Introduction

SFLS

Performance Analysis

Cross-Layer Design

Conclusion

(日) (日) (日) (日) (日) (日) (日)

7th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks October 18th, 2010 — Bodrum, Turkey

SEMI-FLOODING LOCATION SERVICE: A CROSS-LAYER DESIGN

É. Renault^{1,2}, H. Costantini³, E. Amar⁴ and S. Boumerdassi³

¹ Institut Télécom – Télécom SudParis, RS2M Dept. ² Samovar UMR INT-CNRS 5157 ³ CNAM – CEDRIC Laboratory ⁴ UPMC – LIP6

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
•0	000	000	000	00

BACKGROUND

Routing protocols in MANETs

- topology based
 - use of routing tables
 - pro-active (DSDV) vs. reactive (DSR, AODV ...)
- location based
 - use of location information
 - examples: LAR, DREAM, GPSR...
- Problem with location-based routing protocols:
 - distribute the location of nodes to all the others

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \rightarrow use a location service

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

LOCATION SERVICES

<u>Goal</u>:

Tracking nodes and resolve queries

Classification:

- Flooding based
 - either location updates (pro-active like DREAM)
 - or location queries (reactive like LAR and RLS)
- Rendez-vous based (e.g. SLS)
 - a heuristic is used to elect a node (or nodes) to store location updates and answer queries
 - there can be a single elected node for all the network
 - or a different elected node per (group of) node(s)

Introduction	SFLS ●00	Performance Analysis	Cross-Layer Design	Conclusion
GOAL				

Take advantage of both categories (preferedly without inheriting the drawbacks)

Flooding:

- + each node is aware of the position of all the others
- high number of messages

Rendez-vous:

- + low number of messages
- hardly handle node's disappearance and communication problems

Introduction	SFLS ○●○	Performance Analysis	Cross-Layer Design	Conclusion
PRINCIPLE				

- All nodes periodically broadcast a packet with its position
- When a node receives a location packet:

if packet's data are more recent than local data (or the node is not referenced yet)

update the local database half the time: (re-)broadcast the packet

else

just forget it!

・ コット (雪) (小田) (コット 日)

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

PROPAGATION OF LOCATION PACKETS

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	•00	000	00

MATHEMATICAL MODEL

Parameters

N: number of nodes in the network

I_i: length of the longest path from *i* to any other node

 $p_i^{(h)}$: distribution of nodes at *h* hops for node *i*

Estimations

 $\overline{m_i}$: mean number of messages to update node *i* location $\overline{u_i}$: mean number of updates

 $\overline{r_i}$: mean number of messages to find node *i* location

$$\overline{m_i} = \sum_{h=0}^{l_i} \frac{1}{2^h} N p_i^{(h)} \qquad \overline{u_i} = 2 \times \overline{m_i} - 1 \qquad \overline{r_i} = 0$$

(日) (日) (日) (日) (日) (日) (日)

 $\rightarrow \overline{m_i}$ and $\overline{u_i}$ depend upon the node distribution

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

NODE'S DISTRIBUTION

r: constant radius around node i based on transmission range Uniform distribution:

- density of nodes is the same all over the network
- distance between two nodes at *n* hops: (*r* − 1) × *n* → *r* × *n*

$$\boldsymbol{p}_{i}^{(h)} = \begin{cases} \frac{1}{N} & \text{if } h = 0\\ \frac{2h-1}{l_{i}^{2}} \times \frac{N-1}{N} & \forall h \in [1; l_{i}] \end{cases}$$

Note:
$$\sum_{h=0}^{l_i} p_i^{(h)} = 1 \quad \forall i$$

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

ALGORITHM SCALABILITY

$$\overline{m_i} = 1 + \frac{N-1}{l_i} \left[\left(2 + \frac{3}{l_i} \right) \left(1 - \frac{1}{2^{l_i}} \right) - 2 \right]$$

Introduction	SFLS 000	Performance Analysis	Cross-Layer Design ●○○	Conclusion
OVERVIEW				

Idea:

• Exchange inherent layer information between protocol layers to enhance the Quality of Service

Examples between MAC and routing layers:

- enhance scheduling by avoiding a single receiver to be transmitted data from several other nodes during a slot
- enhance power control by using Signal to Interference and Noise Ratio

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

APPLICATION TO SFLS

- SFLS may be improved by regulating the broadcast forwarding depending upon some metrics
- Broadcast forwarding is not performed half the time, but:
 - more often if the SNR of other nodes is low (nodes are at long distance)
 - less often if there are lots of interferences (avoid the situation to get worse) or a lack of energy (energy saving)

In the following, only the impact of reducing the number of messages is taken into account (interference, lack of energy...)

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

MODIFICATION IN THE MODEL

- New parameters
 - *N*': number of nodes that do not satisfy the minimum requirements
 - $q_i^{(h)}$: distribution of these nodes at *h* hops for node *i*
- With the uniform distribution:

$$q_i^{(h)} = \begin{cases} 0 & \text{if } h = 0\\ \frac{2h-1}{l_i^2} & \forall h \in [1; l_i] \end{cases} \quad \overline{m_i} = 1 + \frac{N - N' - 1}{l_i} \left[\left(2 + \frac{3}{l_i} \right) \left(1 - \frac{1}{2^{l_i}} \right) - 2 \right] \end{cases}$$

• $\overline{m_i}$ is significantly reduced, the limit remains unchanged and the order of magnitude becomes N - N'

Introduction 00	SFLS 000	Performance Analysis	Cross-Layer Design	Conclusion • O
Conclusi	ON			

SFLS is:

- a location service for MANETs
- simple to implement
- requiring few messages to be transmitted
- scalable

The cross-layer design allows to:

• take into account real-time measures of the network

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• reduce the number of messages even more

Introduction	SFLS	Performance Analysis	Cross-Layer Design	Conclusion
00	000	000	000	00

FURTHER DIRECTIONS

Short term:

- These are theoretical results
- Next step is simulation
- At last, why not implementing?

Mid-term:

• Prediction can be used as a complement to SFLS to improve the knowledge of other nodes' location

Thank you for your attention. Any questions ?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで