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Electrodynamics of Pulsars
B. Crinquand

This article aims at describing the physics of pulsars. After figuring the nature
of pulsars through observational data, emphasis is laid on the importance of
pulsar magnetospheres in this problem. The question of pulsar energy loss is
then tackled, by means of a few approximations.

1. Introduction

Neutron stars are fascinating objects, possess-
ing both huge electromagnetic and gravitational
fields. Interest in their study has been revived by
the discovery of pulsars, a sub-class of neutron
stars emitting pulses at a very stable rate. Pulsars
have made many progresses in observational high-
energy physics and astrophysics possible. How-
ever, although the very nature of a pulsar is fairly
simple, the basic properties of pulsar emission are
still not fully understood. The purpose of this ar-
ticle is to review the properties of pulsar magne-
tospheres, starting from the basics. The nature
of pulsars is introduced in Section 2, as well as a
quick description of the emission problem. The
physics at play in pulsar magnetospheres is out-
lined in Section 3, whereas qualitative and quan-
titative solutions of this problem are analyzed in
Section 4.

2. About pulsars

In this section, the properties of pulsars are de-
duced from observations.

2.1. The discovery of pulsars
Anthony Hewish, an astronomer at the uni-

versity of Cambridge, launched during the 60’s
a radio observational study of the interstellar
medium, his prime objective being the discovery

of quasars. 2048 radio dipole antennae were set
over four and a half acres of English countryside.
His PhD student Jocelyn Bell observed in 1967
important fluctuations, "scruff", in the signal de-
tected by the radio telescope (Figure 1). Careful
measurements showed that the source passed over
her fixed array of antennae every sidereal day,
indicating that the source was among the stars
rather than in the Solar System. Using a faster
recorder she realized that the scruff consisted of
a series of regularly spaced radio pulses 1, 337 s
apart.1 At that time, such a precise celestial clock
was unheard of. These radio sources were named
"pulsars". Hewish was awarded a Nobel Prize in
1974 for this discovery but Bell did not, although
she was the first to notice the signal. This con-
troversial omission has later been referred to as
the "No-Bell" prize. Nowadays more than 2000
pulsars are known.

Fig. 1 Observation notes from Jocelyn Bell, showing
the scruff caused by pulsar PSR B1919+21. "CP"
stands for Cambridge Pulsar. Figure taken from [1].
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Pulses are generally brief and received over a
small fraction of the pulsar period. As can be
seen on Figure 2, one pulse consists of a number
of brief subpulses. Although their shape varies
substantially from one to another, the integrated
pulse profile proves very stable. The discovery
of pulsars has been a major upheaval in astro-
physics. Aside from raising theoretical problems,
radio pulsars are used for astrophysical measure-
ments, due to the possibility to control both the
frequency and the phase of the signal. We can
mention, among others:

• the measure of electron density in the inter-
stellar medium (Figure 3);

• the determination of the galactic magnetic
field from the polarization plane rotation at
different frequencies thanks to the Faraday
effect;2

• on a more theoretical point of view, the
study of quantum processes in strong mag-
netic fields;

• the detection of gravitational waves through
extremely precise timing measurements.
The European Pulsar Timing Array is dedi-
cated to this task (some additional informa-
tion is available at http://www.epta.eu.
org/).

Fig. 2 Artwork of the album Unknown Pleasures,
released in 1979 by the English band Joy Division,
based on an image of radio waves from the first pulsar
discovered PSR B1919+21. The name of the pulsar
contains its right ascension and declination, whereas
"PSR" stands for Pulsating Source of Radio.

Fig. 3 Pulse phase for different frequencies in the
radio domain for pulsar PSR 1641-45. Waves prop-
agating at lower frequencies are subjected to greater
dispersion, increasing the phase delay. Besides, more
distant pulsars exhibit a greater pulse disperion,
which can be used to measure distances to pulsars.
Figure taken from [1].

2.2. The nature of pulsars
All known pulsars share a common set of char-

acteristics, which give important clues as to the
nature of these objects. Most pulsars have periods
P ranging from 0.25 s to 2 s. The fastest pulsars
have periods around the millisecond. They are
thought to be "recycled" pulsars, that were spun
up through accretion of matter from a companion
in a binary system. Their periods are extremely
well defined on the scale of a year, and the preci-
sion of these measurements challenges the accu-
racy of atomic clocks. This stability makes them
extremely sensitive to their environments: objects
orbiting around pulsars can be detected thanks
to the Doppler shift in their pulses. The first
confirmed exoplanets were discovered using this
method. More importantly, the periods of all pul-
sars increase gradually as pulsars slow down. The
rate of increase is typically Ṗ ≈ 10−15 s/s. This

JPCE ENS de Lyon, No. 4, 24 mai 2021, p. 94 - 111 95

http://www.epta.eu.org/
http://www.epta.eu.org/


B. Crinquand

yields an order of magnitude for the lifetime of
pulsars τ ∼ P/Ṗ of several million years. Several
hypotheses were made to account for these obser-
vations, assuming the pulsar period is related to
some physical periodic phenomenon.
• A binary system If the orbital periods
of a binary star system is involved, then
those stars must be extremely compact. In-
deed, the orbital period of such a system is
bounded by3

P >

√
3π
ρG

, (1)

where ρ is the density of the stars and G the
gravitational constant. This corresponds to
the minimal achievable period, both stars
being as close as possible given their ra-
dius. For instance, a typical white dwarf has
ρ ≈ 109 kg·m−3, so that P > 10 s, far from
the observed millisecond pulsars. On the
other hand, neutron stars are so small and
compact that this could be compatible with
the observed periods. However, two neu-
tron stars rapidly orbiting would generate
intense gravitational waves4 and lose their
energy. This would lead to a decrease in
their period, rather than an increase. The
possibility of a binary system is ruled out.

• Pulsating stars The oscillation period of
a star can be shown to be proportional to
1/√ρ,1 just like the adiabatic speed of sound
in a fluid. For white dwarfs this yields peri-
ods between 100 and 1000 s whereas neutron
stars would have a fundamental radial mode
oscillating at 10−4 s. Neither corresponds to
the observed periods.

• Rotating stars The angular velocity of a
star of mass M and radius R is limited by
the ability of gravity to counterbalance the
centrifugal acceleration. This constraint is
most severe at the equator. Assuming a
spherical star despite its rotation, the max-
imum angular velocity Ω can be found by
writing

Ω2
maxR = GM

R2 ⇒ Pmin = 2π
√
R3

GM
. (2)

This is too long for red giants or white
dwarfs, but for a 1, 4 M� neutron star we

would have P ≈ 5 × 10−4 s, which ac-
commodates the complete range of pulsar
periods.3

All in all, a pulsar can only be a very rapidly
rotating neutron star.

