x

we now write £(1), etc. So (6.1.2) becomes

£(2).

sczﬂz) /a(l)

P 3 h g c
The idea that £(k) always refers to the k-th variable will be given

(6.1.5)

up later, when intermediate lambdas have their effect on the references.

6.2 Substitution. Let the CV-formula F have variables x,y,z. Let PI’PZ’P3 be

CV-formulas (they may also contain x,y,2z) .We now construct a formula G as
follows: Mark all x,y,z occurring in F (let us say colour them red), in

2,P3. Now replace each
red x in F by Pl’ each red y by PZ’ each red z by P3. In this way F turns
into what we call G. This G will be called the result of the substitution

order to distinguish them from the x,y,z's in PI’P

(Xsv.2) + (PI’PZ’PS) on F. Example:

b 4
Qv g 3
£~ f z g X £f =z f vy
F Pl P2 P3 G
Quite a different thing is what we get from F if we carry out the three sub-

£ £ £y

stitutions consecutively: first replace x by P, (leaving y,z unaltered),

1
then replace y by P2 (leaving x,z unaltered), then replace z by P3(leaving

X,y unaltered). We obtain

6.3 Abbreviation. Formulas are often presented by means of a phrase like this:
F is the formula

X
%u 5 . x
g whe;e u is an_gbbrevia:ion for f
f h) g - X

]0

What is meant by this, is the formula

X X X
i % (5.3.2)
24 g X g X /
'x
K h g

One might also say that it is the effect of substitution: then we say that u is

a variable, and u is replaced by gﬁf_x. A difference with general substitution,

however, is that we are not supposed to let u abbreviate -a formula containing
another u.

Abbreviation goes beyond this, however. The symbol used for abbreviation
may be something of non-zero indegree. Let us take the case of indegree 2. We

may speak of the formula

X
jé" y | g
/ k/'x Lx /y | (6.3.3)
P £y

and say that p(u,v) is an abbreviation for

h/v{x /u-v (6.3.4)
g

The abbreviating symbol p can not be considered as a variable in the sense of

the syntax of CV, for it has indegree 2. What we mean by the above phrase

("(6.3.3), where p(u,v) stands for (6.3.4)") is of course the formula

Y,
(6.3.5)

k x/'x ‘/}' i x
£ - /’Z*Y/x %—1/?
£ y
h £ g £

Let us introduce the term "indegree of an abbreviation". The abbreviation of
(6.3.4) by p(u,v) is said to have indegree 2, the one in (6.3.1) is said to
have indegree 0,

In Ci¢unthere is something that plays the rSle of abbreviations of indegree
0 and there is something that plays the rdle of a particular case of indegree 1,
The particular case is that p(w abbreviates a formula that contains u only on

the extreme right, like

X
hjy 5 i/x o (6.3.6)
g £

The use of more general cases (including indegree > 1) might lead to extensions
of Ci¢wn, some of which are not essentially more difficult than Chéwn itself,
but they require a rather unpleaseant system of notation. They will not be
considered in this paper.

An LSP-book (cf. [2]) is nothing but a game of_abbreviations of wvarious
indegrees. We give an example, where two constants p,q (of indegree 2 and 1,
respectively) are considered to be primitive, i.e. p and q are no abbreviations

for anything else, Next we write a list of abbreviations:

r(u,v) := q(p(q(u),q(v)))

s(u,v) r(q(u),v) (6.3.7)

t(u,v) := r(s(u,v),s(v,u))

(there happens to be ari interpretation which is interesting, but irrelevant
at the moment: u,v are propositional variables, p stands for conjunction, q
for negation, r for disjunction, s for implication, t for equivalence).

The abbreviations in a "book'" like (6.3.7) can be eliminated in various
ways and lead to "normal forms" (which contain no other constants than primitive
ones) . The question of the existence and uniqueness of these normal forms is
something most people take for granted! A theory for this will be one of the

topics to be treated in a forthcoming Ph.D. thesis by D. van Daalen.

6.4 Shiftiqg substitution and abbreviation from metalanguage to language. If CV

is considered to be the "language" then substitution and abbreviation are
expressed in terms of a metalanguage, i.e. a language that speaks about CV.
One might try to extend a language like CV with a symbolism that produces some
of the effects of substitution and abbreviation.

Something in this direction is done if the language is extended in such
a way that a complete LSP-book (like (6.2.7)) is considered as an expression
in the language.(Actually LSP does a bit more: it also expresses that some
constants are primitive; in the case of (6.3.7) the book has to start with the
lines p(u,v) := PN, q(u) := PN).

Quite a different point of view is taken in lambda calculus. We introduce

it informally, connecting it to CV.

R e e

- 12 -

If we put Ay in front of the formula (6.1.1), containing the variable x,
we intend to describe the "function" that maps x into (6.1.1). After that, we
no longer admit anything to be substituted for x, which is now called a bound
variable; the other variables are called free.

Connected with the addition of A's, we enrich our syntax with symbolism
for "application". It tries to describe what we get if we substitute something,
let us say k(e,y), for x in (6.1.1). In A-calculus we write what can be con-

sidered as the instruction for substitution. The instruction says:

"apply k(c,y) to Axp(f(g(x,y),h(y,C,g(X,C))))”-

This has to be incorporated in the syntax. Let us take a constant § with indegree

2 (8§ has to be "new": it did not occur earlier in the language). We write the

instrqction as
§(k(c,y), Axp(f(g(x,y),h(y,c,g(x,C))))). (6.4.1)

The next step is éhat we also admit §(F,G) in cases where the formula G
does not start with A. This extension makes two things possible: (i) to use :
abbreviations, to the effect that G turns into a formula starting with a lambda
if we carry out the abbreviation instructions, and (ii) to incorporate things
which are, in ordinary mathematical language, expressed by phrases like: "let
f be any function; its value at ¢ is denoted by £(c)". Here we write §(c,f)
instead of f(c).

We remark that in [4] the notation for application was A(f,c). Most
presentations of lambda calculus (cf. [1]) write f(c). In AUTOMATH (cf. [2])
the notation for Ax is [x] (or rather [x : S] where S represents a type) and
for application curly brackets are used: {c}f instead of f(c). This AUTOMATH
notation' corresponds to what we get if we draw the tree of (6.4.1): we have to

put

(6.4.2)

in front of the tree (6.1.2).
Needless to say, the use of A's and §'s is cumulative in the sense that

several A's and §'s may occur in one and the same tree.

- 13 -

Namefree lambda calculus. One of the troubles of lambda calculus is that we have

~ to make it clear which bound variables refer to which lambdas

. When we carry out
substitutions we get duplication of bound variables and we might fear ambiguities.

