Spatial studies of chargedensity-wave deformations

H. Requardt (ESRF/Grenoble)

- Peierls transition, sliding CDW
- how to study, earlier studies
- X-ray diffraction on CDW deformation

D. Rideau , R. Danneau (CRTBT-CNRS, ILL; Grenoble), J.E. Lorenzo (Crist.-CNRS; Grenoble), P. Monceau (LLB; Saclay, CRTBT), R. Currat (ILL; Grenoble), G. Grubel (ESRF), C. Detlefs (ESRF)

Peierls-model:

1D metallic chain with e⁻-phonon interaction:

unstable against modulation

=> charge-density-wave (CDW)

 $\rho(\mathbf{r}) = \rho_0 + \Delta \rho \cdot \cos(2k_F \mathbf{r} + \phi)$

defects: pinning of CDW phase ϕ depinning by E > E_T => CDW slides, non-linear current

Sliding CDW:

- creation/annihilation of wavefronts at current contacts

conversion required:
normal current ⇔ condensed (CDW) current

=> phase slip

CDW elastically & plastically deformed

"How to study?", "What to study?"

phase slip / current conversion located near current contacts

=> spatial dependence of CDW current: $j_{CDW}(x)$

=> adding/removing CDW wavefronts: spatial dependence of CDW phase and CDW wavelength:

 $\begin{aligned} \mathbf{Q}_{\mathsf{CDW}}(\mathbf{x}) &= \mathbf{Q}_{\mathsf{0}} + \mathbf{q}(\mathbf{x}) \\ \mathbf{q}(\mathbf{x}) & \sim \nabla \phi \end{aligned}$

a) electrical (multi-contact):

⁽Fig.: Adelman et al., PRB 53 (1996) 1833)

Measurement: V(x) between neighboring contacts => E(x) and $j_{CDW}(x)$

examples:

j_{CDW}(x) in NbSe₃

(Adelman et al., PRB 53 (1996) 1833)

E(x) in $K_{0.3}MoO_3$

(Itkis et al., J.Phys. Cond.Matter 5 (1993) 4631)

b) "radiation":

X-ray diffraction

Measurement: precise q(x) of CDW-satellite reflection using narrow beam

examples: NbSe₃ DiCarlo et al., PRL **70** (1993) 845 Requardt et al., PRL **80** (1998) 5631

but also: IR-transmission Measurement: integral IR-transmission through sample using narrow beam (30µm)

example: K_{0.3}MoO₃

Itkis et al., PRB **52** (1995) R11545, Synth. Metals **86** (1997) 1959 1st example: IR-transmission, $K_{0.3}MoO_3$ (Itkis et al.)

integral IR-transmission $\tau(x)$, T=98K changes by $\Delta \tau$ (x) when CDW is sliding

$$(\Delta \tau / \tau) \propto \nabla \phi$$

 $\Delta\tau\!/\tau$ changes strongest near contacts

applying unipolar (+,-) and bipolar (±) pulses: unipolar (a,b) => CDW slides when depinning at contacts

bipolar (b,c) => CDW depins first in bulk (V_P), then at contacts (V_T) and slides

Figs.: Itkis et al., Synth. Metals 86 (1997) 1959

2nd example: CDW-current j_{CDW}, NbSe₃

(Adelman et al.)

Spatially dependend voltage and resistivity measurements, T=90K

=> CDW current $j_C(x)$ and CDW-deformation $\nabla \phi(x)$

equations start with: $\gamma \frac{\partial \varphi}{\partial t} = \left(\int_{-\infty}^{\infty} \frac{\partial \varphi}{\partial t} \right)^{1/2}$

Forces:

Strain:

Phase slip rate (homogeneous nucleation):

0

= 3

$$r_{PS}(x) = r_0 \cdot exp\left(-\frac{en_C}{Q} \cdot \frac{V_a}{2QK\varepsilon(x)}\right)$$

 $\left(\frac{\mathrm{en}_{\mathrm{C}}}{\mathrm{Q}}\right) \cdot \left(\mathrm{E} - \mathrm{E}_{\mathrm{P}}\right) + \mathrm{K} \cdot \left(\frac{\partial^2 \varphi}{\partial \mathrm{x}^2}\right)$

$$i_{\rm C} = \frac{1}{\rho_{\rm C} + \rho_{\rm S}} \cdot \left(\rho_{\rm S} i_{\rm tot} - E_{\rm P}(i_{\rm C}) + \left(\frac{en_{\rm C}}{Q}\right)^{-1} K \frac{\partial^2 \varphi}{\partial x^2} \right)$$

