Systèmes "Elastiques" désordonnés

P. Le Doussal (ENS)

D. Carpentier (ENS Lyon) R. Chitra (Jussieu) E. Orignac (ENS) P. Chauve (Orsay/ENS) G. Schehr (ENS) A. Rosso (Geneva) A. Kolton (Geneva)

S. Lemerle (Orsay) J. Ferré (Orsay)

T. Klein (Grenoble)I. Joumard (Grenoble)

J.M. Triscone (Geneva)P. Paruch (Geneva)T. Tybell (Trondheim)

General References on DES

Classical systems :

- G. Blatter et al. Rev. Mod. Phys 66 1125 (1994).
- T.G. + P. Le Doussal, In ``Spin Glasses and Random Fields", ed. A.P. Young, World Scientific 1998, cond-mat/9705096.
- T. Nattermann and S. Scheidl Adv. Phys. 49 607 (2000)
- TG + S. Bhattacharya, In ``High Magnetic Fields'', ed. C. Berthier et al., Springer 2002, cond-mat/0111052.
- Quantum systems :
- T.G. + E. Orignac In ``Theoretical Methods for Strongly Correlated Electrons", D. Senechal et al. ed, Springer (2004), cond-mat/0005220.
- T.G. In ``Quantum phenomena in mesoscopic systems" (Varenna school CLI) IOS Press (2003), cond-mat/0403531.
 - And references therein..

Magnetic domain wall

S. Lemerle et al. PRL 80 849 (98)

Other Interfaces

• Contact line [E. Rolley]

- Ferroelectrics [P. Paruch]
- Epitaxial growth

Classical crystals

Charged spheres: M. Saint Jean, GPS (Jussieu), 2000

Magnetic Bubbles: R. Seshadri et al.

Other 'classical' Crystals

• Vortex Lattice [K. van der Beek]

Charge density waves

Quantum systems

Strong repulsion : Wigner crystal

Quantum fluctuations instead (in addition to) thermal fluctuations

Wigner Crystal

FIG. 1. Absorption spectrum at 28 T and 60 mK for density 0.77×10^{11} cm⁻² (filling factor v = 1/8.7, reduced temperature t = 0.33) showing successive resonances and their identification as *p*th spatial harmonics ($q = pq_0$) of the exciting structure. The values of *p* are chosen for the best alignment with the origin (full line) on the accompanying plot of f_p vs $p^{3/2}$; the dashed line is the zero-order *a priori* calculation of the frequency of the lower hybrid mode of the solid.

E.Y. Andrei, et al PRL 60 2765 (1988)

FIG. 1. (a) Diagonal resistivity ρ_{xx} and (b) Hall resistance ρ_{xy} of a low-density $(n - 4.8 \times 10^{10} \text{ cm}^{-2})$ high-mobility $(\mu - 1.7 \times 10^6 \text{ cm}^2/\text{V sec})$ two-dimensional electron system at various temperatures.

R.L. Willett, et al. PRB 38 R7881 (1989)

Other quantum Crystals

Spin density waves

• Luttinger liquids (1D interacting electrons)

•Basic Features :

(Thermal, quantum) fluctuations

'Elasticity'

Disorder

Questions

Competition ``Order'' / ``Disorder''

- Melting
- Glassy phases

- Statics
- Dynamics

Statics

T. Klein et al. Nature 413, 404 (2001)

P. Kim PRB 60 R12589 (99)

+

(V. Repain et al. (Orsay))

50 µm

New type of physics

Very controlled (e.g. magnetic field)

Can pull on on the system

Plunged in an external disorder

How to model

Elastic description

 $H = \frac{c}{2} \int dx (\nabla u(x))^2 = \frac{c}{2} \sum_{\alpha} q^2 u^*(q) u(q)$

Elastic description of crystals

R⁰_i: crystal u_i: displacements n=2 d=3 vortices

Elastic hamiltonian

 $H = \frac{1}{2} \sum_{\alpha\beta} \int c_{\alpha\beta}(q) u_{\alpha}(q) u_{\beta}(-q) dq$

Simplest elastic hamiltonian : $c(q) = c q^2$

$$H = \frac{1}{2} \int c(\partial_{\alpha} u_{\beta}(x))^2$$

Long range forces ; bulk, shear and tilt

Limitations

Interfaces(overhangs, bubbles)

Periodic dislocations, etc.