2.3. An aside on neutron stars
Neutron stars result from the collapse of or-

dinary massive stars at the later stage of their
evolution. Stars with mass inferior to the Chan-
drasekhar limit MCh = 1.4 M� turn quietly into
white dwarves with no collapse. Because neutron
stars are formed when the degenerate core of an
aging supergiant star reaches the Chandrasekhar
limit, we takeMCh to be the mass of a typical neu-
tron star.1 Gravity in a neutron star is supported
by neutron degeneracy pressure,5 which requires
the radius of the neutron star to be around 10 km.
A precise measurement of the radius of a neutron
star is still lacking, and would be incredibly useful
to determine the equation of state of matter inside
the star. The NICER mission6 aims at determin-
ing a pulsar radius by fitting X-ray lightcurves.
This allows us to interpret the small rotation

period. Treating each star as a sphere, conserva-
tion of angular momentum implies

MiR
2
iΩi = MfR

2
fΩf , (3)

the subscript "i" (resp. "f") denoting the initial
(resp. final) state of the star, M being its mass,
R its radius and Ω its angular velocity. White
dwarves have radii around 103 km. The question
of how fast the progenitor core may be rotating
is harder to answer. Since the core is not iso-
lated from its envelope as the star evolves, con-
servation of angular momentum cannot be used
so recklessly. Measurements of rotation periods
yield Pi ≈ 103 s, so the post-collapse neutron star
can rotate as fast as 10−3 s.
Besides, it should be mentioned that the inte-

rior of neutron stars, albeit not completely under-
stood as of today, is an excellent conductor. Let
us briefly explain why. The density of a neutron
star is immense: it is typically ρns ≈ 1017 kg·m−3,
of the same order of magnitude than the density
of an atomic nucleus,7 just like if the neutrons
were "touching" each other. So we need to con-
sider the lowest energy configuration of a mixture
of about 1057 nucleons with enough free degener-
ate electrons to provide zero net charge. Initially,
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at low densities, nucleons are found confined in
iron nuclei. This is the outcome of a compromise
between the repulsive Coulomb force and the at-
tractive nuclear force between nucleons. However,
as ρ increases, electrons become relativistic and
start to convert protons in the nuclei into neu-
trons by an electron capture process:

p+ e− → n+ νe. (4)

This reaction is allowed if the kinetic energy of the
electron makes up for the difference in rest mass
energy: (mn−mp−me)c2 = 0.78MeV. This pro-
cess is called neutronization: the nuclei forming
the star get richer and richer in neutrons as ρ in-
creases. The inverse β− decay is not allowed since,
under the conditions of complete electron degen-
eracy, there are no vacant states available for an
emitted electron to occupy. At even higher densi-
ties, as the density reaches that of a nucleus, neu-
trons are no longer confined into nuclei and free
neutrons appear, forming a superfluid. Similarly,
the remaining free protons pair up and form a su-
perconducting fluid. The ratio neutrons/protons,
electrons reaches a limiting value of 8/1 deter-
mined by the competition between electron cap-
ture and β decay. So the interior of a neutron
star is close to a perfect conductor.

2.4. Connection with nebulae
The interpretation of pulsars as rotating neu-

tron stars was strengthened by the discovery
of a very fast pulsar with P = 0.0333 s and
Ṗ = 4.21 × 10−13 within the Crab nebula, a su-
pernova remnant. The Crab nebula is a remnant
of the 1054 supernova, recorded by Chinese as-
tronomers. The nebula was the first astronomical
object identified with a historical supernova ex-
plosion. A nebula is an interstellar cloud of dust,
hydrogen, helium and other ionized gases. Some
nebulae form as the result of supernova explo-
sions. The material thrown away is ionized by the
energy of the compact object its core produces.
This is the case for the Crab nebula. Some form
from the gas that is already in the interstellar
medium, like giant molecular clouds. Some others
result from the expanding, glowing shell of ionized
gas ejected from red giants at the final stage of
their lives, like the Cat’s nebula. Note that the
Crab pulsar not only produces radio bursts, but
pulses in a whole electromagnetic spectrum rang-

ing from radio to gamma rays, including flashes
in visible light, as can be seen in Figure 4.

Fig. 4 A sequence of images showing flashes at visible
wavelengths from the Crab pulsar. The frequency of
the optical pulse is around 30 Hz, in accordance with
the pulsar period (Courtesy of NASA).

Observations of the Crab nebula8 clearly reveal
its connection with the pulsar inside it (Figure 5).
If the present rate of expansion is extrapolated
backward in time, the initial supernova should
have occurred about 90 years after the explosion
was observed in the sky. This means that the
expansion of the nebula must have been accel-
erating. Besides, it was suggested in 1953 that
the light emitted by the nebula might be syn-
chrotron radiation produced when electrons spi-
ral along magnetic field lines. This was confirmed
by the polarization of such light. The identifica-
tion of the white glow with synchrotron radiation
means that some weak magnetic field must per-
meate the nebula. This is puzzling, since the ex-
pansion of the nebula should have weakened the
magnetic field. This assertion will be justified in
Appendix 7.2. It is a consequence of the conserva-
tion of magnetic flux. Furthermore, the electrons
should have radiated away all of their energy after
only 100 years. This implies that the production
of synchrotron radiation nowadays requires con-
tinuous injection of energetic electrons and sup-
plying of magnetic field. The total power needed
for these processes can be estimates to be about
5 × 1031 W.9 It turns out the energy source is
the pulsar at the heart of the Crab nebula, which
stores an immense amount of kinetic energy that
is supplied as the star slows down. The mecha-
nism causing this slowdown is the topic of Sec-
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(a) (b) (c)

Fig. 5 (a) X-ray image of the Crab nebula, observed by the Chandra-X-ray Observatory. The pulsar is
clearly visible in the middle; there seems to be two antipodal X-ray jets (Courtesy of NASA). (b) Image of
the Crab nebula in visible light, observed by Hubble Space Telescope. Hydrogen shines in orange, neutral
oxygen in blue and singly ionized sulfur in green. The white glow in the middle comes from synchrotron
radiation (Courtesy of NASA and ESA). (c) Radio image of the Crab nebula observed by the Very Large
Array (VLA) (Courtesy of NRAO).

tion 3. In order to check the validity of this as-
sumption let us calculate the rate of energy loss.
The kinetic energy of the pulsar is given by

Ec = 1
2IΩ2 = 2π2I

P 2 , (5)

where I = 2MR2/5 is the moment of inertia of a
sphere,10 so that the rate of energy loss is

dEc
dt = −4π2IṖ

P 3 . (6)

Assuming the pulsar to be spherical, with
M = 1.4 M� and R = 10 km, we get
dEc/dt ≈ 5.0 × 1031 W. Remarkably, this
is exactly the energy required to power the neb-
ula. However, it is important to realize that the
radio luminosity of a pulsar only accounts for a
very small fraction of its total energy loss.