= A second thing is that the tradition in mathematics is that the name of the bound

jwutiable is unessential: a formula is not considered to change if such a name is

altered, provided this does not conflict with names we already have in the formula.

In [4] the names of variables are eliminated. We just write) instead of Ay y’ 5

and every further bound variable is replaced by a positive integer 1nd1cat1ng the

"reference depth". This number tells us where to find the corresponding \. If the

reference depth is k, we run down the tree and take the k-

th) we encounter. If
we get beyond the root of the tree we count free variables (which have to be

arranged in some order) instead of)'s.

Let us call this namefree lambda calculus CAg. Its syntax is the one of
section 3 if we just omit the ¢'s, y's and n's. The rdle of the letter £ is

just a formality: for every n€N the g(n) is a constant of indegree 0. "Essentially"

£ (n) is the same thing as n.

-

6.6 Beta reduction. In lambda calculus there is no automatic identification between

the instruction for substitution and the effect of the substitution. The effect
of the instruction (6.4.1) is

p(£(g(k(c,y),y),h(y,egk(c,y),c))))). (6.6.1)

We say that (6.6.1) is obtained from (6.4.1) by beta reduction.

Lambda calculus with reference transforming mappings. If we think of lambda

calculus formulas as strings that are handled by a machine, the process of

substitution is less simple than the intuitive idea of replacing all x's by

some other expression. What we have to do is connected with recursive definition
of substitution. This recursivity is explained by an example,
all x'sby P in the formula

If we have to replace

Q

R
f

(where Q and R stand for trees) then we replace all x's by P in 0 (effect Qcd.,
all x's by P in R (effect R*) and we build

Q
4 3
£ R

L3{%

es of the tree. We may do it in some of the branches, and leave it
e instruction in the other branches. This may involve that instruct-
B ions-l1ke (6.4.2), which carry a lambda, have to jump over other lambdas. In

' n with the namefree notation this creates the need for reference
g mappings (see [5]). The idea is that we attach, at various points
s mﬁppings 8 of N into N (syntactically we do this by attaching a
constant of indegree 1 to every 6; this constant is written as $(8)). The rdle
of these ¢'s is in helping to indicate to what A's endpoints of the tree refer.
It works like this. We read at an end-point the number n. We run down the tree.

If we encounter a) we subtract 1, but if we encounter a 8 we apply that ¢ .

If we have, e.g.,
a h/L;——w)

- bl hoshe B

and if 6(2)=4 then the £(5) refers to the 3rd free variable. This calculus can
ﬁbmled CAE$. We can describe it as in section 3, just omitting the w's and
n's. And we can provide it with the reduction operations Al1,2,4,6,7,8,9 and
B1,2,3,6,7,10,11 of section 4 (i.e. all those reductions which do not contain
w's or n's). Note that repeated use of the A-reductions shifts the ¢'s towards
the end-points of the tree, where they vanish on behalf of Al ,A2,A3.

The formulas of CAf¢ that do not contain any ¢'s, form the subsystem C)\g

(see section 6.5). We can provide CAf with a set of reduction rules, viz,

Bl, B2, B3, B6, B*7, BIO, BII, (6.7.1)

where B*7 is obtained from B7 if we replace the right-hand side by the reduced
form rf (where all ¢'s have been pushed to the end-points of the tree, see sec-—
tion 5). There is no equivalent of B4, where a ¢ occurs on the left. We shall
comment on this B4 in sections 6.8, 6.19 and 6.20.

Beta reduction in CAf. The beta reduction described in 6.6 can be carried out

in CAf by means of a sequence of smaller steps. In order to show how this works,

we start informally with an example that is not namefree. Starting from

BRI R S

...15_

(6.8:1)
590

B
_1. _proceed by sing]_e—-step operations:

(6.8.2)

s/y P P ® (6.8.3)
1 ey

and this means that some of the x's have been replaced by P and some others

have not. The single-step operations have the effect that the instructions

fﬁfia is shifted to the endpoints of the tree.
. :

Actually we have cheated when passing from (6.8.1) to (6.8.2), taking

several steps at a time. If we stick to our single-step list of section 4,

T
’ g § A

Gbotsio)f vedseiion ia 5y s
g 5 A

X g P

we have to proceed like this:

e

§ lx

X

X

It will be clear how beta reduction is effectuated by means of a sequence

of these single-step operations, shifting all instructions (&-i pairs) to-
wards the end-points.

In the name-free version (with ¢(8)'s) of sections 3 and 4, this shift

of substitution instructions is described by the B-reductions @xcept BS5,B8,B9

+ It is not possible to shift these instructions (&-)
pairs) over a ¢(8), so occasionally these ¢(0)'s have to be shifted first.

which contain w and n)

- 16 -

The reduction B4 does not have its equivalent in CAE. Stated in popular

rms, B4 says that a definition (a &-) pair) may be cancelled if there is
:ihdication (directly following that &-) pair) that no reference to that

nition will ever be made. If we start shifting the ¢'s to the end-points

.e. if we start evaluating the reduced form) this advantage gets lost. The

A pair can still be cancelled, but not without a long sequence of B-reductions,
shifting §=A pairs to the end-points where they vanish on behalf of Bl and
;ff. For further comments on B4 see section 6.19.

¢ Substitution was described in [4] and [5] by means of a recursive process
‘*ﬂith things corresponding to our reduction steps Al-Bl1 as basic ingredients.

Yet there are differences. In [4] and [5] ‘substitution is described in the

2, and not by means of substitution instructions in the formulas

es. Another differerence is that in [4] and [5] substitutionis described
?w number of variables, and not just for one at a time.

The normal form problem.Aformula inCAf is said to be normal if it admits no

- reductions of our list of section 4. The normal form problem asks: starting

- from a formula, it is possible to arrive at a normal form by means of a number of
reduction steps? The answer is not always affirmative. Church's well-known

example, in our present notation, is

£(1)
D E(1)

’//’5(1) (6.9.1)
- p £(1)

g A

The only possible reduction is B10Q, leading to

E: g(1)
'- £(1) £y
8 g(1)
| /LEU) o/
j ; < SE(1) (6.9.2)

By means of two applications of B3 we get back to (6.9. 1) again, and so there is

an infinite reduction sequence.

