Modeling IEEE 802.15.4 based Wireless Sensor Network with Packet Retry Limits

Prasan Kumar Sahoo Vanung University, Taiwan Jang-Ping Sheu National Tsing Hua University, Taiwan

Outline

□ Introduction

- **Objectives**
- **System Model**
- **Analytical Models**
- **Performance Evaluation**
- **Conclusions**

Introduction

IEEE 802.15.4 MAC is designed for Wireless Personal Area Networks (WPANs)

Short Range

- Low Power
- Low Cost

Small Networks

Objectives

- Design analytical models for wireless sensor networks (WSN):
 - To evaluate energy consumption
 - To evaluate throughput
 - Based on IEEE 802.15.4 MAC with retry limits.
- Consider unsaturated traffic conditions
 - All nodes of the network do not have packets to transmit at the same time.

System Model

Network Topology
 Data Transfer Methods
 Channel Access Mechanism

Network Topology

□ We design analytical models for the star topology based WSN.

Network Devices

Coordinator

Data Transfer Method

In star topology, only two types of data transfer methods are used.
 Uplink: Network Devices → Coordinator
 Downlink: Coordinator → Network Devices
 Take accounts of the acknowledgements
 Only concentrate on the uplink data transfer
 Sensed data are generally flown from devices to the coordinator.

Data Transfer Model

Channel Access Mechanism

Two types of CSMA-CA in IEEE 802.15.4

□ Slotted (in beacon enabled network)

□ Un-slotted (in non-beacon enabled network)

Consider slotted CSMA-CA with ACK

Channel Access Mechanism

- Each device shall maintain three variables for each transmission attempts.
 - Number of Backoffs (*NB*)
 - Contention Window Length (*CW*):
 - Number of backoff periods that need to be cleared of channel activity before the transmission can commence
 - Backoff Exponent (*BE*): backoff period= $R(0, 2^{BE}-1)$

Analytical Models

Transmission Policy
 Packet Collision Probability
 Probability of Sensing Channel Busy
 The Markov Chain Model

Definition of parameters

- □ *aMaxFrameRetries*: Maximum number of retries allowed after a transmission failure
- macAckWaitDuration: Maximum number of symbols to wait till receiving an ACK.
- *macMinBE*: Minimum value of the backoff exponent
- □ *aMaxBE*: Maximum value of the backoff exponent
- macMaxCSMABackoffs (m): Maximum number of backoffs the CSMA-CA algorithm will attempt before declaring a channel access failure

Transmission Policy

Packet Collision Probability

□ p_c : Probability of collision is seen by a packet, if it is transmitted after performing CCA twice.

$$p_{c} = 1 - [1 - (1 - p_{0})\tau]^{N}$$

- □ *N*: Number of nodes associated to the coordinator
- \square p_0 : Probability that the node has no packet ready to transmit.
- **T**: Probability that the node is performing first CCA.

Probability of Sensing Channel Busy

- \square $M_i(s)$ =-1: Event that there is at least one transmission in the medium in slot *i*
- □ $M_i(c)$ =-1: Event that some station start sensing during slot *i*
- \square $M_i(s)$ 0: Event that no station in the medium is transmitting in slot *i*
- \square $M_i(c)$ 0: Event that no station starts sensing during slot *i*

The Markov Chain Model

- Three stochastic processes: s(t), c(t) and r(t)
 s(t): Represents the backoff stage for NB,
 c(t): Represents backoff counter for CW,
- r(t): Represents retransmission counter for NRT

The Markov Chain Model

 $P(j, x-1, k \mid j, x, k) = 1, \text{ for } \begin{cases} 0 \le j \le macMaxCSMABackoffs; \\ 1 \le x \le W_j - 1; 0 \le k \le aMaxFrame \text{ Re} tries \end{cases}$

, where $W_j = 2^{\min(j + macMinBE, aMaxBE)}$

 $P(j,-1,k \mid j,0,k) = 1 - \alpha, \text{ for } \begin{cases} 0 \le j \le macMaxCSMABackoffs; \\ 0 \le k \le aMaxFrame \text{ Re } tries \end{cases}$

