Performance Evaluation of Distributed Self-Organization Protocols in Wireless Sensor Networks

Ibrahim AMADOU Fabrice VALOIS

Ibrahim.amadou@insa-Iyon.fr

UNIVERSITÉ DE LYON, INSA-LYON, SWING - INRIA The 7th ACM PE-WASUN Bodrum, Turkey, Oct. 18, 2010

L DES SCIENCE

INSTITUT NATIONAL

Contents

- Motivations
- Protocols overview

Dominant-based
 Link pruning

- Performance evaluation
- Conclusion & perspectives

- Wireless Sensor Networks
 Large collection of low-cost and low-powered sensing device in interested environment.
 - Goal link physical word and digital data netwo
- Challenges
 Scalability
 Adaptive
 Auto-configuration
 Efficient resource sharing
 Maximize the network lifetime

≻

- Evaluate the performance of two families of self-organization protocols
- Investigate their characteristics according to some qualitative criterion during both chaotic and sporadic node deployment and WSN life.
- Investigate the design paradigms that can help the development of an efficient communication protocol in WSN.
- Interesting Questions

What is the impact of node **deployment phase** on the performance of these protocols?

What is the **capacity**, which can be achieved by each protocol?

Given some caracteristics of self-organization protocols, what should be an important design paradigms to follow?

4

Connected dominating set (CDS)

- Each node is either in the subset of dominating set or neighbor of node in the subset of DS.
- Node of dominating set is connected.
- selection strategy: Marking process & rule k

6

Link pruning protocols (LP):

Gabriel graph (GG)

Local minimum spanning tree (LMST)

- 1. Each node calculates its MST in neighborhood
- 2. Link (u,v) is in the final LMST if v is in the MST(u) and u is in the MST(v).

Performance evaluation

Framework:

- > 3 sinks are deployed
- Convergecast traffic according to queries (query period= 10s)
- Assumptions and parameters:
 - Confidence interval 95%

Parameters	Value
Bandwidth	500 Kbps
Transmission power	0
Reception Sensitivity	-92 dBm
MAC layer	802.11
p-LEGOS LDBR/GWBR time interval	2 s
Hello MSG interval	2 s
Propagation	$\beta = 4.7 \ \sigma = 4$
Simulation time	800 s
Inter-arrival time of nodes	[0, 50] (s)

Event-drivent network simulator: Wsnet[http://wsnet.gforge.inria.fr]

Simulation results: Simulatenous nodes deployment

Fig.1: Latency of construction for LP

Fig.2: Latency of construction for CDS

Fig.3: Energy dissipated

Simulation results: Sporadic nodes deployment

Average degree of SON schemes

Simulation results

Table 3: Link pruning average SON node degree

Number of Nodes	RNG	GG	LMST
150	2.52	3.36	2.48
250	2.59	3.64	2.63
350	2.63	3.74	2.63
450	2.65	3.81	2.66
550	2.68	3.84	2.69
650	2.69	3.86	2.70
750	2.69	3.87	2.69
850	2.71	3.88	2.67

Fig.9: Cardinality of dominant sets degree

Fig.10: Average node

12

Fig.7: Control packet overhead

Fig.8: Throughput

13

Conclusion & perspectives

- Evaluation of link pruning and dominant-based self-organized Network protocols is proposed.
- Chaotic deployment impacts more on the performance of link pruning and k-CDS protocols than p-legos.
- The results show that p-LEGOS outperforms all remaining in terms of: Energy, latency, overhead and network capacity.
- For our point of view the design paradigms of an efficient SON protocols should follow the p-LEGOS design approach.
- To be more efficient, we plan to propose a data aggregation scheme in our future work.

Thank you !

Ibrahim.amadou@insa-Iyon.fr

15