It is a bit more troublesome to show that every reduction sequence is
infinite. (This bit of trouble is the price we have to pay for our single-
step policy!). We do it for the sake of curiosity. The formulas we can get
are characterized by pairs' (m,n) of nonnegative integers. As an example we

draw formula (3,2):

§(1)

£1)
- §(1)

3(1)
E(1)
g(1)
£ (1)

In the generalcase there are m branches §-A-£(1) on the left and m on the

[right. Possible reductions are:

(m,0) + (m+l,m+1) by B10
(m'n) -+ (m-l:n) by B3 if m > 0,
(m,n) + (m,n-1) by BYif'a’s 9:

Formula (6.9.1) is (0,0). It is obvious that no reduction sequence ever

terminates.

6.10 Diamond properties and the Church-Rosser theorem. Two formulas F,G of Cit¢

are called equivalent if there is a chain FwFO,F],...,Fn=G such that for
each i (1 <1 < n) either Fi“l reduces to Fi (by one of the reductions of

our list) or Fi reduces to Fi- We say that F has a reduction chain to G

T
if we have, with the same notation, that (for all i) Fi-l

We also say that F has a reduction chain to G if that chain is empty, i.e.
if F=G.

reduces to Fi'

The Church-Rosser proposition for this system says that if F and G are
equivalent then H exists such that F and G have a reduction chain to H. It
is very close to the Church-Rosser theorem in ordinary lambda calculus. We
shall prove it in section 6.21 (theorem 6.21.2). That proof depends on

having the Church-Rosser property for ordinary lambda calculus. Needless

to say, it would be nicer to have a proof that sticks to the small reduction
steps of our calculus, in particular since that would look promising for

generalization to the more complicated system CAEdwn.

B R R R

6.12

6,13

- 18 -

A particular case of the Church-Rosser theorem is the diamond property

for reduction chains. It says: if there are reduction chains from F to Fl

and from F to F2 then there is an H with reduction chains from F] to H and

from F2 to H. The Church-Rosser theorem easily follows from this special

case,

We also consider a weak diamond property: If there are single-step
reductions from F to Fi and from F to F2 then H exists with reduction
chains from EI to H and from F2 to H. This weak diamond property is
easily established for our system CAE¢, but unfortunately the Church-Rosser
theorem does not follow from it (cf. [7]). For the weak diamond property of

CAE¢wn see section 6.22.

Substitution and abbreviation in the metalanguage. Substitution and abbre-

viation have, to a certain extent, been built in by the passage from CV

to CAtd (cf. section 6.4). Nevertheless we can again discuss in the meta-
language what substitution (for the free variables) does to the formulas

of CAf¢, and we can use abbreviations wheq_giscﬁsgiggﬁhese formulas,

As to substitution, this was actually dome in [5].

Typed lambda calculus. In typed lambda calculus every bound variable is

introduced as having a certain formula as its type. Along with it, there

is a procedure for adhering a type to any formula, and for some reductions
restrictions concerning the types are made. We do not'gointo this here]_?e only
mention how the typing of bound variables can be desc;ibed.in the synt;;.
Ingead of just a lambda we write, with a new symbol 1 of indegree 2:

P
—we—" . , where P is some formula.
T A

In AUTOMATH this would be read as [x : P] ...

What things can be abbreviated in CA£¢? In 6.4 we explained how instructions for

abbreviation can be written inside the formulas as soon as we have the lambda
notation (e.g. in CAE£ or in CAE¢). A combination like (6.4.2) can be considered
to define x as an abbreviation (in this case it abbreviates kﬁi—y; the fact that
this example is not in the namfree calculus, does not matter). The kind of abbre-
viation is the one mentioned in (6.3.1) (the case of zero indegree). The case of
non-zero indegree can also be dealt with, but in an indirect way, reduced to zero

indegree. Instead of abbreviating, e.g.

p(u,v) := h(v,f(x,g(u,v))), (6.13.1)

.._19_

(i.e. the example of (6.3.4)) we define, as an abbreviation of zero indegree.

P := Aukv h(v,f(x,g(u,v)). (6.13.2)

Instead of later use of p(R,S) (where R and S are formulas) we have
§(8,8(R,P)).
In AUTOMATH notation, (see section 6.4) this reads {S}{R}P.

6.14 Segmenté. In addition to what was indicated in section 6.13, there are, however,
still quite different things we want to abbreviate. One thing is a string like
{SP{SZ}{SS}{S4}' If it occurs more than once, we wish to abbreviate it. Yet it
is not a formula but a part of a formula, actually a beginning segment. In
AUTOMATH we have many cases where we would like to abbreviate strings of
abstractors like [x : A]] Ly A2] [Z A3] (also called telescopes).

In tree notation (cf. section (6.12)) this is the segment

A A A
1 2 3
- / X . (6.14.1)
T Ag T ky T kz
If we abbreviate (6.14.1) by n, then
y
f X
[/ / :
T Ax T iy T Az £ g

is to be abbreviated by

g
fzi—‘x
/X
Z 6.14,2
1 B £ - ()

This is strange: the x,y,z refer to Ax ly Az which are hidden in the symbol n.
Each time the n is used, we have to create new dummy variables, so this is an
obvious case for namefree calculus.

We should certainly not confuse things like (6.14.2) with abbreviations

of indegree 3 (then there is no question of built-in lambda'),

- 20 -

Roughly speaking, segments are trees which are open—ended on the extreme
right, like (6.14.1),

(8, 18,15, }s, }:

Another example is the tree representation of the string

‘5// S ,//) S2 P S3 A S4
8 8 § 8
We shall use the symbol u to represent the open ead on the right. So

y S
5/ RN T

is a segment. These u's may also occur in other branches, like

w
,/’/f/;: .
N—_y

8 AS

(6.14.3)

The notation of the w's is a preliminar one; in section 6.17 we shall explain
P y

the way we actually use the w's in our syntax.

Abbreviation and reference to abbreviation takes place as follows. Let us

give the segment (6.14,3) the name n(or rather, n refers to (6.14.3) without the
w on the extreme right), then n has become a symbol of indegree 1,

(not yet namefree) we can have

In tree form

f % _If/fx
? % B W J//;x -//’Sl I/fsl
AL 8 An g n £ n g

w (6.14.4)

and we indicate what we get if the two n-references are replaced by their
definition:

T f 3
Ax 8 A g 6 X 8

w

Y f * o S X S, rx X s
b R 4) :
A f o

%2

Note that we get two new dummies s, and S,. The sl's in (6.14.4) refer,

in a clumsy manner, to one of them. It is clumsy since (6.

14.4) does not

6.15

16.16

w B

reveal what names are to be given to the various copies of s that arise when

the n's are replaced by their definition.

The reader may wonder why we have not removed the instruction (i.e the

part —éi—aﬁ—-"—) after having carried it out. The answer is that (6.14.4)

itself is a segment, and possible later insertions of that segment into some

tree may involve further references to 7.

