Application resilience

Problems and objectives
- Most powerful supercomputers: more than one failure per day
- Resilience: ability to produce correct result in spite of faults
- Extensive experimental campaigns are too expensive
- How to choose a resilience protocol? How to tune it?

Methods
- Probabilistic analyses
 - Exact derivations
 - First-order approximations
- Discrete-event simulations
- Applied to various protocols/techniques:
 - Fault prediction
 - Silent error detection
 - Checkpointing, replication, migration, error correction

Lower bound

\[\text{A} \text{\ø} \text{A} \text{\ø} \text{N} \text{\ø} \text{A} \text{\ø} \text{m} \text{\ø} \text{N} \text{\ø} \text{A} \text{\ø} \text{N} \text{\ø} \text{A} \text{\ø} \text{N} \]

No online algorithm \(A \) is < \(\frac{p}{m/k} \) - competitive for any \(m, k \).

Proof (where \(\phi = \frac{p}{m/k} = 3 \)):

Graph with

\[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

Theorem

Solvers for sparse linear algebra and related optimization problems

Direct solvers for sparse linear systems
- Target performance and numerical robustness
- Limit resource consumption (e.g., memory)
- Exploit low-rank representations to reduce complexity

Combinatorial scientific computing
- Design, analysis, and implementation of combinatorial algorithms to enable scientific computing
 - Matchings and partitioning in graphs and hypergraphs
 - High performance computing with matrices and tensors

The MUMPS solver

- Solve systems of linear equations \(AX = B \) (A sparse)
- Owners: CERFACS, CNRS, ENS Lyon, INPT, Inria, Univ. Bordeaux
- Software platform to experiment and transfer research
- CeCILL-C license, used worldwide, included within many open-source and commercial packages
- Many features, addresses a wide range of problems: symmetric, unsymmetric, indefinite, multiple (sparse) right-hand sides, Schur, ...

Multi-criteria scheduling strategies

Mix user-oriented objectives (time-to-solution, throughput) with platform-oriented constraints (energy, memory)

Energy-aware algorithms
- Energy consumption of fault-tolerance protocols
- Use of Dynamic Voltage and Frequency Scaling (DVFS)
- Powering cores below nominal voltages

Memory-aware algorithms
- Minimize memory or I/O when processing task graphs
- Memory minimizing traversals for trees and SP-graphs
- Limit memory-peak usage of parallel execution
- Allow for efficient runtime schedulers

Hybrid CPU-GPU scheduling
- Task or task-graph scheduling
- Low-cost scheduling algorithms
- Online scheduling with guarantees

ROMA Members

Permanent members
- Anne Benoit (ENS Lyon assoc. prof.)
- Jean-Yves L’Excellent (INRIA researcher)
- Loris Marohal (CNRS researcher, co-head)
- Yves Robert (ENS Lyon prof. & UT Knoxville)
- Bora Uçar (CNRS researcher)
- Frédéric Vivien (INRIA senior researcher, co-head)

Engineers
- Marie Durand, Chiara Puglisi and Guillaume Joslin (Mumps consortium)

PhD Students
- Yiqin Gao (MILYON Labex)
- Chiangjiang Gou (CSC, China & ENS Lyon)
- Li Han (CSC, China & ENS Lyon)
- Aurélie Kong-Win-Chang (ENS Lyon)
- Gilles Moreau (MILYON and MUMPS consortium)
- Ioannis Panagiotas (Inria)
- Filip Pawlowski (CIFRE at Huawei)

Administrative assistant
- Evelyne Blesle / Laetitia Lecot (Inria)

Main collaborations
- ANR Solhtar
- INPT-IRIT, Toulouse.
- Joint Lab. on Extreme Scale Computing
- Univ. of Tennessee, Knoxville (USA)
- Georgia Tech. (USA)
- Huawei Technologies, Paris

www.ens-lyon.fr/LIP/ROMA/