Figs.: Adelman et al., PRB 53 (1996) 1833

Adelman et al.:

taking parameters from experimental data $i_{C}(t,x)$ and equations

=> Simulation of $i_C(t,x)$, $r_{PS}(t,x)$, $\tilde{N}j(t,x)$ and j(t,x)

=> CDW deformation essentially linear between current contacts with small nonlinear contribution due to phase slip; phase slip takes place in a very narrow section around current contacts

3rd example: X-ray diffraction, NbSe₃

1st study by DiCarlo et al. (PRL **70** (1993) 845) :

monitor shift ΔQ of CDW-satellite position Q along z (|| **b***) applying depinning pulsed current

beam width: 800µm

no data very close to current contacts

compare data with linear model by Ramakrishna et al. (PRL **68** (1992) 2066):

$$\Delta q(z) = \frac{\partial \varphi}{\partial x} = \frac{e \rho_{\rm C}}{Q K_{\rm Z}} \cdot V_{\rm PS} \cdot \frac{z}{L}$$

2nd study by Requardt et al. (PRL 80 (1998) 5631) :

- applying dc signal for steady state measurements on NbSe₃
- pulsed current (*pc*) data for comparison
- beam width 30-100µm
- data from sample centre to beyond contact boundary

90K, I = 2.13 ·I_T, q $_{\pm}$ = Q_{CDW}(I>0)-Q_{CDW}(I<0)

2 regimes in dc q(x)-profile:

- exponential decay from contact boundary to $x\approx 0.5$

length scale: 375±50µm

- linear decrease for x > 0.7

Brazovskii-model (PRB 61 (2000) 10640), interpretation of results from Requardt et al.

considers disbalance between:

- condensed (CDW-) charge carriers (density $n_{\text{CDW}}{=}(1{-}\rho_i(T))n_i)$ and

- non-condensed, "normal" charge carriers (density $n_{\rm e})$

$$\mu_n$$
 = chem. potential of normal carriers

$$U = \left(\frac{1}{\pi} \nabla \phi\right) / N_F^i + \Phi \text{ stress of CDW}$$

(Φ = potential from external electrical field,

 $N_{\rm F}^{\rm i}$ = DOS of "condensible" charge carriers)

$$\eta = \mu_n - U \propto q$$

further "ingredient" of model:
carrier conversion
$$r_{PS}(\eta) = \nabla j_{CDW}$$

- homogeneous: $r_{PS} \propto exp(-\eta_0/|\eta|)$
- heterogeneous: e.g. $r_{PS} \propto \eta$
- "active": $r_{PS} \propto j_{CDW}$

assuming heterogeneous and active conversion:

linear regime: assuming piining of lateral growth of CDW wavefronts/dislocation loops

2 x (mm)

3

0

1

Brazovskii-model, application to multi-contact data by Adelman et al.:

"short sample"

overlap of the two exponential decays coming from the two current contacts

$$\nabla \phi \propto \exp\left(-\frac{x}{1}\right) - \exp\left(-\frac{L-x}{1}\right)$$

length scale: $I = 140\pm20\mu m$

study by Rideau et al. (EPL 56 (2001) 289: CDW-deformation near defects

NbSe₃, T=90K, beam width: 20µm

- current contact very narrow (15µm): region beyond contact not "shunted" but with observable deformation q $(\nabla \phi)$

- very steep decay of CDW deformation away from contact towards sample centre

- but at $x\approx-0.5$ and ≈0.85 significant deformation: sign of resumed current conversion to maintain charge transport across defect

- X-ray irradiation (30µm beam width) induced defect (arrow) gives rise to additional CDW deformation

=> additional current conversion centre

length scale of effect on deformation: 75µm

Conclusion

- spatial dependences in CDW observed by various methods:
- CDW-current profile, IR-transmission = indirect methods for CDW-strain measurements
- high-resolution X-ray diffraction = direct observation of CDW-strain
- NbSe₃: current injection/extraction gives rise to CDW-deformation, decaying exponentially with distance from contact
- NbSe₃: CDW-deformation seems to be well described by Brazovskii-model
 - CDW-deformation due to charge disbalance heterogeneous phase slip/current conversion
- defects and current contacts play similar role:
 - centres of current conversion, charge disbalance