Towards CAE¢wn. The extension of CAE¢ to CAEdwn is just this addition of u's

and n's. The references to ordinary variables are different from those to
segments, and yet in the namefree calculus they are treated as equals: an
integer n > 0 still refers to the n-th) we meet when running down the tree.
Only, when passing an n (reference to a segment) we have to realize that it
stands for something having number of lambdas. So to every n we adhere (apart
from the integer that tells us to which A this n refers to) a nonnegative integer
k : its weight. Taking a fragment of a tree as an example, we show by means of

dotted arrows what the integers refer to

-

L)
F Ty B N B N AT Y
N.)’ \ i

o 1Y " = -
s e =

(6.15:1)

/
\

Over the n we have drawn three dots (representing what happens if the substitution
is carried out: then we get three lambdas). Let us call these dots the "reference

dots". The 3 on the extreme right refers to the middle dot.

The root distance of an w. In the formulas we shall deal with, each u corresponds

to a certain delta to be called its root. If we start at an y and run down the tree,

then we get, sooner or later, to a § into which we enter through the upper one of

the two branches that enter from the right.

(6.16.1)

- 22 -

8 § is called the root of w; here it is indicated by means of a dotted
W. The number of lambdas we meet when travelling down from y to its

t (counting an n(k,m) for k lambdas) 1is called the root distance of y;

2 it is 5. The root distance of y is easily seen to be equal to p(t) (see
tion 3), where t is the tree growing on that same upper branch that enters

2 root § from the right, viz.

S T

> w

A8 (3,7 A
The root of an is invariant under the operations of our list of section 4,

fhbut the root distance is not! In the example (6.16.1), the &§-x on the left might
1 shift into the branches of the next § (i.e. the root of), and increase the root
- distance.

In the example (6.15.1) the weight of the n(3,4) (i.e. the number 3) is equal
~ to the root distance of the w in the §-) branch we are supposed to substitute

- for the n. So upon substitution (which can be effected by means of a number of
single-step operations, cf. section 6.8) we get three i's on the places of the
three dots. Unfortunatély this cannot be maintained. As we saw above, local
operations on the §-y branch can alter the root distance, and far away "customers"
like our n(3,4) are in no way informed about this. They are not even interested.
If a §-) pair enters into the §- - branch (as indicated above), then the cus-
tomers have no interest in referring to it: they keep referring to the §-) pair
that shifts into the other branch of the §. The system of reference transforming
¢(g)'s will see to it that all references (like the 3 pointing at the middle dot

in (6.15.1) keep referring to the proper lambda's, even if the root distance has
changed.

.17 The y(k,8)"'s: We shall now explain how we actually write our ,'s syntactically,
and why we do it that way.

For various reasons it is desirable to write the weight of the customers
of a g~y branch at the spot where we write the w. One advantage is that this
makes it easier to express a correctness condition that formulates that all
customers for one and the same §-, branch have the same weight. Another reason
is the fact that this number plays a rGle in the g's to be introduced presently.

As stated before (section 6.7) the ¢(§)'s can be pushed towards the end-
points of the tree by means of the A-reductions. But we can no longer say that

the ¢(g)'s vanish there (as we said in section 6.7 concerning Crg¢). If they

6,18

23

get to an w there is no reduction rule by which they disappear. And actually
they should not: they have to stand by for the possible customers, and we
cannot pass the 6's to the customers as long as we do not know the customers.
But we have fixed the weight k of the customers (other customers will not be
acceptable) and we know that these customers will only refer to the k reference
dots (cf. the three reference dots in (6.15.1)). This means that if we have
shifted the ¢(6) next to an w of weight k, then no customer will ever be inter-
ested in the value of 6(j) if j > k.

For these reasons we have decided to write w(k,8) (where 6 has domain
{l,...k}) in order to keep the essential part of 8 and to discard the rest.
From now on we can say again that all 4(8) disappear at all end-points. For
the case of an endpoint w this is expressed in A3.

We now phrase the "internal reference condition" (IRC). The potential
"customers" of w(k,8) indicate one of the references 8(1),...,8(k). We can
trace where these references refer to, just by reading the A's, n's and
$(8)"'s on the way down. They may refer to A's, possibly to A's hidden in an

n(the "reference dots" of the n), lying between the wand its root &§: in

that case we speak of internal references. They may also refer to A's

beyond that § (even to free variables): then we speak of external references.

We remark that there is not much use for external references. The cus-
tomers do not need them: they can refer ro these lambdas directly, without
pointing at the dots.

We say that a formula t ¢ T satisfies IRC if it contains no w(k,8) where
any of 6(1),...,8(k) is external.. (Note that we do not forbid the possibility
that some y has no root at all).

It is easy to prove the following theorem by checking Al-Bll:

satisfies IRC.

Theorem 6.17.1. If teT, t > tl’ and if t satisfies IRC, then t1

The IRC will play a rdle in the diamond property (section 6,22),

Further comments on reductions,In CiAf we already had the reduction B3, which ex-

presses that a definition (i.e. a §-\ pair) can be discarded if it is obvious
from the neighbouring 6 that no reference will ever be made to that definition.

Now that we have w(k,8)'s, we can also say this for a 6-) pair that gets in

front of w(k,8), in cases where none of the values 8(1),...,8(k)

- DT

refers to the A of that pair. In other words, the 6&-w pair can be discarded
if none of these values equals 1. That is expressed in reduction rule B5.

The replacement of an n by its definition is expressed in B9. This rule
gets into effect only if the 8- pair is right in front of that n. At that
moment the root distance of the p(k,8) is p(t). Now requests coming from the
right have to be treated as follows. If they are references j with j < k,
they have to be replaced by 6(j). If they are >k they were not supposed
to point at one of the k dots, but jump over them. Since the number of)\'s
we actually substitute is p(t), and not necessarily equal to the weight k,
we have to correct these references by addition of p(t)=k. The 61 and 82
are an obvious matter of honest administration of references.

Rules A5 and B8 express what happens if a ¢(8) or a &-) pair jumps
over an n(k,m). There we see that this n just behaves like k lambdas (cf,
A7 and B7).

