Home / Master 2 / M2 - Physics, Concepts and Applications / Courses / To Ex M2 P
To Ex M2 P
Friday, 28 October 2016 14:34

Active Matter

Written by Administrator

Active Matter

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S4a

Crédits ECTS :

3

Volume Horaire :

18h Cours

Responsable :

Denis Bartolo

 

Intervenants :

 

Denis Bartolo

 

Objectif

Active matter encompasses a broad range of systems ranging from animal groups to shaken grains, to motile colloids to cell tissues and bacteria suspensions. We will introduce some generic concepts and tools borrowed from soft condensed matter and statistical physics to account for the large-scale properties of these systems driven out of thermal equilibrium at the level of the elementary units.

 

The course will both cover well established results and on going developments in the field. The outline will be adjusted accordingly.

 

 

Plan du cours

1-Self propelled bodies and persistent random walkers: statistics of active-particle trajectories.

2-Interacting active particles: active forces, torques and fields.

3-Continuum description of active matter: conserved and broken symmetry fields.

4-A selection of more advanced topics will be discussed during the last three/four lectures such as Kinetic theories of active matter, Fluctuation and instabilities of broken-symmetry phases (active nematics and flocks), Motility Induced Phase Separation & active-matter thermodynamics, Active stresses, Active tesselations, 1D systems & traffic models,…)

 

Langue d'enseignement

 

English or French  (upon request)

 

Thursday, 14 July 2016 12:26

Plasma phenomena out of equilibrium

Written by Administrator

Plasma phenomena out of equilibrium

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S4a

Crédits ECTS :

3

Volume Horaire :

18h Cours

Responsable :

Rolf Walder

 

Intervenants :

 

Rolf Walder

Objectif

TBA

Plan du cours

TBA

Pré-requis

TBA

Langue d'enseignement

TBA

Modalité de l'examen

TBA

Thursday, 14 July 2016 06:24

Nanophysics

Written by Administrator

Nanophysics

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S3b

Crédits ECTS :

6

Volume Horaire :

24h Cours

12h TDs

Responsable :

Aurelien Crut

 

Intervenants :

Aurelien Crut

Joel Bellessa

Objective

In 1959, Richard Feynman gave a visionary talk entitled “There is plenty of room at the bottom”, often regarded as the start of nanosciences, in which he showed that the ability of manipulating matter at the nanometer scale would enable encoding huge amounts of information onto increasingly small spaces and imagined microscopes with atomic resolution. Nanosciences have undergone a colossal development since, accomplishing most of Feynman’s dreams and progressively understanding the physical properties of nanostructures, which strongly differ from those of macroscopic objects due to the stronger impact of quantum and surface-related effects. Interestingly, size reduction has a very different impact depending on the considered physical property. For instance, a metal sphere of 50 nm diameter does not have the same “color” as the bulk material it is made of, but the mechanical vibrations of nanospheres as small as 1 nm (30 atoms) can still be accurately described using a continuum elastic model initially developed for planets. These lectures will address various physical properties of nano-objects, such as electronic, optical, mechanical and thermal ones. The theoretical modeling of these properties, based on either classical or quantum physics, will be introduced, highlighting the specific phenomena at the nanoscale. In each case, the experimental methods available to investigate them will be described, with a special focus on those addressing individual nano-objects, which have recently undergone a fast development.

Outline

Introduction

- What is nanoscience ?

- Bulk vs nano: new physical properties of nanostructures and confined systems.

- Fabrication methods, characterization tools and current hot topics in nanophysics.

Quantum confinement : semiconductor and metal nanostructures

- Electronic quantum confinement in semiconductors: quantum wells, wires and dots.

- Optical properties and luminescence of quantum dots.

- Recent advances and applications: from semiconductor heterostructures to single photon quantum emitters.

- Quantum confinement effects in metal nanoparticles.

Dielectric confinement: electromagnetism at nanoscale and plasmonics

- Modeling the electromagnetic response of nano-objects (local field effect, localized and delocalized surface plasmons, scattering and absorption, Mie theory and numerical methods).

- Measuring the optical response of nanostructures: from ensembles to single nano-object (near and far-field microscopies, electromagnetic interactions and collective effects, photonic crystals, metamaterials).

- Recent advances and applications: atmospheric aerosols, environmental applications, single-particle spectroscopy, imaging and sensing , nano-bio-devices.

