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Abstract. We have studied the roughness and the dynamics of the contact line of a viscous liquid on
a disordered substrate. We have used photolithographic techniques to obtain a controlled disorder with
a correlation length ¢ = 10 um. Liquids with different viscosity were used: water and aqueous glycerol
solution. We have found that the roughness W of the contact line depends neither on the viscosity nor
on the velocity v of the contact line for v in the range 0.2-20 um/s. W is found to scale with the length
L of the line as L° with a roughness exponent ¢ = 0.51 £ 0.03. This value is similar to the one obtained
with superfluid helium. In the present experiment, we have checked that the motion of the contact line is
actually overdamped, so that the phenomenological equation first proposed by Ertas and Kardar should
be relevant. However, our measurement of ( is in disagreement with the predicted value ¢ = 0.39. We have
also analyzed the avalanche-like motion of the contact line. We find that the size distribution does not

follow a power law dependence.

PACS. 46.65.+g Random phenomena and media — 64.60.Ht Dynamic critical phenomena

1 Introduction

Recently, many works have been devoted to understand
the dynamics and the shape of elastic systems in random
media. Examples of such systems are domains walls in
ferromagnets [1], charge density waves [2]. In this article
we are interested in the motion of a contact line on a
heterogenous solid substrate.

In a partial wetting situation, the meniscus meets
the solid surface along the contact line (CL), which is
the boundary between the dry and the wet part of the
substrate. On a disordered surface, the shape of the CL
(Fig. 1) is distorted as a result of the competition between
its stiffness and the defects of the substrate. It has been
proposed by Ertas and Kardar [3] that the motion of the
CL can be described by the following phenomenological
equation:

u (U+ W) = Fot + f(z,0t + (2, 1)) + K9], (1)

where n(z,t) is the displacement of the line with respect
to its average position vt, p is a dissipative coeflicient,
f(z,y) is the random force due to the disorder of the sub-
strate, and K[n] is an elastic restoring force. The distortion
of the meniscus is responsible for the long-ranged elastic
interaction, as pointed out by Joanny and de Gennes [4]:
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Fig. 1. Upper part: image of the contact line obtained with
an ordinary CCD camera. Lower part: the position n(z,t) =
y(z,t) — vt of the CL is defined with respect to its average
position vt.
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Kln] = —sin G/dx @) (2)
where the summation is taken over the whole CL, ~ is
the liquid-vapor surface tension and 6 is the angle under
which the meniscus meets the substrate (contact angle).

The fluctuations of the CL around its average position
are characterized by the scaling behaviour of its roughness
W defined by: W(L) = ({(n(L + zo) — 77(960))2>>1/2 (the
average is taken over xg along the line and over successive
configurations of the CL). One expects W to vary with the
scale L as LS, where ( is called the roughness exponent. At
equilibrium, for a small-amplitude disorder, equation (1)
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has been solved by several techniques, and the common
prediction is ¢ = 1/3 [5,3]. This has been confirmed ex-
perimentally [6]. What happens at depinning threshold is
still controversial. Following Narayan and Fisher [2], Er-
tas and Kardar have argued that the result at equilibrium
should hold at the threshold. However, it was shown re-
cently by Chauve et al. that extending Ertas’ functional
renormalisation group calculation up to two-loop order
leads to a value of ¢ larger than 1/3 [7]. This result is
consistent with a precise numerical calculation by Rosso
and Krauth, which yields ¢ = 0.388 £0.002 [8]. Numeri-
cal simulations of equation (1) have also been performed;
Tanguy et al. found (¢ = 0.35 £ 0.02) [9], while Zhou et
al. found (¢ ~ 0.39) [10]. Let us stress that all predicted
values lie in the range 0.33-0.39.