2.5. Emission mechanism
We still lack a key ingredient, highlighted in

the previous subsection: how does the neutron
star at the core of the Crab nebula feed the the
nebula? Another property of neutron stars that
we have not mentioned so far is their huge mag-
netic field. This is a consequence of the freezing
of magnetic field lines in an extremely conduct-
ing fluid, which will be proved in Appendix 7.2.
The magnetic flux through the surface of a col-
lapsing white dwarf will be conserved. To provide

an order of magnitude, ignoring the precise con-
figuration of the magnetic field B, conservation of
magnetic flux yields

4πR2
iBi = 4πR2

fBf . (7)

A typical white dwarf magnetic field is about 102

T, so that the typical magnetic field of a neu-
tron star is Bns ≈ 108 T. For comparison, the
highest magnetic field that could be created in
laboratory was about 100 T or so. The magnetic
field configuration is readily modeled as a mag-
netic dipole. In the end, a pulsar is but a mag-
netic dipole rotating very quickly around its rota-
tion axis. Importantly, the rotation axis and the
magnetic dipole are usually not aligned. This im-
portant feature is responsible for the pulsed emis-
sion, as seen from Earth. Knowing that an oscil-
lating magnetic moment radiates, it seems plau-
sible that magnetodipole radiation is responsible
for the energy loss of the pulsar. This hypothesis
will be examined in Section 3.1.
If the general pattern of pulsar activity seems

to have been established, some fundamental prob-
lems persist.11 The point is that the initial hy-
pothesis for the magnetic dipole energy loss mech-
anism is unrealistic. For instance, low frequency
waves with frequency ν = 1/P cannot propa-
gate into the interstellar medium, that has a typ-
ical plasma frequency of several kHz.2 Another
serious theoretical problem is that a bright, low
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frequency source from a tiny object exceeds the
black body emissivity at any plausible tempera-
ture, and has the wrong dependence on frequency
(at radio wavelength, the spectral intensity falls
with frequency instead of rising). The rotational
braking of the star, the associated particle accel-
eration and transport of energy from the surface
up to the nebula therefore all require a detailed
knowledge of the pulsar magnetosphere. This will
be the topic of Section 3.

3. The physics of pulsar
magnetospheres

In this section the topic of pulsar magneto-
spheres is tackled. We intend to determine the
electric and magnetic fields around pulsars and
give hints as to why, and to what extent, plasma
is involved.

3.1. Vacuum solution
We first discuss a pulsar surrounded with vac-

uum, even though it is quite unrealistic, as we
will soon find out. The initial argument was that
strong gravity kept particles in the pulsar atmo-
sphere in the vicinity of the star. This model
neglects the lifting of particles by strong induced
electric fields. Let us consider a pulsar character-
ized by its magnetic moment M and its rotation
vector Ω. Let us first consider the case of the
"aligned rotator", with parallel M and Ω. Such a
pulsar would not pulsate, and would not even lose
energy if we stick to the magnetodipole radiation
picture. This study is instructive nonetheless. As
mentioned in Section 2.3, neutron stars are excel-
lent conductors. Thus the electric field measured
in the rotating frame inside the star must vanish,
so that the internal electric field satisfies:

Eint + U ×B = 0, (8)

where U = Ω × r. Since M is parallel to Ω,
the problem is stationary. From this condition we
deduce that Eint ·B = 0: magnetic field lines are
equipotentials for the electric field. Physically the
star, embedded in a magnetic field, is polarized
by its rotation.11 Charges are separated by the
Lorentz force and redistribute themselves inside
the star to create an electric field balancing this
force, such that charges drift with velocity:

U = Eint ×B

B2 = Ω× r. (9)

This will provide us with a boundary condition
for the electric field exterior to the star. The mag-
netic field created by the point magnetic dipole
located at the center of the pulsar is:12

B(r, θ, ϕ) = B0

(
R0

r

)3
(2 cos θ er + sin θ eθ),

(10)
where B0 = M/4πµ0R

3
0. The polar θ compo-

nent of Eint is Eθ,int = −UϕBr, which yields the
potential drop with latitude at the pulsar surface:

V (R0, θ) = V (R0, 0)−
ˆ θ

0
Eθ,intR0dθ′ (11)

= V0 + ΩR2
0B0 sin2 θ. (12)

Then Laplace equation must be resolved in the
vacuum with this boundary condition, that can be
rewritten in terms of Legendre polynomials Pn:

P2(cos θ) = 1
2(3 cos2 θ − 1) (13)

⇒ V (R0, θ) = V0 + 2
3ΩR2

0B0−
2ΩR2

0B0

3 P2(cos θ).
(14)

Hence, the solution for r ≥ R0 is written,13 with
the boundary condition V (r, θ)→ 0 for r → +∞:

V (r, θ) =
(
V0 + 2

3ΩR2
0B0

)
R0

r

+ ΩR2
0B0

(
R0

r

)3 (
sin2 θ − 2

3

)
. (15)

The potential V contains a monopole contribu-
tion associated to the net charge of the star. We
will assume the neutron star is formed with zero
charge, so that V0 = −2ΩR2

0B0/3. The rotation
of the star induces a quadrupolar electric field
Eext = −∇V :

Eext = ΩR0B0

(
R0

r

)4
((1−3 cos2 θ) er−sin 2θ eθ).

(16)
The radial and orthoradial components of Eext

are shown in Figure 6. Even though the poten-
tial is continuous at the stellar surface by con-
struction, its derivative is not. From the ra-
dial component of the radial internal electric field
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Fig. 6 Radial (up) and polar (down) normalized
components of the vacuum electric field Eext of an
aligned rotator. The rotation axis is along the z-axis;
r? = R0 with the notations of this article. Figure
taken from [14].