The effect of B9 is that n(k,1) is replaced by a copy of the 8-i branch,
i.e. by a copy of the segment it refers to. At this moment we explain a ter-
minology which corresponds to a similar situation in ALGOL procedures. We
discern amongst global, local and formal variables. We refer to the picture
(6.15.1). The global variables are those whose A's are situated to the left
of the & on the left. From points in the 8-w branch (including side branches)
there can be references to these global variables. If we replace the n by the
6-w branch these references are just taken over: we do not make copies of these
global variables. Local variables: are those whose A's lie in-side-brancﬁe§ of
the 6-w branch (they may also be formal variables in these side Branches), and
variables with A's in the main branch as far as they cannot be referred to from
the w(k,8) at the end of the branch (note that this is controlled by 8). Formal
variables are those in the main branch which correspond with the dots over the
n. Some of these appear as lambdas, others are hidden in n's (like the n(2,5)
in (6.15.1)). Both local and formal variables are copied (i.e. replaced by new
ones) if n is replaced by the segment. The difference is that from points to
the right 6f n no references to local variables are possible; references to
global variables are possible indeed: they are just the referneces to the dots.
From points to the right of n it is quite possible to refer to the global
variables, but this is not done by means of references to the dots. These
references to global variables are made in exactly the same way as if the
n had never been there.

We have to take a precaution with the ¢(8)'s before replacing the n by

the segment: we have to require that there are no ¢'s in the main branch (i.e.

on the line from § to w); this is expressed by saying in B9 that o(t) should

6.19

- 25 -

be 1 (see section 3 for the definition of o). Such ¢(8)'s in the main branch
make sense for the side branches, but we do not intend them to act on the
customer's j's if j > k (those which have to be corrected by addition of
p(t) - k (see above). Therefore we first have to push these ¢(8)'s into

the side branches _(by A-reductions),and the only remaining one in the

main branch vanishes into the y by A3. Once this has been achieved,

application of B9 gives just what we want.

One of the conditions of B9 is that the k in w(k,8) equals the k in
n(k,1). Actually we hope that, if we start with "sensible" formulas, we
get into situations where these two k's are different. And also we hope
we never get into a situation as described in the left-hand side of B9
if o(t) # 1, just as we hope that B3 will not occur with o(t) # 0. We
shall return to this in 6,22,

Derivable and semiderivable rules. A reduction ‘is called derivable if its

effect can be obtained by a finite chain of reductions > from our list

Al-Bll. A simple example of such a rule is

,”1 |¢(9) | “’2‘ > ,w] ’w2 l (6.19.1)

if 8 is the identity (6(j)=j for all j). We can shift this $(8) towards the
end-points where it vanishes according to Al,A2,A3,A4, unless it vanished
under way according to A6.

A rule is called semiderivable if its effect can be obtained by equi-

valence with respect to the reductions > from our list Al1-Bl1. In other
words, if for all reductions F > G prodﬁped by the rule there is a chain
F-FO,FI,...,Fn=G such that for each i (1 < i < n) either Fi-I > Fi or
P, s ¥, (cf. section 6.10).
| i-1
An example of a semiderivable rule that looks quite useful, is

[v, s lE(m)’ A ’wz]> lwl ,¢(s) 'sz (6.19.2)

if meN, where 8 is defined by 8(1) =m, 08(j) = j - 1 if j > 1. A clear
reason why it cannot be derived is that, if the §-£(m) - A occursin a 8=w
branch, it may happen that the left-hand side of (6.19.2) satisfies IRC

(see section 6.17) whereas the right-hand side does not.

S S

Another semiderivable rule that may turn out to be quite useful is the
long distance variant of B3 (and there is a similar variant of B9). It is
not a rule that can be evaluated locally like the rules Al-Bll, and therefore
we describe it in a different style. Let g(k) be a point that refers to the)
of some combination GAE—A. Assume that on the path down from the E(k) to)
we have no ¢(8)'s. Then the long distance rule says: replace this £(k) by
¢(8,)—=t where 8, is defined by 8,(3) = j+k for all j > 1,

We can also phrase a slightly stronger long distance rule by admitting
$(68)'s between the A and the £(k), provided that it is possible to find a 8%
such that the replacement of E(k) by ¢(e*)———t still gives the proper correct-
ions to all the references occurring in t,

These long distance variants of B3 can be very practical: they enable us
to apply a definition at a place where we want it, without the obligation to
apply it simultaneously at all other places of the tree.

A further example of a non-local semiderivable rule is an extension of B4,
The rule says that we may discard a §-) pair (just replacing it by ¢(e]) with
e{j) ®=3~1forall fs1, BI(I) arbitrary if there is no demand (see 6.20).

As a last example-of a semiderivable rule we mention that if we cross out

B4 from our list Al-Bll, then B4 becomes semiderivable,

The system C)Zwn. The set T of section 3 has a subset R (section 5) consisting
of all ¢~free formulas. In R there is no question of reductions Al-A9, nor of
B4, The reductions B1,B2,B3,B5,B6,B10,Bl! can be carried out in R, but B7,B8,B9
take us outside R. Let us define the reduction B*7 (and similarly B*S, B*9) as
follows: first apply B7, then apply rf (the operator of section 5) to the right-
hand side. Now B*7, B*B, B*9 transform formulas of R into formulas of R.

Let us call the system CAEwn, i.e. R with reduction rules

B1,B2,B3,B5,86,8%7,8*8,8%9,810,B11. (6.20.1)

Something like B4 can be formulated in CAEwn as a derivable rule. It says
that a §-) pair can be cancelled if there is no demand for it (provided that
all references occurring in the formula are adjusted because of the disappearance
of a lambda). "No demand" means: (i) none of the end-points refer to this lambda,
and (ii) for no w(k,8) in the formula there is a j (with 1 < j < k) such that

8(j) refers to this lambda. Let us call this derived rule B*4.

In the theorems of section 5 it was stated that from every formula t in T

there is a sequence of reductions leading to rf(t), and that this is the only

6,21

27

element of R we can ever reduce to. For many questions about T it suffices

to study R. The following theorem is useful in this respect.

Theorem 6.20.1. If tst, €T, and t, > t, in CAE¢wn, then there is a

reduction chain from rf(tl) to rf(tz) in CAtwn (i.e. R with reductions
(6.20.2)).

We do not present a formal proof. The only case that requires some
attention is the one where t reduces to t, by B4. Then we have a §-) pair
followed by ¢(6) with 1 ¢ 6(N). Now rf(tl) is no longer followed by such a #(8)
In order to get from rf(tl) to rf(tz) we have to apply the operations of
(6.20.1), shifting the §~A pair to the end-points or towards the y's. The
6=\ pair is annihilated there because the $(8) arrived there first,

From theorem 6.20.1 it can be seen that once we have the Church-Rosser
theorem for CAfwn, we have it for CAE¢wn. In 6.21 it is shown how this works
for CAf and CAEé.