Experiments have already been performed in our group
[11]. Using superfluid helium on a rough substrate cov-
ered with cesium, the value of the roughness exponent
was found to be ¢ ~ 0.55. For this peculiar system, it was
shown that the motion of the CL is not quasi-static: during
a jump of the CL, the lateral depinning velocity is com-
parable to the velocity of capillary wave. As proposed by
Schwarz and Fisher in the context of crack fronts [12], this
may lead to dynamic stress overshoots and could explain
the unexpectedly high value of (.

In order to test this hypothesis, and to study the
behaviour of an ordinary overdamped system, it is nec-
essary to use ordinary viscous liquids. Some results on
the dynamics and structure of the CL have been ob-
tained by Di Meglio [13] and Decker and Garoff [14].
However, in these experiments, the disorder could not be
completely controlled. Thus we decided to transpose the
helium/cesium experiment at room temperature. A sub-
strate with well-controlled disorder has been obtained by
photolithographic techniques; using water and a water-
glycerol mixture, we have studied the motion of the CL.
In this article, we report on the results of this experi-
ment. Quite surprisingly, it turns out that we still find a
roughness exponent close to 0.5. We have checked that the
dynamics is actually overdamped and quasi-static, so that
the standard model should be relevant.

2 Experimental setup

A sketch of the experimental setup is shown in Figure 2.
The plane substrate is a glass plate with random disorder.
This plate is partially dipped into a liquid bath with an
angle of 10° with respect to the horizon. In order to avoid
the deposition of dust particles, the sample and the liquid
bath are placed in a closed transparent box; this box also
reduces the liquid evaporation. The plate is removed from
the bath with a constant velocity thanks to a translation
stage. Thus we impose the average velocity v (or drift ve-
locity) of the CL with respect to the substrate. We worked
with values of v ranging from 0.2 um/s up to 20 pum/s.
The substrate is a glass plate (63 x 63 mm?) initially
covered with a layer of chromium. By a photolithographic
process, chromium is removed except in a 20 x 20 mm?
area which contains 10° chromium patches which act as
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Fig. 2. Sketch of the experimental setup. Inset: photograph
of the disordered substrate, the chromium defects appear as
white square spots.

Table 1. Table of viscosity and contact angle of the liquids
used in our experiments. The accuracy of angle is 2°. On bare
chromium, the advancing angle value is roughly 70-80°, reced-
ing angle is 40-50°.

Water | Water/glyc.
Viscosity (Pa- s) 1073 20-1073
contact angle advancing 58° 53°
on glass receding 32° 27°
contact angle on advancing 69° 60°
disordered substrate | receding 40° 36°

defects. These defects have a square shape (10 x 10 ym?)
and their positions are random (see inset in Fig. 2). This
configuration is the same as the one used for the helium ex-
periment, except for the shape of individual defects which
were nearly circular in our previous work [11]. As previ-
ously, we can safely assume that the correlation in the
disorder is short ranged, and the correlation length £ is
10 um. The height of the defects is of the order of 10
nm, much smaller than their lateral size. We have not
observed any evidence of pinning on the edge of the de-
fects, so that the defect strength is mainly related to the
difference in wettability between glass and chromium (see
Tab. 1). The chemicals and procedure used for cleaning
the substrate have an influence on the contact angle. In
order to obtain reproducible results, the same cleaning
procedure is followed before each experiment. The sub-
strate is first rubbed with a soft whipper and rectapure
acetone, then with water. Next, the substrate is rinsed
with water, dried with nitrogen and kept a few minutes
in an oven at about 80 °C. The liquids used in our ex-
periments were water and an aqueous solution of glycerol
(70% by weight). These liquids have roughly the same sur-
face tension v = 70 x 1073 N/m. Table 1 shows for those
two liquids the viscosity and the advancing and reced-
ing contact angles on bare glass and disordered substrate.
The angles are measured on images of droplets seen under
low-angle incidence. The measurement of contact angle on
bare chromium is not possible on our sample. Measures on
other samples lead to advancing angle values between 70°
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and 80° and receding angle values between 40° and 50°
for both liquids.