Er,int = ΩB0R0 sin2 θ, we get the surface charge
density of the star:14

σ = ε0(Er,ext−Er,int) = −2ε0ΩB0R0 cos2 θ. (17)

This amounts to a total surface charge
Qsurf = −8πε0ΩB0R

3
0/3. This charge is ex-

actly compensated by the interior charge that can
be computed from Gauss theorem applied to a
sphere just inside R0:

Qint = ε0

ˆ
Er,int2πR2

0dθ = −Qsurf. (18)

The net charge of the star thus remains zero. The
existence of this surface charge will soon become
crucial.
As was mentioned earlier, the aligned rotator

does not lose energy and does not spin down.
Consider what happens to an inclined rotator:

M(t) =M(cosχ ez+sinχ(cos Ωt ex+sin Ωt ey)),
(19)

whre χ is the tilt angle between Ω and M(t). The
power P radiated away by such a time-dependent
magnetic moment can be readily derived:2,13

P = µ0

6πc3

∣∣∣|M̈∣∣∣ |. (20)

This formula can be applied to the special case of
Equation 19. A factor of 2 comes out of the pres-
ence of two oscillating components, and a factor
1/2 comes from the time averaging. In the end,
the power radiated by an inclined pulsar is

P = 8πB2
0Ω4R6

0 sin2 χ

3µ0c3 . (21)

This formula is valid in the vacuum approxima-
tion. This energy is drained from the rotational
energy of the pulsar: P = −IΩΩ̇. A useful infor-
mation about the brake efficiency is given by the
dimensionless braking index15

n = ΩΩ̈
Ω̇2

, (22)

corresponding approximately to the exponent of
Ω in its slowdown dependence: Ω̇ ∝ −Ωn. As-
suming that the magnetic field produced by the
star does not decay as the pulsar slows down (or
on a much longer scale), a straightforward calcu-
lation from Equation 21 gives

n = 3 + 2Ω
Ω̇
χ̇ cotχ. (23)

A more complete derivation would allow us to
calculate the electromagnetic torques exerted by
the electromagnetic field on the rotating dipole.
It turns out there are components both parallel
and orthogonal to the rotation axis,16 that also
tends to reduce the magnetic obliquity. From the
components of the Maxwell stress tensor and the
components of the magnetic field in the inclined
case one can prove that Ω cosχ is a constant of
the motion. In the end, the braking index is given
by

n = 3 + 2 cot2 χ > 3. (24)
This can be compared to observational data. For
most radio pulsars, the second derivative of Ω is
hard to extract from the noise, but n could be
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measured for the fastest pulsars. As can be seen
in Table 1, the braking index is always less than 3.
Thus we can conclude that the simple magne-
todipole mechanism cannot be solely responsible
for the pulsar slowdown,17 as had already pointed
out at the end of Section 2.

Pulsar P n

B0531 + 21 0.033 2.51± 0.01
B0540 - 693 0.050 2.14± 0.01
J1119 - 6127 0.408 2.91± 0.05
B1509 - 58 0.150 2.84± 0.01
J1846 - 0258 0.324 2.65± 0.01

Tab. 1 Braking index for fast radio pulsars. Table
taken from [17]

3.2. Electrosphere: the presence of
plasma
Let us consider the aligned rotator again. Par-

ticles are strongly magnetized near the neu-
tron star, with magnetic fields up to 108 T,
so that their velocities perpendicular to mag-
netic field lines are limited to the drift velocity
U = E × B/ B2. On the other hand,
charged particles can freely slide along magnetic
field lines if there is an unscreened parallel electric
field E‖ = E ·B/B. This is indeed the case in the
vacuum solution, out of the star. As we saw ear-
lier, the charge density is nonzero on the stellar
surface. The strong magnetic field combined with
the rotation of the star generated a potential drop
at the surface hardly sustainable for the charges
in the crust, so at the surface appears an elec-
tric field of the order E ∼ ΩB0R0 ∼ 1013V·m−1.
This huge field extracts charges from the surface
despite the presence of a potential barrier due to
molecular attraction and despite gravity:

felec
fgrav

= eER2
0

GMmp

≈ 109, (25)

even for protons. This is the primary plasma
generation. This is true for electrons, but uncer-
tain for ions. However, neutron stars have tem-
perature high enough to generate sufficient ion
emission.18 There exists an axisymmetric electro-
static solution for the lifted charge.14 The elec-
trons lifted in the polar region form a dome above
the star, whereas the ions lifted in the equatorial

region form a torus around the star (Figure 7).
This equilibrium solution implies no poloidal cur-
rent and no toroidal magnetic field. We will soon
see that these conditions imply that the pulsar
does not radiate. The electrosphere formed by
lifted from the surface cannot explain the spin-
down; however this model is useful to describe
old, inactive pulsars. If the magnetosphere is sat-
urated then the charge density can be computed
from Equation 8 to give

ρGJ = ε0∇ ·E ≈ −2ε0Ω ·B (26)

= B0Ω
(
R0

r

)3
(3 cos2 θ − 1).

(27)

Physically, ρGJ is the charge density required to
completely screen the longitudinal electric field.
This charge density has the same sign in the vicin-
ity of both magnetic poles (and in fact, the ra-
dial vaccum electric field already had the same
polarity at both poles). We also note that the
lifted charge does not fill the entire magneto-
sphere: there is a gap between the dome and the
torus (Figure 7).

Fig. 7 Electropsphere obtained from a 2D axisym-
metric simulation14 in (R, z) cylindrical coordinates,
with RLC = 6R0. Negative charges, in blue, form a
dome above the star, whereas positive charges form
a torus. The line ρGJ = 0 indicates the gap in the
magnetosphere.
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Due to the sufficient presence of plasma in the
pulsar magnetosphere, its conductivity is high
enough so E ·B = 0 is fulfilled: all charged par-
ticles adapt their motion to maintain a vanishing
acceleration along field lines. Ideal magnetohy-
drodynamics (MHD) therefore give a suitable de-
scription of the magnetospheric plasma (see Ap-
pendix 7.2 for more details). In this regime, ideal
Ohm’s law from Equation 59 reads

E + U ×B = 0. (28)

It is assumed that just like the stellar interior, the
plasma surrounding the star is corotating with
it, at least close to the light cylinder. The light
cylinder is an imaginary cylindrical surface whose
axis is parallel to the rotation axis of the star and
whose radius is RLC = c/Ω. For usual pulsars
RLC ∼ 108 m. Corotation is impossible beyond
the light cylinder without the drift speed of the
plasma exceeding the speed of light c. It is en-
sured by the E ×B drift, which does not induce
any currents. This drift does not forbid motion
along magnetic field lines, so that the drift speed
can be written

U = Ω× r − B · (Ω× r)
B2 B. (29)

In order to avoid exceeding c, field lines must
bend, and induce a toroidal component Bϕ 6= 0.15
So longitudinal currents, which have not been de-
termined so far, are responsible for the toroidal
component of B.