H=0,03 Hc dt=500s

J. P Jamet, V. Repain

M. Marchevsky, J. Aarts, P.H. Kes

What to measure (statics)

$$B(r) = \overline{\left\langle \left[u(r) - u(0) \right]^2 \right\rangle}$$

Positional order

Decorations

Neutrons

Q

Thermal fluctuations : Melting

Lindemann criterion of melting :

$$\left\langle u^2 \right\rangle = l_T^2 = C_L^2 a^2$$

 $C_L \approx 0.1 - 0.2$

Vortices

Should we care about disorder?

S. Lemerle et al. PRL 80 849 (98)

 $u \propto L^{\varsigma}$

Disorder (point like defects)

$$H = \int V(x)\rho(x)dx$$

$$\rho(x) = \sum_{i} \delta(x - R_i^0 - u_i)$$

 $\rho(x) = \rho_0 - \rho_0 \nabla u(x) + \rho_0 \sum e^{iK(x - u(x))}$

Loss of translational order (Larkin) $u(R_a) \approx a$

 $H_{el} = \frac{c}{2} \int (\nabla u(r))^2 d^d r$

 $cR_a^{d-2}a^2$

 $H_{dis} = \int V(r)\rho(r)d^d r$

 $\overline{VR}_a^{d/2}
ho_0$

 $R_a \propto a \left(\frac{c^2 a^d}{V^2 \rho_0^2}\right)^{1/(4-d)}$

No crystal below four spatial dimensions Very difficult stat-mech problem

 Optimization : many solutions

Larkin Model

$$H_{el} = \frac{c}{2} \int \left(\nabla u(r)\right)^2 d^d r$$

$$H_{dis} = \int f(r)u(r)d^d r$$

• Exactly solvable

$$B(r) = B_{th} + \frac{\Delta}{c^2} r^{4-d}$$

Exponential loss of translational order $C(r) \approx e^{-r^{4-d}}$

• Not valid at large distance

 $\rho_0 \sum_{v} e^{iK(x-u(x))} V(x) \approx f(x)u(x)$

Not valid when : $K_{MAX} u \approx 1$ $u(R_c) \approx \xi$

• New length Rc

• Larkin model has no metastable states and pinning

• Rc is related to pinning

Interfaces: only one length

• Larkin length

 $u(R_c) \approx \xi$

 $R < R_c$; $u(R) = R^{(4-d)/2}$

 $R > R_c$; u(R) = ????

Two types of disorder

Random bond

$$\int dx dz V(x,z)
ho(x,z) = \int dz V(u(z),z)$$

Random field

$$\int dz \int_0^{u(z)} V(x,z)$$

Interfaces

$$H_{el} = \frac{c}{2} \int (\nabla u(r))^2 d^d r \qquad H_{dis} = \int V(r, u(r)) d^d r$$

$$V(z,x)V(z',x') = D\delta(x-x')\delta(z-z')$$

 $cu^2 L^{d-2}$ $D^{1/2} L^{d/2} u^{-m/2}$

$$u_{RB} \propto L^{\frac{4-d}{4+m}}$$

$$u_{RF} \propto L^{\frac{4-d}{4-m}}$$

Flory argument (mean field)

$u_{RB} \propto L^{\varsigma} \qquad \zeta : roughness exponent$

d = 1; $\zeta = 2/3$ (random bond)

• Identical to interfaces ? $u \sim L^{\zeta}$

• Above R_c

 $C(r) \propto e^{-L^{2\zeta}}$

• Expontential loss of positional order ??
Naive vision of a D.E. crystal

Loss of translational order beyond Ra

• (Wrong) argument: disorder induces dislocations at Ra

Crystal broken in crystallites of size Ra

Periodic systems: new universality class

 $u \sim 1^{\varsigma}$

- many metastable states ï glass !
- Quasi long range translational order !
- Power law Bragg peaks; Ad = 4-d

Bragg Glass

•Existence of a **thermodynamically** stable glassy phase with quasi long range translational order (power law Bragg peaks) and perfect topological order (no defects)

Unified phase diagram

Hardy et al. Physica C 232 347 (94)

K. Deligiannis et al. PRL 79 2121 (97)

 \mathbf{V}^{-} Nonomura and X. Hu cond-mat 0002263

Y. Paltiel et al. cond-mat 0008092

80

60 I_c [mA]

40

20

0.8

DP

5.1

Corbino

HDT

1.2 1 H [kOe] 1.6

5.4

4.2 K

2.0

5.7

Strip

Collapse of intensity without broadening

I. Joumard et al. PRL 82 4930 (99); T. Klein et al. nature (01)

A. Rosso + TG PRB 68 140201(R) (2003) + cond-mat

How to solve ?

