An Efficient Multicast Protocol in Mobile Ad-hoc Networks Using Forward Error Correction Techniques

S. C. Chen, C. R. Dow, P.J. Lin, and S. F. Hwang

Department of Information Engineering and Computer Science, Feng Chia University

1

Outline

- Introduction
- Recovery Points and FEC based Multicast Schemes
 - RP establishment scheme
 - RP mergence scheme
 - FEC scheme
 - RP maintenance scheme
- Experimental Results
- Conclusions

Introduction (1/2)

- Multicasting is a strategy to effectively use bandwidth for point to multi-point communications
- Mobile Ad-hoc Networks
 - Multi-hop communications
 - Highly dynamic topology
 - Unstable forwarding path
- Reliable multicast becomes a very challenging research problem in mobile ad-hoc networks

Introduction (2/2)

- Many reliable multicast protocols have been proposed for MANETs
 - ARQ (Automatic Repeat reQuest) based protocols
 - Gossip-based protocols
 - Hybrid ARQ and FEC (Forward Error Correction) based protocols
- These reliable multicast protocols may need the recovery schemes
 - A major challenge to these recovery schemes is to reduce feedback implosion problem
 - Especially, when the number of receivers and senders increases

Recovery Points and FEC based Multicast Schemes

- In this work, we propose a recovery points and FEC based multicast scheme
- RP establishment scheme
 - Keep data packets from the source
 - Recover the lost packets for its downstream RPs
- RP mergence scheme
 - To avoid excessive control overhead
- FEC scheme
 - Enhance the reliability of data transmission
- RP maintenance scheme

RP Establishment Scheme

- Source nodes and MCHs are default recovery points
- Attach and piggyback a Logic Hop Count field to a data packet
 - Each clusterhead increments one to this field and then forwards it to the virtual backbone
 - A clusterhead will set itself to an RP if the Logic Hop Count equals h
 - If a MCH receives the data packet, it will set the Logic Hop Count to zero

RP Mergence Scheme (1/2)

- To avoid excessive RP control overhead
 - Case 1: if a selected RP is adjacent to an MCH, it is unnecessary to establish an RP

RP Mergence Scheme (2/2)

- To avoid excessive RP control overhead
 - Case 2: if there are more than one RPs that are the child nodes of a clusterhead, they will be merged

FEC Scheme

9/14

RP Maintenance Scheme

- Maintenance for packet releasing
 - After comparing data packet sequence number and resending lost packets
 - The upstream RP deletes data packets kept in its memory
- Maintenance for Node Joining
 - When a receiver joins a cluster
 - When an RP moves to anther MCH or RP and becomes an ordinary node
- Maintenance for Node Leaving
 - When an MCH only manages one receiver and the receiver leaves
 - When the RP or MCH leaves the cluster

Experimental Environment for the Multicast Scheme

- Simulator: GloMoSim
- Nodes: 100
- Area: 1000m × 1000m
- Tx_range: 200m
- Mobility model: Random waypoint
 - Max Speed: 1m/s ~ 30m/s
- Number of senders : 1 ~ 50
- Number of receivers : 25 ~ 125
- Logic Hops : 2
- The ratio of redundant data (R): 1.5

Experimental Results of the Multicast Scheme (1/2)

Delivery Ratio vs. Number of Receivers

50.0%

0.0%

5

10

20

Number of Receivers

30

40

50

60

Conclusions

- In this work, we proposed a reliable multicasting protocol using the RP and FEC schemes for MANETs.
- The RP scheme can be used to recover lost packets
- The FEC scheme can be used to enhance the reliability of data transmission
- The RP mergence and maintenance schemes can avoid excessive control overhead and reduce the node mobility problem
- The experimental results show that the proposed scheme can achieve high delivery ratio and high multicast efficiency

Appendix

Related Work (1/2)

Reliable Multicast Protocols

- ARQ-based multicast protocols [20, 51, 59, 60]
 - Detecting packet losses and notifying the sources to retransmit the lost packets
- Gossip-based protocols [13, 43]
 - Lost packet recovery is performed locally
- Hybrid ARQ-FEC based schemes [50, 56]
 - Uses the FEC technique to encode the data packets to redundant data packets
 - Use the ARQ technique to repair the lost packets from sources

Related Work (2/2)

• Previous work

- Clustering [36]
 - Distributed label clustering algorithm
 - Small number of clusters
 - A stable scheme
- Virtual backbone [37]
 - Minimal Steiner tree
 - Small number of backbone nodes
 - A stable route

Comparisons of Various Schemes

	Multicast structure	Hierarchical structure	Recovery strategy
RP scheme with FEC	Shared Tree	Yes (clustering + virtual backbone)	Gossip + FEC
RP scheme	Shared Tree	Yes (clustering + virtual backbone)	Gossip
ODMRP with RMDP	Mesh	No	ARQ + FEC
ODMRP	Mesh	No	No
AMRIS	Shared Tree	No	No 18/14

Experimental Results of the Multicast Scheme

• Logic Hops between MCHs vs. Number of Nodes

Experimental Results of the Multicast Scheme

An Example of Packet Loss Problem

The Problem of HOP_COUNT field is set to 3

FEC Scheme

- Before sending data,
 - The sender separates the data file into many transmission groups (TGs)
 - An (n, k) RS code is applied to each group
 - After encoding the data file, the sender transmits partial redundant data to receivers
- When an RP or receiver receives a data packet
 - It will use the counter R[i] to record how many data packets have been received for each TG_i
 - Detects and recovers the packet loss
- For the receiver, if the R[i] k
 - It can decode the data packets for TG_i to the original data packets

Speed of the encoding/decoding process on various architectures

System	CPU/Speed	c _d (MBytes/s)
Sun Ultra1	UltraSPARC 167 MHz	21.289
DEC	Alpha 255 MHz	12.577
HP715/100	PA7000 100 MHz	10.308
PC/FreeBSD	Pentium 133 MHz	9.573
SPARCstation-20	Spare TMS390Z55 60 MHz	8.091
SPARCstation-10	Spare TMS390Z55 40 MHz	5.391
SGI Indy	R4000	5.186
SPARCstation-5	SPARC MB86904 70 MHz	3.947
PC/FreeBSD	i486/DX2 66 MHz	3.338
Sun IPX		2.124
DECstation 2100	R2000 8 MHz	0.612
PC/FreeBSD	i386 25 MHz	0.372

24/ 14