3.3. Plasma-filled magnetosphere and
the force-free approximation
Our model is still dramatically incomplete.

First, ideal MHD deals with quasi-neutral plas-
mas, although we saw that electric screening re-
quired charge separation. We cannot be certain
the extraction mechanism is sufficient to fill the
magnetosphere with plasma. Second, we saw that
such a pulsar cannot spin down, which leaves
us with our main problem. Besides, observa-
tions of pulsar nebulae indicate that the pul-
sar wind is heavily loaded with electron/positron
(e±) plasma, which must be created somewhere
in the magnetosphere. Creation of e± pairs is
also expected theoretically, due to strong elec-
tric fields that must develop in the gap (plasma-
starved region). Actually, we labeled the extrac-
tion of charges from the stellar crust "primary

plasma generation" in contrast with the "sec-
ondary plasma generation". Since the dipole field
lines are curved, the relativistic motion of charged
particles along these lines gives rise to curvature
radiation, and the emission of γ photons.13 These
emitted photons, propagating in straight lines,
cross magnetic field lines.17 A photon in the vac-
uum cannot create an e± pair because of the
conservation of 4-momentum. However, in the
presence of an orthogonal magnetic field the con-
servation law includes the magnetic field so that
4-momentum conservation can be fulfilled (Fig-
ure 8). This stems from the fact that the energy
levels of an electron inside a strong magnetic field
are quantized (the so-called Landau levels) in in-
crements of ~ωc, where ωc is the cyclotron fre-
quency. The probability per unit length of con-
version of a photon with energy ε� 2mec

2 propa-
gating at an angle θ with respect to the magnetic
field B is:19

p = 3
√

3
16
√

2
e2

4πε0~c
eB sin θ
mec

exp
(
−8

3
B~

B sin θ
mec

2

ε

)
,

(30)
where B~ = m2

ec
2/e~ is the critical field, for which

the rest mass of the electron is equal to the energy
increment ~ωc. The ratio B/B~ gauges the impor-
tance of quantum effects in magnetic fields. This
critical field has a value of B~ = 4.4×109 T, which
means that the characteristic magnetic fields of
neutron stars are not much smaller than B~.
Therefore the neutron star is nontransparent to
photons, even with an energy close to the particle
creation threshold. This process ignites a cascade
of gamma rays and e± pairs until the magneto-
sphere is saturated.
Now we can be certain the magnetosphere is

copiously filled with plasma, so that the parti-
cle density is much larger than the minimum re-
quired by the corotation. Charge neutrality is in-
sured, the plasma can still be considered as quasi-
neutral. Although the existence of gaps is re-
quired to fill the magnetosphere with pair plasma,
it makes sense to study as a first approximation
a situtation in which E ·B ≈ 0. The occurrence
of the longitudinal field in some magnetosphere
region immediately leads to an abrupt plasma ac-
celeration and the secondary plasma generation,
which screens this field. We can study a quasi-
stationary situation without explicit time depen-
dence. Besides, the plasma is so magnetized that
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Fig. 8 Particle generation in the vicinity of the neu-
tron star. Primary particles are accelerated by the
parallel electric field along curved magnetic field lines
and radiate hard γ photons. These curvature photons
(in dotted lines) reach the particle generation thresh-
old as field lines are more and more transverse with
respect to the photon trajectory. Electron/positron
pairs are created, accelerated, igniting the electro-
magnetic cascade. Figure taken from [17].

the electromagnetic field dominates the dynam-
ics of the plasma with respect to its pressure and
inertia (and of course, gravity). Therefore the ac-
celeration of the plasma vanishes which leads to
the force-free approximation:14,15

ρeE + j ×B = 0. (31)

This requires that magnetic energy B2/2µ0 domi-
nates any other kind of energy. Moreover no dissi-
pation is associated with this regime and the ideal
MHD law can still be applied. The description
of the dynamics is completed by Maxwell’s equa-
tions, connecting the charge density and current
density to the fields. The force-free picture does
not provide any information about the plasma
creation and dynamics however.

4. Solutions in the force-free
approximation

In this section, both an analytical and a numer-
ical solution are outlined in the frame of force-free

electrodynamics, after deriving the "pulsar equa-
tion". The limits of this approach are also under-
lined.

4.1. Pulsar equation
It is possible to derive a partial differential

equation for the electromagnetic field within
the force-free model. Since we are interested
in axisymmetric configurations, the condition
∇ · B = 0 is actually ∇ · BP = 0, where
BP = (Br, Bθ) is the poloidal field. Thus there is
only one degree of freedom in the poloidal field.
We write the total magnetic field as

B = ∇Ψ× eϕ
R

+ I

R
eϕ, (32)

where R = r sin θ is the radial cylindrical coordi-
nate, Ψ(R, z) is the flux function and I(R, z) the
current function.17 This definition is very conve-
nient because:

I 2πdΨ = BP · dS, so that 2πΨ is the mag-
netic flux through the circle of radius R
around the rotation axis at height z;

I BP ·∇Ψ = 0, so that lines Ψ(R, z) = cst lie
on magnetic surfaces;

I 2πI/µ0 is the current flowing through the
same circle.

Let us derive an equation for Ψ and I, assuming
corotation.20 The divergence of Equation 28 gives

ρ = −ε0∇ · (RΩeϕ ×B). (33)

Substracting Equation 28 by ρ and substracting
Equation 31 yields

j ×B = ρRΩeϕ ×B. (34)

Besides, Maxwell-Faraday equation can be rewrit-
ten in the form

µ0j = ∇×B + 1
c2RΩeϕ ×

∂B

∂t
. (35)

Then we can substitute ρ and j in Equation 34
using Equations 33 and 35, so that[

∇×B + 1
c2RΩeϕ ×

∂B

∂t
+(

RΩ
c2 ∇ · (RΩeϕ ×B)eϕ

)]
×B = 0. (36)
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Since we consider a vector field stationary in
the rotating frame one can substitute ∂/∂t with
−Ω∂/∂ϕ. Calculating the term between brackets
in the previous equation yields

(
1
R

(
1− R2Ω2

c2

)
∂Bz
∂ϕ
− ∂Bϕ

∂z

)
eR

+
((

1− R2Ω2

c2

)(
∂BR
∂z
− ∂Bz

∂R

)
+ 2RΩ2

c2 Bz

)
eϕ

+
(

1
R

∂(
∂RBϕ)R−

1
R

(
1− R2Ω2

c2

)
∂BR
∂ϕ

)
ez, (37)

so that Equation 36 can be simplified as

(∇×B∗)×B = 0, (38)

where B∗ is given in cylindrical coordinates by

B∗ =
((

1− R2Ω2

c2

)
BR, Bϕ,

(
1− R2Ω2

c2

)
Bz

)
.

