Accueil / Master 2 / Physique, concepts et applications / Cours / To Ex M2 P / Période 4a - CPMC / Topological phases

Topological phases

Informations pratiques


Discipline :

Physique

Niveau :

Master 2

Semestre :

S3b

Crédits ECTS :

3

Volume Horaire :

18h Cours

 

Responsable :

Pierre Delplace

CNRS & École Normale Supérieure de Lyon, Laboratoire de Physique

Intervenants :

Pierre Delplace

Objectif

L’objectif de ce cours est de décrire différentes phases exotiques ou comportements électroniques de la matière condensée découverts récemment, en prenant comme fil directeur leurs propriétés géométriques et topologiques. La première notion abordée sera celle de phase géométrique : pourquoi la phase d’une fonction d’onde acquiert-elle une importance physique ? Pourquoi cette phase dite de Berry est-elle appelée une phase géométrique ? Un exemple récent dans lequel cette phase De Berry permet de caractériser les états électroniques est le graphène. Dans cette feuille de carbone, les électrons se comportent comme des particules relativistes, et leur évolution est caractériser par une phase de Berry. Nous nous intéressons ensuite à l’Effet Hall Quantique : cette phase remarquable possède une conductivité de Hall quantifiée et mesurée avec une précision inhabituelle. Nous montrerons que cette précision est liée à une propriété dite topologique de cette phase électronique. Finalement, nous nous intéresserons à de nouvelles phases, appelées isolants topologiques, caractérisées par une nouvelle propriété topologique.

Plan du cours

0. Introduction
Objectif du cours, notions de base de topologie, rappel de théorie des bandes.

1. Phase géométrique de Berry
a. (Rappel:) électrons dans un champ magnétique et la phase d’Aharonov-Bohm.
b. Notion de transport adiabatique, définition de la phase de Berry
c. Transport semi-classique et courbure de Berry.

2. Le graphène
a. Modèle de liaisons fortes, fermions de Dirac.
b. Caractérisation physique du graphène : l'effet Hall quantique, notions d'états de bord, formalisme de Landauer.
c. Phases de Berry topologique associée aux cônes de Dirac. Conséquences physiques.

3. Effet Hall quantique
a. Discussion des niveaux de Landau, propriétés physique de la phase d’Effet Hall Quantique.
b. Introduction au formalisme de Landauer du transport, lien entre propriété topologique et états de bords.
c. Analogue de l'effet Hall quantique : la phase de Haldane dans le graphène. Interprétation géométrique de l'invariant TKNN.

4. Isolants topologique et spin orbite
a. Invariance par renversement du temps et paires de Kramers.
b. Du modèle de Haldane au modèle de Kane et Mele. États de bords.
c. Un nouvel invariant topologique.

Langue d'enseignement

Cours en français par défaut, sauf demande explicite d'étudiants non-francophone.

Pré-requis

Mécanique quantique, physique statistique, physique du solide élémentaire (théorie des bandes) et avancée (liquide de Fermi, fonctions de Green). Des notions de théorie des champs élémentaire seront utiles mais non indispensables.

Bibliographie

Graphene, Mikhail I. Katsnelson, Cambridge University Press (2012)
Topological Insulators and Topological Superconductors, B. Andrei Bernevig, Princeton University Press (2013)
Field Theories of Condensed Matter Physics, Eduardo Fradkin, Cambridge University Press; 2nd Edition (2013)