The system CAf. Just a$ we got from CAE¢wn to CAEwn in 6.20, we can get from

CAE$ to C X¢. The formulas of CAE form the set R consisting of all formulas
of R which containno «'s or n's. In the set R] we can consider the reductlons

B1,B2,B3,B6,B%7,B10,B11. (6.21.1)

The difference of CAf with ordinary lambda calculus (e.g. in the form
of [4] is very slight: in [4] the reductions are just g-reductions and not
our present single-step B-reductions. A full g-reduction (notation s>) is
carried out by taking some -\ pair and pushing it to the end-points of the
tree." So if t] >B t2 then we can get {Ecm t, to by means of a chain of
reductions >}_ The converse is not true, but the followlng is easy to see:
if tI‘)l t2 then t3 ex1sts with B-reductlon chains from t; to t3 and from t,
to t;. It follows that if t > t, then £ and t, are g-equivalent (i.e,

connected by a chain of >B’s and <B's).

Theorem 6.21.1. (Church-Rosser theorem for Crg). If t] ~ 2 (equlvalence

in the sense of >1) then there is a t, with reduction chains (in the sense

3

of >]) from tl to t3 and from t2 to t3

Proof. We know that if t] >4 t2 then t] and I:2 are B-equivalent (see above),

R G L T

6,22

T

so if t1 ~t, then t and t, are B-equivalent. We know the Church-Rosser

theorem for Rl with >B(see [4] for the namefree formulation). So if tl~ t2

there is a t3 with reduction chains (in the sense of >£ from tl to t3 and

from t2 to t3. These reduction chains can be refined to reduction chains

in the sense of > This proves the theorem.

Theorem 6.21.2. (Church-Rosser theorem for CAf¢). If tl ~ t2 in CAgd

(equivalence in the sense of >]) then there is a ts with reduction chains

(in the sense of >I) from t1 to t3 and from t2 to t3.

Proof. Let t] ~ t2. By theorem 6.20.1 we have rf(tl) ~ rf(tz) in CAE (note
that rf(tl) and rf(tz) contain no w's and n's, and that the reduction chain
does not produce such w's and n's from nowhere: our reduction rules have no
w's or n's on the right if they do not occur on the left). By theorem 6.21.1
we have t3 with reduction chains from rf(t]) to t3 and from rf(tz) to t3.
Since we have also chains from tl to rf(tl) and from t2 to rf(tz) this finishes
the proof.

-

Weak diamond property for CAféwn. We are still quite far from proving the

Church-Rosser property for CAZ¢wn, but proving the weak diamond property
(see section 6.10) seems to be the least thing we can do.

The reduction rules AI-Bll were just designed to satisfy this weak
diamond property in the first place. The many cases of the weak diamond
property that actually arise, were checked independently by R.Wieringa [10]
and L.S. van Benthem Jutting. They showed the weak diamond property for
the sub-system consisting of all formulas of CAE¢wn that do not lead to a
deadlock (as defined in 6.23). In particular this means that IRC is required.

A case where IRC does not hold and that gives trouble is

I 8 't Il IG !w(],al) lk ’n(],l) ’m(Z,ez)

where el(l)=], 82(1)=1, 82(2)=2. If we start applying B9 we get into a

situation where 92(1) and §5(2) refer to one and the same lambda (and this
will never change by further reductions). If we start applying B10 we never

get in such a situation by any further reductions. For other cases where dead-
locks.give trouble see [j0].

6,23 Correctness of formulas in CAE¢wn. We shall say that a formula is at a

rdeadlock in each one of the following circumstances:

6,24

..29_.

(i) it is the left-hand side of B3 with o(t)#0,
(i) it is the left-hand side of B9 with o(t)#0 or t# |s|m(k,8)|,

(iii) it does not satisfy the condition IRC (section 6.17).

A formula which is at a deadlock may still admit reductions.

We say that a formula t leads to a deadlock if there is a reduction
sequence t, > t, >l cee > tn such that & is at a deadlock,

This definition is not very practical. We of course like to have a
decision procedure that shows in a finite number of steps whether a given
formula leads to a deadlock or not.

Actually we want more. We want to be sure we are dealing with formulas
that do not lead to deadlocks if we apply operations which are not reductions
but yet reasonable things in formula manipulations. We think of substitution
of other formulas or segments for the free variables of t, or substitution of
t into other formulas, also in cases where t is a segment.

We feel that a general notion of "correctness" should be formulated in such
a way that if we act "correctly" with "correct" formulas, we never run into a
deadlock. Some indicat%ons of what might be done are to be found in the next

sections.

Frames. In ordinary lambda calculus (let us say in CAE) it is a fundamental

question whether a formula is normalizable, i.e. whether it can be reduced

to a form that does not admit any further reductions. Together with the
Church-Rosser property, normalizability gives unique normal forms. In order

to study normalization in typed lambda calculi, R.P.Nederpelt [9] developed

a system in which a certain tree-shaped norm was attached to every formula,
somehow indicating a frame of the expression serving as the type of that
formula. He showed that the possibility of attaching such frames ("normability")
guarantees normalizability,

In CAg¢wn (or in CAZwn) there is the problem of finding guarantees against
deadlocks. The idea of attaching a kind of frame trees presents itself naturally:
the frames have to indicate whether a variable refers to a segment or not, and if
it does, in what manner that segment is composed of segments and other formulas.
Digging deeper into this,we observe that the matter cannot be separated from
a kind of normability, and it seems to be appropriate to study deadlock-preven-
tion and normalization simultaneously.

In the system we are presenting here, the frames will have a red root in case
of a segment, and a green root in case of other formulas. In the red-rooted frames
the edges pointing to the root are divided into three groups, with i,j,k edges,

respectively. A vague indication of what we intend, follows here. The first i

- 30 -

edges are intended to play the same rGle as the root-pointing edges in case of
a green root: they indicate the nature of the A's that remain in front of the
formula after certain reductions have been carried out. The next j edges indi-
cate the structure of the é-branches we have not been able to dissolve by R-re-
duction. The last k correspond to the k reference dots we have pictured (cf.
(6.15.1)) over an n(k,m): they display the frames of the k formal variables the

"customers" have in mind. These frames will be called reference frames.

We now describe the syntax of the frames formally. We start with a set of

one-letter words consisting of the (distinct) elements gh(htﬁﬂo) and r. 1%
(iqj,kemb). The set of all frames is defined as the minimal solution of

F = {go} 0] ‘g‘ LEJ U Igz F |F U e 0 {rO 0 0} U
UV ke em g litiek > 0 = j el a

(the r, ik is followed by i+j+k F's).In case of a red root we can write

r, i% Iul I-.. [ui |v1]... ’vj Iw !... |w ‘ 4 (6.24.1)

1 k

The frames Wiseeo,w, are the reference frames of the frame (6.24.1).
In notations like (6.24.1) we admit the possibilities like i=0.