(39)
Then all that is left to do is to plug this equa-

tion in Equation 32. It is left to the reader to
check that this yields indeed the pulsar equation:(

1− R2

R2
LC

)(
∂2Ψ
∂R2 + ∂2Ψ

∂z2

)
−
(

1 + R2

R2
LC

)
1
R

∂Ψ
∂R

= − I(Ψ) ∂I
∂Ψ .
(40)

It can be shown that if I = 0, that is, in the ab-
sence of longitudinal currents, the field lines are
perpendicular to the light cylinder. Consequently,
the Poynting vector has no component normal to
the light cylinder, and the electromagnetic flux
vanishes. If j‖ = 0, then the pulsar does not radi-
ate at all, and we are left with our problem! The
energy loss of the pulsar cannot come from cur-
rents circulating inside the magnetosphere with-
out crossing the light cylinder. Moreover, the
solutions inside and outside the light cylinder
are disconnected, the equation being singular at
R = RLC . A qualitative argument can be un-
derlined as to why parallel currents are necessary
to cross the light cylinder.17 As we already men-
tioned, magnetic field lines have to bend close to
and beyond the light cylinder, to keep the drift
velocity from exceeding the speed of light (Equa-
tion 29). This will be visible in Section 4.2 when
we examine an exact solution of the pulsar equa-
tion. Then there is a compensation between the

corotation velocity Ω × r and the toroidal slide
along the magnetic field j‖Bϕ/Bϕ, so that the
drift velocity is directed radially from the star
(Figure 9). Thus power can be emitted through
the light cylinder.

Fig. 9 The drift motion of a charged particle in the
presence of a strong toroidal field Bϕ � BP is nearly
radial. Figure taken from [17].

4.2. The split monopole solution
Let us study the features of a particular so-

lution: the split monopole. In the upper hemi-
sphere this solution is given by the flux func-
tion Ψ = Ψ0(1 − cos θ), equal to the flux of B
through a circle of radius R at height z, with
cos θ = z/

√
R2 + z2. The associated current func-

tion is
I(Ψ) = Ω

c

(
2Ψ− Ψ2

Ψ0

)
. (41)

It is worth giving a consistency check. With this
choice for Ψ the current function reads

I = Ω
c

Ψ0 sin2 θ ; ∂I

∂Ψ = 2Ω
c

cos θ. (42)

The terms involving Ψ in the pulsar Equation 40
are given by

∂2Ψ
∂R2 + ∂2Ψ

∂z2 = − z

(R2 + z2)3/2 = 1
R

∂Ψ
∂R

. (43)

Inserting this into the the pulsar equation gives
the expected result, with sin θ = R/

√
R2 + z2.

There only remains to compute the electric and
magnetic fields. Using the decomposition of the
magnetic field 32 one can write in cylindrical co-
ordinates (r, ϕ, z):

B =
(
− 1
R

∂Ψ
∂z

,
I

R
,

1
R

∂Ψ
∂R

)
, (44)
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which, in spherical coordinates, yields
Br = B0

R2
0
r2

Bθ = 0
Bϕ = −B0

R0

RLC

R0

r
sin θ.

(45)

This solution is quite simple; the poloidal
component is unchanged from an unrotating
monopole.14 The electric field is given by the
ideal Ohm’s law and reads E = cBϕeθ, notic-
ing that Bϕ = −(Uϕ/c)Br. Interestingly, the
toroidal field dominates over the radial field for
r � RLC , in accordance with our previous anal-
ysis (Figure 10). Magnetic field lines are spirals
that wind up around the pulsar. The solution in
the lower hemisphere is obtained via the transfor-
mationB → −B, E → −E, to satisfy∇·B = 0.
The reversal of the magnetic field across the equa-
tor implies the presence of an equatorial current
sheet (Figure 11), which is not accounted by the
simple calculation:

j = 1
µ0

∇×B = − 2B0

RLC

R2
0
r2 cos θer. (46)

Plasma is extracted from the star and flows ra-
dially outward. The equatorial current sheet en-
sures that the net current through the stellar sur-
face vanishes, so the stellar charge remains con-
stant. This feature of the solution is very impor-
tant and will endure in the case of more complex
magnetic configurations.
What about energy losses? Since this solu-

tion displays longitudinal currents and a magnetic
toroidal component, the flux of the Poynting vec-
tor through the light cylinder is not vanishing.
The radial Poynting vector is Πr = cB2

ϕ/µ0, so
that the total emitted power is

P =
¨

Π · dS = 8πB2
0R

4
0Ω2

3µ0c
. (47)

One can prove that this result does not depend
on the obliquity χ between Ω and the antisymme-
try plane of B.21 Eventually we have an aligned
rotator that does spin down. Let us highlight
an important point: although the plasma energy
density is much smaller than the magnetic en-
ergy density, its presence is crucially important.
The structure of the the fields in the far zone is
strongly influenced by the currents the plasma

Fig. 10 Magnetic field lines in the analytical
monopole solution. The green arrow is the rotation
axis. Red lines represent outgoing field lines whereas
blue lines are ingoing field lines. The winding up of
the field lines around the light cylinder due to the
pulsar rotation is visible. Figure taken from [14].

Fig. 11 Features of the split monopole solution.
Magnetic field lines are solid black lines, whereas
current density is pictured by contour arrows. The
current sheet is positively charged. Figure taken
from [17].
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carries. As the magnetic field is frozen in the
plasma, which cannot rotate with superluminal
velocity, field lines beyond the light cylinder are
wrapped backwards with respect to the rotation
star, as indicated by the solution for Bϕ. As a re-
sult, even an aligned rotator loses energy by driv-
ing a plasma wind, provided its magnetosphere is
first filled with plasma.
The split magnetic monopole, however unre-

alistic, is a useful model because far from the
cylinder any magnetic configuration will tend to
resemble the monopole solution, with a poloidal
field that is nearly radial and a dominant toroidal
component.