 $P(j+1, x, k \mid j, 0, k) = \frac{\alpha}{W_{j+1}}, \text{ for } \begin{cases} 0 \le j \le macMaxCSMABackoffs - 1; \\ 0 \le x \le W_{j+1} - 1; 0 \le k \le aMaxFrame \text{ Re} tries \end{cases}$

Transition Probability

Transition Probability

Transition Probability

Throughput Estimation

- □ In order to demonstrate that the IEEE 802.15.4 is suitable for low-rate WSNs, we develop the analytical model for throughput.
- □ p_{tr} : probability that there is at least one transmission in the considered slot time $p_{tr} = L(1-\alpha)(1-\beta) \left\{ 1 - [1-(1-p_0)\tau]^N \right\}$
- \square *p_s*: the probability that a transmission occurring on the channel is successful

$$p_{s} = \frac{L(1-\alpha)(1-\beta)N \times (1-p_{0})\tau \left[1-(1-p_{0})\tau\right]^{N-1}}{p_{tr}}$$

Throughput Estimation

- □ Taking S as the average amount of payload successfully transmitted in one backoff period
 S = <sup>P_sP_{tr}T_{pl} (1-p_{tr})σ+p_{tr}p_sT_s+p_{tr}(1-p_s)T_c

 □ T_{pl}: duration of payload transmission
 □ σ duration of an empty slot time
 □ T_c: duration of a collision
 </sup>
- \Box T_s : duration of a successful transmission

Throughput Estimation

- $T_{s} = 2 [T_{CCA}] + [T_{L}] + \lfloor \delta \rfloor + [T_{Ack}], T_{c} = 2 [T_{CCA}] + [T_{L}] + \lfloor \delta_{\max} \rfloor$
- \Box T_{CCA} : duration for performing CCA
- \Box T_L : duration for transmitting L-slot packet
- \Box **\delta** duration for waiting an ACK
- \Box T_{ACK} : duration for receiving an ACK
- $\Box \quad \text{An example for } T_s:$

Energy Consumption Estimation

- **Es:** Energy consumption for each succeful transmission
- **Ec:** Energy consumption due to each collision.

$$E_s = 2T_{CCA}P_{RX} + T_{ta}P_{ta} + T_LP_{TX}$$
$$+T_{ta}P_{ta} + \delta_{max}P_{RX}$$

$$E_c = 2T_{CCA}P_{RX} + T_{ta}P_{ta} + T_LP_{TX} + T_{ta}P_{ta}$$
$$+ (\delta - T_{ta} + T_{ACK})P_{RX}$$

Energy Consumption Estimation

$$E = \frac{\tau \alpha T_{CCA} P_{RX} + \tau (1 - \alpha) \beta \times 2T_{CCA} P_{RX}}{\tau (1 - \alpha) (1 - \beta) p_s T_{pl}}$$
$$+ \frac{\tau (1 - \alpha) (1 - \beta) [(1 - p_s) E_c + p_s E_s]}{\tau (1 - \alpha) (1 - \beta) p_s T_{pl}}$$

Performance Evaluation

□ We use ns-2 as the simulator □ A star topology with 30 nodes **Transmission range: 7 meters** □ Transceiver configured as CC2420 Carrier frequency: 2.4 GHz Effective data rate: 250 kbps Provide various data rates per flow unsaturated traffic conditions

Analytical and Simulated Results

High Data Rate

Low Data Rate

Different NRT Values

Different Node Numbers

Conclusions

- We consider a beacon-enabled slotted CSMA-CA of IEEE 802.15.4
- Develop analytical models for throughput and energy consumption under unsaturated traffic conditions.
- □ Simulated results show that the standard is suitable for low data rate transmission.
- □ In order to get better throughput, the payload size should be as large as possible.
- □ Retransmission of collided packets should be considered for a network of lower data rate (WSN).

Thank you for your kind attention!