In that case the u's have to be omitted entirely.

6.25 Frame products. For use in section 6.26 we define, under some conditionms,

a "product" of frames fI and f2' If these conditions are satisfied we shall

say that the product is "valid". It will be denoted by f1 * fz, and it will
become a frame with the same root colour as f2. First take the case where f2

has a red root:

§ 3000 Lo i 1 . 3 oot 1, (6.25.1)

£, = 'rm 4 |xl l--- ‘Xm {yl J---‘ % ’z] !...} zp I. (6.25.2)

(The u's, v's, w's, x's, y's, z's are frames). The idea in forming the product

is that vj will cancel X, that vj-l will cancel X5 etc. If j < m the validity
condition 1is

- 75

(if j = 0 this condition is void) and if this is satisfied,

fl* f2 . .ri+urj n p[_ul' S |“if xj+1 f"'f xm'tyf_

~ T~

L I.t'
{yn %1

If j > m the validity condition is

vV, = X

f 1’ vj_I = Xps eee 5V, -ty

J—m+l m

and if this is satisfied,

fI * f2 =) jomtn, 3 ’u] |... ’ui ‘vl|...'vj_m!y]!...|y ’z [...‘z '.

If the root of f2 is green, we have, instead of (6.25.2),

fz-[gm [xl I... lx;_L

Now we require for validity of the product that

-

j<m, vj = Xys eee , V=X

and if this is satisfied we define

£,* £ =’ gi+m—j| ul,... ’ui lxj+1!.5.]xm1-

We note that the product operation is associative. That is, if f fz,f3
are frames, if f2 * f3 is valid, and if f * (f2 * f3) is valid, then f] * f2

and (f * fz) * f3 are valid, and
* (f2 * f3) = (f] * f2) * f3. (6.25.3)

It also works the other way: if the products on the right are valid, the

products on the left are valid too.

6.26 Framed formulas. The set T (the set of all "framed formulas'") can be defined

in the same way as T in section 3, with the dlffereuce that the point)\ (see
fig. 1) is replcaed by a set ¥ (F), where A is an injection of F into X] (with
l*(F) disjoint from ¢0§N) and nGNO x N)). This takes care of attaching a frame
to every instance of A in our formulas. We also adhere frames to the free

variables, and therefore we consider formulas t (with te T*) with respect -

S

- 32 -

t, a sequence of frames f]’fZ"" (fi is intended to describe the frame

0
of the i-th free variable).

We shall now describe an algorithm that evaluates (if t eT*, fle F, f2 B

frame(t,f],fz,...) (6.26.1)

as an element of the set F y {incorrect}. That is, a formula t is (in the
context of fl’fZ"") considered either as incorrect or as correct, and in the
latter case it has a frame,

For the time being we shall restrict ourselves to w®), gM), nCNOx w,
¢Gﬁm), XYF), 8 , forget about all other elements of XO’X]’XZ’ and forget about
XB’XA"'

We shall define (6.26.1) recursively according to (3.1). In all cases we

assume f],f to be frames.

PLREE
(i) If meN then

f if f has a green root,
m m

frame(g(m),fL,fz,...) =
incorrect if fm has a red root.

(ii) If (k,8) ¢ M then

frame(m(ksﬁ)sflnfg’-") = lro 0 kife(l)J = er(k)J'

(iii) If e, te T* then

— T +F
frame ([¢ (@) | tl,fl,f2) rame(t e(l)’fe(Z)”")'

(iv) If ksNO, meN, teT" then for correctness of
frame(/n(k,m) |t ’fl’f2"") (6.26.2)

we require that the root of fm is red - and that the number of reference para-

meters of fm equals k. Denoting these parameters by WI,...,Wk We moreover require
that

£! = freme(t,w csWoof L f

I"'] 2!"')

is correct, and that the product fm * f] is valid. If all these conditions are

satisfied, (6.26.2) is defined as £ gl

- 33 -

(v) 1f £e¢F, teT" then for correctness of

teame (5 T (£)1 tl,fl,fz,...) (6.26.3)

we require that

fI = frame(t,f,f ,f,.,...)

| 2

is correct, and that the product

I | I 1
Lo it ¥t (6.26.4)

is valid. If these conditions are satisfied, (6.26.3) is defined as (6.26.4).

(vi)uIlfet. % T*, t, e T" then for correctness of
1 2

frame(la Itll t2 ’fl’fz"") (6.26.5)

we require the correctness of fl and f2, where

fl=fnme&IJ Fovens)

l! 2]
f2 = frame(t . ;£ £)
i e L A &
and the validity of
1o £ lx £°, (6.26.6)

If these conditions are satisfied, we define (6.26.5) as (6.26.6).

The following theorem shows that the definition of the frame of a framed

formula makes sense:

Theorem 6.26.1. Let fl’f2"" eF, t € T" and let

frame(tl,fl,fz,...) (6.26.7)

be correct. Let t1 }] t2 (the > refers to the reductions of section 4). Then

6.27

- 34 -

frame(tz,f f)

1250

is again correct, and has the same value as (6.26.7).

It is not very difficult to prove the theorem by direct verification
of all cases. The hardest case is B9, where we have to carry out induction with
respect to the length of the main branch of s.

If we start with a framed formula, we can never run into a deadlock of the
type (i) or (ii) of section 6.23. The deadlock of the type (iii) is not excluded,
but if we start with a formula satisfying the condition IRC, that condition will

not be violated by reductions.

The above theorem paves the way to a theory of normal forms of framed
formulas, although it must be said that the normal forms will not be very

simple. The following two cases seem to be manageable:

(1) The "ordinary" case: the frames of all free and bound variables have
green roots, and there are neither w's nor n's. Such formulas are very close
to the normable formulds as considered by Nederpelt[9], and normalizability

can be proved in the same fashion.

(ii) The case where the free variables have no.red roots and where every
red-rooted lambda is immediately preceded by a delta. In this case all n's
can be removed by reductions, and the formula can "almost'" be reduced to the

ordinary case.

AUTOMATH books. An AUTOMATH book (see [2] for an informal introduction) contains

a number of formulas arranged in lines. Every line contains a context indicator,

a new identifier, and two formulas, of which the second is the "type'" of the first
It is possible to condense the complete contents of such an AUTOMATH book into

a single line (AUT-SL sée [3]). This line contains an amount of duplication, which
can be reduced considerably by internal definitions (see [9]), but yet we keep
quite some duplication in strings and telescopes. With CAfyn these can be abbre-
viated as well, and we get to a formula which bears all the information of the
AUTOMATH book (including the way things are abbreviated in that book) and which

is possibly shorter than the original book. In this way the layout of the book

is replaced by a much simpler one: a book gets the same structure as a formula.
The book is open-ended: it can always be extended by adding further lines.