4.3. Magnetospheric structure
Let us now study the more interesting case of

a magnetic dipole. At the stellar surface, the flux
function has the following boundary condition:

Ψ(R0, θ) = µ0M sin2 θ

4πR0
. (48)

No analytical solution is known for the rotat-
ing dipole: the pulsar equation for Ψ with
the previous boundary condition could not be
solved analytically, but was extensively studied
numerically.14 We are going to outline the solu-
tion, although some of its features may seem nat-
ural after our discussion.
The magnetosphere, presented in Figure 12, is

split into two regions. There is a closed zone in
which magnetic field lines are closed and look like
the dipole field lines. In this zone, the plasma is
corotating with the star, with a charge density ρe
given by Equation 26. Positively charged regions
are separated from negatively charged regions by
a conical surface with an opening angle defined
by the condition Ω · B = 0. In this zone there
are no poloidal (longitudinal) currents, and the
toroidal field is zero. Since corotation cannot oc-
cur beyond RLC , these field lines are necessarily
confined in the light cylinder. For a dipole config-
uration, vacuum field lines are described by the
polar equation12 r = λ sin2 θ for some constant λ.
Thus the last closed field line crosses the stellar
surface at the polar angle θpc given by

sin2 θpc ≈
R0

RLC

. (49)

Fig. 12 Magnetosphere of a magnetic dipole neutron
star in the force-free approximation. The z axis is
both the rotation and magnetic axis. The blue half-
disk stands for the neutron star. The grey shaded
part corresponds to the closed zone, corotating with
the star. The current sheet and the separatrix are
represented in red. It splits at the light cylinder into
a separatrix enclosing the closed zone and joining the
star at the polar cap angle θpc. Field lines above
the separatrix are open outgoing field lines, and open
ingoing field lines if they are below. Figure inspired
by [14].

Note that this is an approximation. Since a
convective current flows inside the closed zone,
this increases the effective dipole moment, thus
slightly radially inflating the field lines. The field
lines emerging from the stellar surface with a po-
lar angle θ < θpc are open field lines. This part
of the stellar surface is called the "polar cap".
The magnetosphere displays an open zone of open
magnetic field lines, with non vanishing longi-
tudinal currents and toroidal field. This zone
carries away rotational energy from the pulsar.
These field lines would be closed if there were
no rotation. This effect can be thought of as re-
sulting from the effective inertia of the magnetic
field B2/2µ0, much greater than the plasma iner-
tia. This stems from the MHD picture: magnetic
field is carried away as it is frozen in the plasma.
Open magnetic field lines let particles infinitely
escape from the pulsar, carrying an electric cur-
rent Poynting flux and releasing power. The star
then loses charges from the polar caps through
the formation of a pulsar wind. This also implies
that the poloidal magnetic field is ultimately ra-
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dial, which justifies why the split monopole so-
lution can be relevant in the far-zone. At the
light cylinder, just like in the monopole case, the
poloidal and toroidal fields are comparable. In the
wind zone, described by ideal MHD, conservation
of the magnetic flux in a diverging flow implies
that the poloidal field will decrease faster than
the toroidal field:22 BR ∼ 1/R2 and Bϕ ∼ 1/R.
The last ordering comes from the fact that the
number of field lines in the sectional area is con-
stant.
The closed and open zones are separated by

a Y-shaped current sheet,14 that supports the
jump in the toroidal magnetic field inside the light
cylinder, and the jumpB → −B across the equa-
torial sheet beyond RLC . To maintain a steady
state, plasma must be continuously generated on
the open field lines, and the current sheet ensures
the net stellar charge remains zero and closes the
circuit. Indeed, the total current outflowing from
the pulsar surface is to be zero, whereas charges of
the same sign are to outflow from both magnetic
poles.17
This finally makes it possible to physically de-

scribe the spin-down of the pulsar.15,17 Recall that
if the pair creation process is sufficiently effec-
tive, magnetic dipole radiation will not carry en-
ergy away from the pulsar, because the plasma
that fills the magnetosphere fully screens any low
frequency radiation. The braking mechanism is
of another kind (Figure 13). Resulting from the
presence of the current sheet, surface currents js
flow over the stellar surface and experience the
Laplace force, which induces a braking torque

K =
¨

(r × (js ×B))dS. (50)

The spindown fully results from this torque.
This energy P = −Ω ·K is drawn from the ro-
tational energy and carried away by the electro-
magnetic flux. Contrary to magnetodipole emis-
sion, this loss is realized at zero frequency. This
mechanism occurs even for an axisymmetric ro-
tator. For obliquities χ not too close to 90°, the
torque is antiparallel to the star magnetic mo-
ment. Because the toroidal component of the
magnetic field is discontinuous at the stellar sur-
face, the surface currents are given (in spherical
coordinates) by

js = I

µ0R0 sin θeθ. (51)

Js Js

A A

Fig. 13 Orthoradial surface currents js flow at the
stellar surface. They experience Ampère’s force from
the toroidal magnetic field, which in turn induces a
braking torque K on the star.

This highlights that longitudinal currents are nec-
essary to explain the spin-down of pulsars. Let us
estimate the energy loss by the Poynting vector
flux through the light cylinder. At the light cylin-
der, similarly to the monopole magnetosphere, we
have Bϕ ∼ BP and Eθ ∼ BP . The net radial
Poynting flux can be estimated as

P ∼ 1
µ0

4πR2
LCEθBϕ ∼

4πB2
0R

6
0Ω4

µ0c3 . (52)

This is of the same order of magnitude than
the magnetodipole loss from Equation 21, but
through a completely different mechanism. Nu-
merical simulations23 for the inclined rotator
showed that the emitted power could be well ap-
proximated bythe following formula (Figure 14):

P = 4πB2
0Ω4R6

0
µ0c3 (1 + sin2 χ). (53)

Contrary to the inclined monopole case, the
dipole spindown power depends on χ. As men-
tioned earlier, this dependence on χ does not orig-
inate from higher dipole radiation. This problem
is investigated in [24]. It originates from the in-
creasing concentration of the open magnetic flux
towards the equator in the dipole configuration.
Indeed, the Poynting flux reads

Πr ∼ (E ×B)r ∼ EθBϕ ∼ B2
rr

2 sin2 θ.
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The Poynting flux is concentrated at the equa-
torial belt. In the monopole solution r2Br is a
constant everywhere, so the power loss does not
depend on χ. For a dipole field however, Br is
greater near the equator than at the poles, which
justifies the result (Figure 14).

Fig. 14 The blue solid line shows the dependence in
th obliquity α = χ of the spin-down power L (nor-
malized with the aligned rotator luminosity) result-
ing from a series of simulations. The green dashed
line shows the impact of the non-uniformity of mag-
netic flux, which is likely to explain the dependence
of the spin-down power with χ as it quite matches
the simulations. Figure taken from [24].