Optical properties of nanostructures coupled to their environment

- Linear, nonlinear ultrafast and quantum plasmonics, biological and medical applications

- Radiation enhancement: Purcell effect, cavities, optical antennas.

- Strong light-matter coupling in solid systems (hybrid light-matter states: polaritons, applications to coherence and energy transfer).

Thermal and mechanical properties at the nanoscale

- Nano-mechanics and nano-acoustics: opto-mechanics, confined acoustic modes, analytical and numerical modeling and experiments.

- Some recent advances: mechanics of carbon nanotubes, validity of classical elasticity laws at the nanoscale, monitoring single nano-object vibrations,…

- Nano-thermics: role of interfacial thermal resistance at the nanoscale (Kapitza resistances), measuring heat transfer at the nanoscale (electrical and optical techniques).

 

Langue d'enseignement

Cours en français par défaut, l'anglais est possible si demandé. 

Modalité de l'examen

Ecrit

Wednesday, 13 July 2016 14:58

Advanced electromagnetism and optics

Written by Administrator

Advanced electromagnetism and optics

Informations pratiques


Discipline :

Physique et Chimie

Niveau :

Master 2

Semestre :

S3a

Crédits ECTS :

6

Volume Horaire :

24h Cours
12h TD

Responsable :

Natalia Del Fatti

École Normale Supérieure de Lyon, Laboratoire de Physique

Intervenants :

Natalia Del Fatti

Fabrice Vallée

Objectifs

Le but de ce cours est de présenter les concepts d’électromagnétisme qui constituent le cadre pour comprendre les recherches actuelles dans les domaines de l’étude optique de la physique de la matière. Il présente les notions essentielles à la description de l’interaction laser-matière en régime nonlinéaire, à la fois pour la manipulation de la lumière (changement de fréquence, interaction entre faisceaux lumineux, génération d’impulsions ultracourtes) et pour l’étude de la matière (spectroscopie optique nonlinéaire). Ces concepts seront illustrés par des travaux de recherche très récents, notamment dans des domaines de l’imagerie non-linéaire, de la génération d’impulsions ultrabrèves et de la spectroscopie ultrarapide de nanomatériaux.

Pré-requis

Laser et matière (M1), Mécanique quantique (L3)

Modalité de l'examen

Examen écrit sans documents.

Thursday, 22 October 2015 09:55

Advanced mechanics

Written by Administrator

Elasticité non-linéaire des structures  élancées

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S4a

Crédits ECTS :

3

Volume Horaire :

18h Cours

Responsable :

Arezki Boudaoud

Mokhtar Adda-Bedia

CNRS, Université Paris 6 and École Polytechnique

Intervenants :

 

Arezki Boudaoud

 

Mokhtar Adda-Bedia

Objectives 


Pattern formation and energy focussing can be easily experienced when crumpling a sheet of paper or when tearing it. Indeed, nonlinear behaviours arise out of geometry, even when the material is described with a linearly elastic constitutive law. The main objective of this course is to demonstrate how geometrical constraints yield ordered and disordered patterns in elastic media under mechanical loading. The course will cover a whole spectrum from theoretical descriptions and approaches to applications such as micro-fabrication, biological growth, foldable structures, fragmentation, geophysical patterns, earthquakes, or contact between solids.

 


Outline

 

I.- Introduction to elasticity of continuous media

II.- Thin elastic plates

II.1.- Introduction: differential geometry of a surface, equations

II.2.- Buckling: roll-like patterns, growth-induced patterns

II.3.- Singularities: focussing of energy around points (developable cones) and lines (stretching ridges)

II.4.- Patterns from singularities and foldable structures

III.- Fracture and related problems

III.1.- Introduction to brittle fracture mechanics

III.2.- Quasi-static crack propagation: instabilities and crack-induced patterns

III.3.- Fast fracture: dynamics, instabilities, and fractography

III.4.- Friction: from fracture to earthquakes

III.5.- Adhesion and contact mechanics

 

Prerequisite

Undergraduate course on continuum mechanics and elastic media

Exam

Presentation of a research article

 

Tuesday, 05 May 2015 08:50

Integral models

Written by Administrator

Integral models

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S4a

Crédits ECTS :

4

Volume Horaire :

21h Cours

Responsable :

Giuliano Niccoli

CNRS & École Normale Supérieure de Lyon, Laboratoire de Physique

Intervenants :

Giuliano Niccoli

Objectif

 

Plan du cours

 

Pré-requis obligatoire

 

Pré-requis conseillés

 

Modalité de l'examen

 

Geometrical and Topological Aspects of Condensed Matter Physics

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S3b

Crédits ECTS :

6

Volume Horaire :

24h Cours

10h TD

Responsable :

David Carpentier

CNRS & École Normale Supérieure de Lyon, Laboratoire de Physique

Intervenants :

David Carpentier
Julia Meyer

Language of instruction

The course will be given in french unless a non french-speaking student ask for english.