The CL is observed with a long-working-distance mi-
croscope equipped with coaxial illumination and an ordi-
nary progressive-scan CCD camera. A mirror positioned
under the substrate allows to enhance the contrast be-
tween the image of the dry part of the substrate and the
one of the meniscus (Fig. 1). The position of the CL can
be located, with an accuracy of one pixel, by applying a
threshold to the 8 bit images. Such a simple processing
allows real-time image analysis (25 frames per second).
The magnification has been varied between x0.7 and x4,
which yields a resolution in the substrate plane between
10 pm and 2 pum. In order to measure the CL dynamics
during fast jumps, we have also used a fast CCD camera
(500 images per second). In this case, the images have a
lower signal-to-noise ratio and a lower resolution. For each
pixel column i, the intensity I(x;,y) is fitted by a hyper-
bolic tangent function tanh((y —yo)/0); the location n(z;)
of the CL is defined as the inflection point yy. With this
procedure, the final accuracy is 0.5 pixel (1.3 um).

3 The roughness of the contact line

In a typical experiment, the CL sweeps an area of 50 mm?2.
The roughness W(L) is averaged over typically 1000 suc-
cessive configurations of the line, so that the average dis-
tance between two configurations is of the order of 10 pm.
The measured roughness W(L) is shown in Figure 3 for
different drift velocities and different liquids. Values for
L > 2 mm are not meaningful because of edge effect.
Indeed, the width of the disordered part of the plate
is 20 mm, and the edges induce a distortion of the CL
whose extension is of the order of the capillary length
Le = (v/pg)Y? (p is the liquid density and g the grav-
itational acceleration). L. is about 2.5 mm. To avoid edge
effect, only the central part of the plate was used; and we
have checked that the curvature of the CL averaged over
all the configurations is zero. The dispersion between the
curves shown in Figure 3 is similar to the dispersion be-
tween successive runs in the same experimental condition,
so that the overall scatter of the data gives an estimate
of the reproducibility and accuracy on W(L). We have
done experiments with various magnifications, in order to
check that the noise due to the pixel finite size does not
lead to an increase of W(L) for small L. Such an effect is
negligible as soon as L > 25 ym, as shown in Figure 3.

In the experimental range of parameters, the rough-
ness does not depend neither on the drift velocity v nor
on the viscosity n. This is not very surprising since the
capillary number Ca = nv/v is always smaller than 1075,
In such a range of Ca, the viscous dissipation is small
compared to the hysteresis. This means that the system
is always at the depinning threshold. We have fitted the
roughness W (L) by a power law for 26 < L < L./2. For
all runs, the roughness exponent is found to lie between
0.48 and 0.54. We checked that the fitted values are not
sensitive to the cutoffs 2¢ and L./2. We conclude that
¢ = 0.51 £0.03. Thus we find a value of the roughness
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Fig. 3. Roughness W as a function of distance L for dif-
ferent drift velocities. The upper (respectively, lower) graph
corresponds to data obtained with water (respectively, water-
glycerol mixture). For both graphs, the data o have been ob-
tained with a larger magnification (resolution 2.1 ym) than the
others (resolution 6.1 um).

exponent which is significantly larger than the theoretical
predictions. Quite unexpectedly, C is comparable with the
result of our previous work with liquid helium [11].

4 Dynamics of the contact line
4.1 Quasi-static motion

The fact that we find a similar value for ¢ for a superfluid
as well as for a viscous fluid is rather puzzling, and it was
necessary to check the hypothesis that the motion of the
CL is quasi-static in water. We have thus performed a
study of the dynamics of the CL.

When a low mean velocity v is imposed, the motion of
the CL is discontinuous. Most of the time, the CL moves
very slowly while remaining pinned on some defects. Some-
times, the CL meets a new defect and jumps forward to
a new pinned position. This jump is called an avalanche.
Such a dynamics involves a large range of velocities and
a fast camera is needed to perform a quantitative study
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Fig. 4. Left: successive positions of the contact line at the meeting of a defect (defects are shown as grey areas). Right: local
velocity at © = 721 um as a function of time. The liquid is a water-glycerol mixture and the drift velocity is 2 um/s. The frame

rate is 500 Hz and the resolution is 1.3 ym.

of the motion of the CL. A local jump is shown in Fig-
ure 4. In order to increase the accuracy in the position of
the chromium defects, these defects are located in a sec-
ond step with an ordinary CCD camera (the resolution is
then 1.3 um). Their positions are superimposed in gray in
Figure 4.