One caveat in that approach remains: the force-
free approach is unable to explain particle accel-
eration, nor quantify the amount of energy trans-
ferred to these particles. High-energy radiation
is due to the production of ultra-relativistic par-
ticles. As an illustration, Figure 15 shows the
spectral energy distribution of the Crab pulsar (in
black) and the Crab nebula. Pulsar radiation is
clearly non-thermal and shows two bumps, which
are likely due to the cooling of ultra-relativistic
particles through synchrotron radiation and in-
verse Compton scattering. Particle-in-cell (PIC)
simulations can be performed to track particles.14
It was demonstrated that a prominent site for
particle acceleration is the current sheet.25 In-
deed, the force-free and ideal MHD approxima-
tions break down in this zone. The mechanism
responsible for particle acceleration in the cur-
rent sheet is magnetic reconnection for reviews of
experiments and simulations.26–28
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Fig. 15 Spectral energy distribution of the Crab neb-
ula (in blue) and the Crab pulsar (in black). The
luminosity shown on the right axis was calculated as-
suming a distance of 2 kpc. Figure taken from [8].

5. Conclusion

A fascinating aspect in astrophysics is how
we are able to deduce some much understand-
ing from so little information. Although pulsars,
and in particular the Crab nebula, have provided
a wealth of data, it mainly consists in the elec-
tromagnetic spectrum of its radiation (granted,
in a very wide range of wavelegnths). Yet the
nature of pulsars and the structure of its magne-
tosphere could be elucidated. Because it involves
various interplaying phenomena (particle acceler-
ation, pair creation magnetic reconnection, etc.),
the overall behaviour is still hard to figure out.
Force-free elctrodynamics and MHD were able to
give a great deal of information as to the spin-
down power, and the magnetosphere structure.
Now numerical simulations unveil many aspects
of pulsar physics. A major challenge rests in the
widely different scales, from plasma microphysics
(Debye shielding) to the large length scales at play
(the pulsar itself and the wind zone). PIC simu-
lations are promising in solving the problem from
first principles and have lately been able to pre-
dict physical observables.
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7. Appendix

7.1. The electromagnetic drift
A key ingredient of plasma behaviour in mag-

netic fields is the E × B drift. Let us consider
the movement of a charged particle embedded in
constant and uniform B = Bez and E fields.
The parallel component of the electric field will
simply accelerate the particle in the B direction,
so we will assume E = Eex and B are perpen-
dicular. The perpendicular equations of motion
for a particle with wharge q and mass m in the
inertial laboratory frame are

dvx
dt = ωcvy + q

m
Ex (54)

dvy
dt = −ωcvx, (55)

where ωc = qB/m is the cylcotron frequency.
Eliminating vx yields

d2vy
dt2 + ω2

c

(
vy + E

B

)
= 0. (56)

The solution for this equation corresponds to the
usual gyro motion around the magnetic field su-
perimposed to a constant drift both perpendicu-
lar to E and B:

v⊥(t) = vgyro(t) + E ×B

B2 . (57)

This drift velocity VD is independent of mass and
charge: electrons and ions or positrons drift with
the same velocity.29 We can adress the physical
origin of this counterintuitive result. Recall that
the gyro radius rL increases with the perpendic-
ular velocity: rL = v⊥/ωc. Consider for instance
the motion of a positive charge. As the particle
moves in the direction of the electric field it accel-
erates, thus inflating its gyro orbit. At some point
on its orbit, provided the electric field is not too
strong, it will move against the electric field which
will decrease its Larmor radius. Consequently, it
will return to its original velocity but will have
drifted in the perpendicular direction because its
Larmor radius has evolved. Since both electric
and magnetic parts of the Lorentz force switch

signs when we consider a negative charge, the
drift will be in the same direction. Therefore the
drift does not induce any current, and describes
a bulk motion of the plasma (Figure 16).

E Lower velocity

Higher velocity Larger radius

Smaller radius
2

1

+e

4

3
V

D

B

Fig. 16 Effect of an orthogonal electric field on a
positive charge. Starting from 1, the charge acceler-
ates until it reaches 2, then turns back if B > E/c.
It decelerates from 2 to 4. Its gyro-radius is larger
at 2 and smaller at 4. Figure taken from [29].

Note that the drift velocity cannot exceed the
speed of light, which implies E < cB. If this
condition is not fulfilled then there is no drift:
the electric field is too strong and linearly accel-
erates the particle. This assertion can be thor-
oughly demonstrated in the frame of relativistic
electrodynamics.30 The quantity E2−c2B2 can be
shown to be Lorentz invariant, so that if there ex-
ists an inertial frame in which E < cB, it will be
so in any inertial frame. Furthermore, there exists
an inertial frame in which the electric field van-
ishes. In classical electrodynamics, this is simply
the frame moving with velocity VD with respect
to the laboratory frame. Indeed, in the absence
of currents, the transformation law for the electric
field is

E′ = E + VD ×B, (58)

which vanishes according to the expression of the
drift (Equation 57). Consequently, in the frame
moving at the drift velocity, the plasma experi-
ences no electric field.

7.2. Ideal MHD
In ideal MHD, resistive phenomena occurring

in the plasma are neglected. In a nearly per-
fectly conducting plasma, the electric and mag-
netic fields are related by the ideal Ohm’s law:

E + U ×B = 0. (59)

This will allow us to derive the main feature
of ideal MHD: the magnetic flux through any loop
co-moving with the plasma is constant.31 This is
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the frozen flux property. This can be fairly under-
stood since E′ = E +U ×B represents the elec-
tric field in the reference frame moving with the
plasma, in the limit of non-relativistic change of
frames. If the magnetic flux were time-dependent,
then Faraday’s law would imply the existence of
an electric field. n order to thoroughly prove this
result, let us consider a surface S(t) bounded by a
closed contour C(t) moving with the plasma. The
magnetic flux through S(t) is

Φ(t) =
¨
S(t)

B(x, t) · dS. (60)

Variations of Φ can be due to the explicit time
dependence of B or the plasma motion. In the
second case, if dx is an infinitesimal element of
C at time t, then U × dxδt is the area swept by
dx during time δt, and the magnetic flux through
this area is B · U × dxδt = dx ·B × Uδt. The
rate of change of Φ is therefore

dΦt =
¨
S(t)

∂Bt · dS +
˛
C(t)

dx ·B ×U

= −
¨
S(t)

∇×EdS +
¨
S(t)

∇× (B ×U)dS

= −x
¨
S(t)

∇× (E + U ×B)dinguS

= 0, (61)

in the ideal MHD limit. Note that since mag-
netic field lines can be regarded as infinitely thin
flux tubes, magnetic field lines can be said to be
frozen in the plasma, and move with it. Thus
magnetic field lines embedded in an ideal MHD
plasma can never break or reconnect. This prop-
erty allows us to justify Equation 7, when we in-
voked magnetic flux conservation to justify sev-
eral orders of magnitude as to typical star mag-
netic fields. The hot plasma constituting stars
is conducting enough so ideal MHD can be used
in a fairly good approximation. Ideal MHD and
Equation 59 will be used extensively in the fol-
lowing.
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