• Average over disorder (replica trick)

• Two main methods :

Variational approach

Renormalization (functional RG)

Replicas

$$\overline{\langle O \rangle} = \int \mathcal{D}V p(V) \langle O \rangle_V = \int DV p(V) \frac{\int \mathcal{D}\phi O[\phi] e^{-S_V[\phi]}}{\int D\phi e^{-S_V[\phi]}}$$

$$\int D\phi_1 D\phi_2 \dots D\phi_n O[\phi_1] e^{-\sum_{i=1}^n S_V[\phi_i]} = \int D\phi O[\phi] e^{-S_V[\phi]} \left[\int D\phi e^{-S_V[\phi]} \right]^{n-1}$$

Average over disorder

$$H = \frac{c}{2} \int (\nabla u)^2 d^d x + \rho_0 \sum_K \int e^{iK(x-u(x))} V(x)$$

• Classical systems

 u_{l}

$$H = \sum_{a} c \int (\nabla u_{a})^{2} d^{d}x - \rho_{0} \Delta \sum_{a,b} \sum_{K} \int \cos(K(u_{a}(x) - u_{b}(x))) d^{d}x$$

• Quantum problem (disorder is time independent)

$$S = \sum_{a} c \int (\nabla u_{a})^{2} d^{d+1}x$$

$$- \rho_{0} \Delta \sum_{k} \sum_{K} \int \cos(K(u_{a}(x,\tau) - u_{b}(x,\tau'))) d^{d}x d\tau d\tau'$$

Variational Method

Find the best quadratic Hamiltonian

$$S_0 = \sum_{ab} \sum_{i\omega_n} \int G_{ab}^{-1}(i\omega_n, q) \Phi^a_{i\omega_n, q} \Phi^b_{-i\omega_n, -q} d^d q$$

Minimize G_{ab} is a 0x0 matrix

$$F_{\rm var} = F_0 + \left\langle (S - S_0) \right\rangle_{S_0}$$

$$\frac{dF_{\rm var}}{dG_{ab}(i\omega_n,q)} = 0$$

$$G_{ab}^{-1}(i\omega_n,q) = \omega_n^2 + q^2 + \int ...e^{\sum \int G_{ab}...}$$

0x0 limit

• Replica symetric

Replica symetry broken solution

Hierarchical structure

a,b continuous in [0,1]

Signals metastability and Glassy properties

• Disordered elastic system = glass

• RSB from d=4 to d=2 (or 1+1) above a lengthscale Rc

FRG method

$$\beta H = \sum_{a} \frac{c}{T} \int (\nabla u_a)^2 d^d x$$
$$- \rho_0 \frac{\Lambda}{T^2} \sum_{a,b} \sum_{K} \int \cos(K(u_a(x) - u_b(x))) d^d x$$

In usual RG :

 $\Delta(u) \approx a + bu^2 + cu^4 + \dots$

Needs only to keep b and c (higher powers are irrelevant)

Disordered System $\sum \frac{c}{T} \left[(\nabla u_a)^2 d^d x \right]$

 $u \propto L^0$

 $T \propto L^{2-d}$

 $-\frac{1}{T^2}\sum\sum \int \Delta(K(u_a(x)-u_b(x)))d^dx$ a.b K

 $\Delta \propto L^{4-d}$

Needs to keep the whole function

- Nonanalyticity at a finite lengthscale
 Rc such that u(Rc) ~lc
- Cusp signals metastability and glassy states

 Competition between disorder and elasticity: glassy properties

• Dynamics ?

Pinning (Fc) and Larkin length (Rc)