Acoordingly, the representation of a book in CAfwn becomes a segment (i.e. it

ends with an w).

- 35 -

One of the advantages of this approach is that the reductions of the
language theory may come very close to the elementary steps a computer has
to take for checking correctness. That is, language definition and checking
programs get closely together. In this respect it seems to be efficient to
incorporate things like long distance beta reduction (see section 6.19), for
this is what the AUTOMATH checkers have essentially used thus far.

The tree that represents an AUTOMATH book has usually a very long main
branch (the length corresponds to the number of lines in the book, and each
line is one of the very many elementary steps we take when building some
substantial portion of mathematics) ending in an y. The side branches are
relatively short: each one of them represents the information contained in
a line, as shown in the example of section 6.28.

Any set of consecutive lines in an AUTOMATH book is a segment of the
tree, and therefore it can be abbreviated by a single symbol. This makes
it clear that the abbreviation facilities of ClEwn are stronger than those
of AUTOMATH itself.

A minor abbreviatjon facility available in AUTOMATH and not in CAEuwn
is the following one. If an identifier f was originally introduced in the
context x,y,z,w, say, then later use of £(P,Q,R,S), with expressions P,Q,R,S.
is possible. But it is also possible to use fewer subexpressions, f(R,S), say,
and then we mean f(x,y,R,S) (add the original variables on the left). This
kind of abbreviation is not in CAZwn, but it.can of course be incorporated
in various ways with some extra trouble, °

Above we mentioned CAEwn and not CAZ¢wn. The latter system plays an
intermediate rdle. The ¢'s are nor required in order to write an AUTOMATH
book, but they come to life in the process of efficient checking, including

postponement of substitution.

6.28 Examples. We show two examples of AUTOMATH books and the way they can be written
as a formula in CAfwn. In particular we show what can be done about the PN's {the
axioms of the book). The first example will be slightly stylized: expressions

have been replaced by single letters,

b — : A
I yry —_— : B
D, ik PN $ -0
g : = D : E
zZ 1 = t F
l r: = G : H
§ 1 = PN s K
£ fhe L M

- 36 -

First we replace all identifiers defined on the empty context. Thus we replace
p by a new identifier @p, g by ®g, T by@r, s by@s (the integer inside the

circle indicates the number of abstractions); and we write, in the empty context

(:)p : [x : Ally : BIC

@g:- [x : AID ¢t [x ¢ AJE

C)r 2 fx 1 Az ¢ FIG 2 [®m2-Allz : FH
@s ti I[x ¢AJEz @ FIK

@t:= [x ::A3L 2 [x : AlM

For the type of a variable we shall use a system that is slightly different
from the one suggested in section 6.14. A variable appears as a lambda in the tre
and we shai} now indicate it as a node with indegree 2. Instead of e Y
take _3\,_ if A is the type of the variable. We have to stipulate that referen
ces in A are interpreted by skipping this lambda when descending the tree (withou
the usual subtraction of 1). For)A's which will be used as segment variables we
shall not do this, and just keep indegree 1.

With these conventions, the book is translated into the following formula:

The system will be clear. The three kinds of lines, block opener lines, PN

lines, and definition lines become, respectively,

;s ; a es/ 1/

§ \

The reference arrows leading from an n to the A of a block opener just
correspond to the context indicator of the line.

In the example we have not presented any details about the A,B,...
These may contain variables, and in the tree interpretation these variables
are indicated by references to some lambda. It should be pointed out that these
are not the block opening lambdas on the main branch, but lambdas hidden in n's
on the side branches, i.e. reference dots of n's. Our second example will show

this clearly.

37

Our second example is a PAL book (i.e. there are no abstractions and

applications in expressions inside the lines).

- T o = _ type

a ™ x 1= —_— a

x { y = a

y EQ := PN prop
b3 : a := PN EQ(x,x)
y | [u = EO(x,Y)
u z 1= —_— o

z v = EQ(z,¥)
v b := PN EQ(z,x)
u E c := b(y,a(y)) EQ(y,x)
z W o= EQ(y,2)
L k := c(y,z,w) EQ(x,z)

Writing type as T.and prop as m,
abbreviating £(n) to n, and w(k,eo)

(.90 is the unit mapping) as w(k),

the formula becomes:

T w(1) 4l w(2) w(3)
A A A T
n(l,1) n(2,1)

n(3,3) /n(4,1)

B

It is easy to see how the reference numbers are calculated. For example,
in (k,m), the k is the length of the indicator string, and m the distance
(in number of lines) to the last block opener.

References:

(1] Barendregt, H.P.: The type free lambda calculus, ch. D7 in Handbook of

Mathematical Logic, ed. J. Barwise, North-Holland
Publ.Comp., Amsterdam-New York-Oxford-1977.

[2] de Bruijn, N.G.: AUTOMATH, a language for mathematics. Séminaire de

Mathématiques Supérieures - &té 1971, Les Presses de
1'Université de Montréal, 1973. Lecture Notes prepared

by B.Fawcett.

[3] de Bruijn, N.G.: AUT-SL, a single line version of AUTOMATH.

Notitie 22, Department of Mathematics, Technological

University Eindhoven, May 1971.

(4] de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the
Church-Rosser theorem. Kon.Ned.Akad.Wetensch.Proc. Ser. A,
75 (=Indag.Math. 34) 381-392 (1972).

[5] de Bruijn, N.G.: Lambda calculus with namefree formulas involving symbols

that represent reference transforming mappings. Kon.Ned.

Akad.Wetensch.Proc.Ser.Algl (=Indag.Math. 40) 348-356 (1978

[6] de Bruijn, N.G.: Notation for concatenation. Memorandum 1977-09-July 1977.

Eindhoven University of Technology, Department of Mathemati

(7] de Bruijn, N.G.: A note on weak diamond properties. Memorandum 78-08:August

1978, Eindhoven University of Techmology, Dept. of Math.

[8] Knuth, D.E.: The Art of Computer Programming, Vol. 1. Addison-Wesley,
Reading, Mass. (1968).

[9] Nederpelt, R.P.:

[10] Wieringa, R.M.A.:

39

Strong normalization in a typed lambda calculus with
lambda structured types. Dissertation June 1973 - Eindhover

University of Technology, Dept. of Math.

Een notatiesysteem voor lambda-calculus met definities,

Master's Thesis, Dept. of Math. Eindhoven University of

Technology, The Netherlands.

	Cover
	abstract
	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20
	page21
	page22
	page23
	page24
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39

