Source Traffic Modeling in Wireless Sensor Networks for Target Tracking

> Qinghua Wang, Tingting Zhang qinghua.wang@miun.se Mid Sweden University 2008-10-27

Traffic within WSN – How much do we know about it?

- A fact.
 - too much talk about traffic in WSN, but too few understanding about it.
- Why?
 - The specialty of WSN renders the existing insights on traditional network traffic less useful.
 - Because traffic in WSN is highly application dependent, and people do not know where to start.

Traffic scenario categorization for WSN

- Periodically reporting
 - HELLO message, routing message exchange
 - Applications like temperature monitoring, video surveillance system
- Event-driven transmission
 - Reporting any feature with 0-1 outcome
 - Applications like target tracking, where the detection of the target is an interesting event

Traffic modeling for WSN

- Periodically reporting
 - Constant Bit Rate (CBR)

- Event-driven transmission
 - Poisson?
 - Bursty traffic

ON/OFF model – state transition diagram

ON/OFF Model – a paradigm

An event-driven scenario – WSN for target tracking

- Targets move around in the WSN deployment area
- Target is detected when it enters into the nearby region of a sensor node
- Traffic burst arises from a sensor node when a concerned target stays in its sensing range
- The time duration for a traffic burst corresponds to an ON period in the ON/OFF model

Traffic modeling – WSN for target tracking

- Goal:
 - in order to give insights about traffic characters in event-driven WSN scenarios
- Methods:
 - By carrying simulations in a modified ns-2 (<u>http://apachepersonal.miun.se/~qinwan/resources.ht</u> <u>m</u>)
 - Capturing traffic bursts using ON/OFF model
 - Fitting ON/OFF period distributions to get insights

Traffic modeling – WSN for target tracking

- Simulation settings:
 - Nodes number: 100
 - Deployment area: 1000m×1000m
 - One sink: located in the center
 - One target: randomly moving around
 - Sensing range: ~250m
 - Communication range: ~250m
 - Routing: multi-hop AODV protocol

Traffic modeling – WSN for target tracking

Distribution of target observation probability:

Results – ON period distribution

Results – ON period distribution

Results – ON period distribution

Results – OFF period distribution

Results – OFF period distribution

Results – OFF period distribution

Generalized Pareto distribution
– Probability density function:

r robability achienty fariotion.

$$y = f(x \mid k, \sigma, \theta) = \left(\frac{1}{\sigma}\right) (1 + k \frac{(x - \theta)}{\sigma})^{-1 - \frac{1}{k}}, \quad \theta < x$$

– Useful property:

$$\theta < x < -\frac{\sigma}{k}$$
 (short tail), if $k < 0$

Fitted ON period distribution for node-edge

Fitted ON period distribution for node-center

Fitted OFF period distribution for node-edge

Fitted OFF period distribution for node-center

Parameters used in fitting ON/OFF period distributions with GPD

	Fitted ON period distribution						Fitted OFF period distribution					
nodes	node-edge			node-center			node-edge			node-center		
ON timer	1.5s	5s	20s	1.5s	5s	20s	1.5s	5s	20s	1.5s	5s	20s
k	-0 k 0		0.08	-0. k 5		0.07	0.03	k ^{0.03}	() ⁰²	-0.03	0.01	-0.07
σ	5.05	4.77	4.57	81	19.65	11:	317.1	317.9	308.9	1	10.03	11.56
heta (sec.)	1.49	4.99	19.99	1.49	Short	-tail p	orop	erty	0.001	0.001	0.001	0.001
$x F(Period \le x) = 0.99$ (sec	16.7 .)	22.3	45.5	51	84	654	1356	1355	1353	46.8	47.2	45.2
Mean (sec.)	5.703	9.291	24.96	14.39	23.53	144	307.0	307.4	302.2	10.55	10.12	10.77
$\frac{x}{Mean}$	2.93	2.40	1.82	3.54	3.57	4.53 1ean	4:43	4.41	4.48	4.44	4.67	4.20

Why "short-tail property" is good?

- If traffic exhibits "short-tail property", an observed unusually long ON period may indicate an energy exhaustion attack
- If traffic exhibits "short-tail property", an observed unusually long OFF period can indicate a node failure
- With "short-tail property", we can identify these abnormal periods with high confidence at early time (by waiting less than 5 times of the mean period duration in the above scenario).

Conclusions

- We present a traffic modeling for an event-driven sensor network scenario target tracking
- ON/OFF model is found to be suitable for capturing the bursty nature of event-driven sensing traffic
- The statistical distributions of ON and OFF periods are found to follow the *generalized Pareto distribution* very well
- The OFF period distribution is found to be insensible to the choice of ON timer, which could be some kind of self-similarity.
- Both ON and OFF period distributions exhibit "short-tail property", which means the abnormal ON/OFF period can be identified quickly.