 $F_c = \frac{c\zeta}{R_c^2}$

 $H_{el} = \frac{c}{2} \int (\nabla u(r))^2 d^d r$

 $H_{el} = \int Fu(r)d^d r$

 $cR_c^{d-2}\xi^2$

Large V

Interfaces reorder at large V

Thermal Roughening for $R > R_v$

Depinning

$$\overline{(u_{r,t}-u_{0,0})^2}=r^{2\zeta}\mathcal{C}(t/r^2),$$

ζ for F ~ F_c differs from ζ for F=0

$$v \sim (f - f_c)^{\beta},$$

 $\xi \sim (f - f_c)^{-\nu}.$

$$\nu = \frac{1}{2-\zeta} = \frac{\beta}{(z-\zeta)}.$$

Only RF universality class

How to study

$$\eta \partial_t u_{rt} = c \nabla^2 u_{rt} + F(r, u_{rt}) + \zeta_{rt} + f,$$

$$S_{\text{uns}}(u,\hat{u}) = \int_{rt} i\hat{u}_{rt}(\eta\partial_t - c\nabla^2)u_{rt} - \eta T \int_{rt} i\hat{u}_{rt}i\hat{u}_{rt} - f \int_{rt} i\hat{u}_{rt}$$
$$-\frac{1}{2} \int_{rtt'} i\hat{u}_{rt}i\hat{u}_{rt'}\Delta(u_{rt} - u_{rt'}). \tag{4.1}$$

Martin-Siggia-Rose; Keldysh

TAFF vs Creep

- TAFF : typical barrier
- Linear response

 $v \propto e^{-\beta\Delta}F$

- Glassy system
- Slow dynamics determined by statics qty

$$H_{el} = \frac{c}{2} \int (\nabla u(r))^2 d^d r$$

$$cR^{d-2+2\varsigma}$$

$$L_{opt} \approx F^{\varsigma^{-2}}$$

$$\frac{d+2\varsigma-2}{\varsigma-2} \approx F^{\frac{d+2\varsigma-2}{\varsigma-2}}$$

$$H_{el} = \int Fu(r)d^d r$$

$$FR^{d+\zeta}$$

$$v \approx e^{-\beta U(L_{opt})}$$

FIG. 5. Wandering exponent 2ζ. Measurements on diffe MDW driven at H = 50 Oe during 20–45 min and then fr $(T = 300 \text{ K}, \text{ estimated error on } 2\zeta \text{ for a given image: } \pm 0.$

exponent 2 (

FIG. 3. Natural logarithm of MDW velocity as a function of $(1/H)^{1/4}$ (room temperature, $H \leq 955$ Oe).

1.6

(1/H)^{1/4} (kOe^{-1/4})

S. Lemerle et al. PRL

2

1.8

2.2

2.4

80 849 (98)

FIG. 2. (a),(b): MDW velocity versus applied magnetic field at room temperature (v in m/s). The dashed line in (a) is the linear fit of the high field part (H > 0.86 kOe) and the arrow marks its intersection with the line v(H) = 0. This is the definition of H_{crit} .

D.T. Fuchs et al. PRL 81 3944 (98)

5

0

- 5

-10

-15

-20

-25

1

1.2

1.4

ln(v)

Ferroelectics

(b)

T. Tybell et al. PRL 89 097601 (02)

FRG: other scales than naive version of creep

Molecular dynamics; (A. Kolton)

Crystal vs Interfaces

- Disorder remains in perp. direction
- Motion via static channels

Moving glass

A. Kolton et al PRL 83 3061 (1999)

F. Pardo et al. Nature, 396 348 (1998)

Molecular dynamics (A. Kolton)

canales.mpeg

plastic.mpeg

smectic.mpeg

transol.mpeg

Dynamical Phase Diagram

Peak Effect

 Peak at « melting » of the Bragg glass :

 second peak in magnetization

 Peak effect in transport

Transverse critical force

Crystal without disorder

Moving glass

Absence of Hall voltage

- Flor < Ftran : no hall voltage
- Compatible
 with the
 existence of a
 transverse
 threshold

F. Perruchot et al.Physica B 256587 (1998)

Pandora Box

Dislocations

3D: lucky (Bragg glass)2D: dislocations control dc transportMelting

- Dynamics ??????
- Aging and other glassy goodies

Specialized Refs.

•Bragg glass :

T.G. + P. Le Doussal Phys. Rev. B 52 1242 (1995). T.G. + P. Le Doussal Phys. Rev. B 55 6577 (1997). P. Le Doussal + T.G. Physica C 331 233 (2000).

Moving glass:

T.G. + P. Le Doussal Phys. Rev. Lett. 76 3408 (1996). P. Le Doussal + T.G. Phys. Rev. B 57 11356 (1998).

• Creep from RG:

P. Chauve + T.G. + P. Le Doussal Phys. Rev. B 62 624 (2000).

•Quantum problems:

T.G. + P. Le Doussal Phys. Rev. B 53 15206 (1996). R. Chitra + T.G. + P. Le Doussal Phys. Rev. B 65 035312 (2001) T.G. + P. Le Doussal + E. Orignac Phys. Rev. B 64 245119 (2001)