Translation of the following in progress...

Objectif

L’objectif de ce cours est de décrire différentes phases exotiques ou comportements électroniques de la matière condensée découverts récemment, en prenant comme fil directeur leurs propriétés géométriques et topologiques. La première notion abordée sera celle de phase géométrique : pourquoi la phase d’une fonction d’onde acquiert-elle une importance physique ? Pourquoi cette phase dite de Berry est-elle appelée une phase géométrique ? Un exemple récent dans lequel cette phase De Berry permet de caractériser les états électroniques est le graphène. Dans cette feuille de carbone, les électrons se comportent comme des particules relativistes, et leur évolution est caractériser par une phase de Berry. Nous nous intéressons ensuite à l’Effet Hall Quantique : cette phase remarquable possède une conductivité de Hall quantifiée et mesurée avec une précision inhabituelle. Nous montrerons que cette précision est liée à une propriété dite topologique de cette phase électronique. Finalement, nous nous intéresserons à de nouvelles phases, appelées isolants topologiques, caractérisées par une nouvelle propriété topologique.

Plan du cours

0. Introduction
Objectif du cours, notions de base de topologie, rappel de théorie des bandes.

1. Phase géométrique de Berry
a. (Rappel:) électrons dans un champ magnétique et la phase d’Aharonov-Bohm.
b. Notion de transport adiabatique, définition de la phase de Berry
c. Transport semi-classique et courbure de Berry.

2. Le graphène
a. Modèle de liaisons fortes, fermions de Dirac.
b. Caractérisation physique du graphène : l'effet Hall quantique, notions d'états de bord, formalisme de Landauer.
c. Phases de Berry topologique associée aux cônes de Dirac. Conséquences physiques.

3. Effet Hall quantique
a. Discussion des niveaux de Landau, propriétés physique de la phase d’Effet Hall Quantique.
b. Introduction au formalisme de Landauer du transport, lien entre propriété topologique et états de bords.
c. Analogue de l'effet Hall quantique : la phase de Haldane dans le graphène. Interprétation géométrique de l'invariant TKNN.

4. Isolants topologique et spin orbite
a. Invariance par renversement du temps et paires de Kramers.
b. Du modèle de Haldane au modèle de Kane et Mele. États de bords.
c. Un nouvel invariant topologique.

Langue d'enseignement

Cours en français par défaut, sauf demande explicite d’un auditeur non-francophone (ou plus).

Pré-requis

Mécanique quantique, physique statistique, physique du solide élémentaire (théorie des bandes) et avancée (liquide de Fermi, fonctions de Green). Des notions de théorie des champs élémentaire seront utiles mais non indispensables.

Bibliographie

Graphene, Mikhail I. Katsnelson, Cambridge University Press (2012)
Topological Insulators and Topological Superconductors, B. Andrei Bernevig, Princeton University Press (2013)
Field Theories of Condensed Matter Physics, Eduardo Fradkin, Cambridge University Press; 2nd Edition (2013)

Modalité de l'examen

Écrit

Mots Clefs

Phase de Berry, Transport adiabatique, Graphene, Isolant Topologique, Effet Hall quantique, Transport électronique

Calendar

Watch - Subscribe

Nonlinear dynamics and statistical theories for geophysical flows

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S4a

Crédits ECTS :

3

Volume Horaire :

18h Cours

Responsable :

Antoine Venaille

Université Claude Bernard Lyon 1, Institut Lumière Matière

Intervenants :

Antoine Venaille

Plan du cours

 

1) Large scale flow patterns in forced-dissipative rotating fluids (Kelvin circulation theorem, role of symmetries and boundaries)

2) Rossby waves and baroclinic instability (linear dynamics and stability analysis)

3) Conservation laws and self-organization in 2D turbulence (statistical mechanics and turbulence)

4) Topological protection of equatorial waves (Consequences of breaking time reversal symmetry)

5) The thermal structure of planetary flows (radiative equilibrium, convection)

6) Predictability (dynamical system approach)

 

 

Modalité de l'examen

 

Friday, 10 May 2013 09:12

Nonequilibrium statistical mechanics

Written by Administrator

Nonequilibrium statistical mechanics

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S3a

Crédits ECTS :

6

Volume Horaire :

24h Cours
10h TD

Responsable :

Ludovic Berthier

Université Montpellier II, Laboratoire Charles Coulomb

Intervenants :

Ludovic Berthier
Olivier Pierre-Louis

Language of instruction

The course will be given in english if one student is non french-speaking (or more).

Objectives

To provide the fundamental basis to nonequilibrium statistical mechanics that are used in many different fields (condensed matter, physical chemistry, soft and biological matter) to describe and interpret from a physical viewpoint transport phenomena and dynamical response in complex systems. The lectures contains fundamental developments and applications to specific physical situations drawn from modern research problems.

Syllabus

Introduction
Dynamics of equilibrium systems, evolution of nonequilibrium systems using phenomenological and microscopic descriptions.

Chapter 1 - Correlations, responses, and the fluctuation-dissipation theorem
I-1 Phenomenological description: Density and current fields, diffusion equation and Fick's law, entropy production, Einstein relation.
I-2 Formal microscopic description: Time correlation functions (Wiener-Khintchine), Onsager principle, linear response, fluctuation-dissipation theorem, susceptibilities (Kramers-Kronig, Green-Kubo), nonequilibrium effective temperatures.

Chapter 2 - Langevin and Fokker-Planck equations
II-1 Langevin equation: Einstein's approach, Langevin model and equation.
II-2 Caldeira-Leggett model and generalized Langevin equations.
II-3 Fokker-Planck equation, Kramers equation, Smoluchowski equation, the Kramers escape problem, Arrhenius law and viscous liquids, classical nucleation theory, mapping to Schrodinger equation, Ito-Stratonovich rules for stochastic calculus.

Chapter 3 - Markov processes and random walks
III.1 Markov processes: Chapman-Kolmogorov equation, master equation, detailed balance, Monte Carlo simulations, population dynamics, Ising model, trap model (glass transition and aging).
III-2 Random walks: simple random walk, single file diffusion, return and capture times (Smoluchowski), continuous time random walk, anomalous diffusion (sub-diffusion and Levy flights), Sinai model (disordered system).

Chapter 4 - Thermodynamic fluctuations
IV-1 Equilibrium distribution of fluctuations, density fluctuations in fluids, structure factor and pair correlation function.
IV-2 Transport: linear relations between flux and affinities, Onsager symmetry, coupled effects, critical dynamics.
IV-3 Stochastic thermodynamics: path integrals representation of stochastic processes, time reversibility and fluctuation relations (Crooks, Jarzynski, fluctuation theorem).

Prerequisites

Statistical mechanics L3-M1, Thermodynamics L2

Exam

Written exam

Bibliography

D. Chandler, Introduction to modern statistical mechanics (Oxford Univ. Press).
J.-L. Barrat, J.-P. Hansen, Basic concepts for simple and complex fluids (Cambridge Univ. Press).
N. Pottier, Nonequilibrium Statistical Physics: Linear Irreversible Processes (Oxford Univ. Press).
L. Landau and E. Lifchitz, Physique statistique (Ellipses).

Keywords

Dynamic relaxation, response, fluctuations, transport coefficients, dynamics, general principles out-of-equilibrium, microscopic models.

Thursday, 24 January 2013 10:25

Quantum optics of photons and electrons

Written by Administrator

Introduction to Quantum Engineering

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S4a

Crédits ECTS :

3

Volume Horaire :

18h Cours

Responsable :

Benjamin Huard

École Normale Supérieure de Lyon, Laboratoire de Physique

Intervenants :

Benjamin Huard

Objectif

 

This course will cover the basic concepts of quantum engineering around concrete examples using current experimental technologies such as superconducting circuits, ion traps, photonic circuits, NV centers and other impurities in semiconductors, Rydberg atoms, cold atoms... 

Plan du cours

 

We plan to discuss:
- decoherence, entanglement and discord
- generalized quantum measurement
- open quantum systems and feedback
- quantum computing
- quantum error correction
- quantum communications and cryptography
- quantum metrology
- quantum simulation

Pré-requis

Cours de mécanique quantique et d’électromagnétisme. Bases de matière condensée (électrons dans les solides).

Modalité de l'examen

Assiduité et lecture d'articles de recherches fournis

<< Start < Prev 1 2 3 Next > End >>
Page 1 of 3