When the CL meets a non-wetting defect of chromium,
it is submitted to a pulling force due to the change in
the local spreading coefficient. Within two milliseconds,
the CL velocity reaches a high value, of the order of 2 or
3 mm/s (Fig. 4). This maximum velocity does neither de-
pend on the drift velocity nor on the viscosity. Then, the
local velocity of the CL on the defect decreases to a small
value before the liquid has completely uncovered the de-
fect: the acceleration is negative though the local pulling
force has not vanished. Thus, inertia may play a role in the
first millisecond of the jump but it is not efficient enough
to make the CL jump over a defect. For displacements of
order ¢, the CL motion can be considered as overdamped.
Thus, one can neglect a possible §%1/0t? term in the dy-
namic equation, as assumed when writing equation (1).

The inertia can have another indirect effect on the dy-
namics of the CL, because of its non-local elasticity. When
writing the elastic restoring force on the CL (Eq. (2)), one
assumes that the shape of the whole meniscus follows in-
stantaneously the local distortions of the CL. This was
shown to be false for superfluid helium. In order to find
out what is the situation for usual liquids, we have studied
longer sequences, such as the one shown in Figure 5, whose
duration is about two seconds. During this sequence, the
drift velocity is 2 um/s. The lower part of Figure 5 shows
the temporal evolution of the positions y(x;,t) of the CL
for some fixed values x; of x. These values are represented
in the upper part of Figure 5 by verticals gray lines. On
this example, before ¢ = 1088 ms, the motion of the CL is
slow (~ 1 pum/s for i = 6). This slow motion corresponds
to a pinned configuration since the CL goes through a
fixed set of defects. A first event occurs at t = 1088 ms
on two defects (x = 560 pum and =z = 610 um). The de-
formation of the CL due to a meeting with a defect mod-
ifies the elastic restoring force. The local velocity of the
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Fig. 5. Upper part: positions of the contact line just before the
meeting of a new defect. The gray patterns represent roughly
the defects. The arrows show the defects met by the CL and
the meeting time in ms. At ¢ = 1088 ms, the CL meets si-
multaneously two defects (x ~ 560 ym and z ~ 605 um). Note
the difference between the horizontal and vertical scales. Lower
part: temporal evolution of the position n(z;,t) of the CL for
fixed values xi...x12 of z. The x; values are shown by verti-
cal lines in the upper part. For a better readability, the curves
n(z;,t) are arbitrarily translated along the y-axis. Vertical lines
are placed at times of meeting between the CL and the defects.
The dashed line represents the actual drift velocity v = 2 um/s.
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CL increases suddenly in the vicinity of the defect: one
observes cusps in the y(z;,t) curves in the lower part of
Figure 5. These cusps appear simultaneously (more pre-
cisely, within one time step). Actually, the meniscus de-
formation which triggers the CL acceleration propagates
at a finite velocity. The relevant velocity is the velocity
of surface waves c. For a liquid depth of 1 mm and for
a wavelength of 100 um, the usual dispersion relation for
surface waves yields ¢ ~ 2m/s. Such a high velocity cannot
be measured with our setup: the deformation propagates
over one millimeter in one time step, so that all points of
the CL seem to accelerate simultaneously. Still, the exper-
iment shows that the meniscus shape relaxes much faster
than the CL. As a consequence, one can safely forget any
retardation effect in the elastic restoring force despite the
long-range nature of the CL elasticity and equation (2) is
expected to be valid.

The assumption of a quasi-static motion of the CL is
thus valid for the experiments with ordinary liquids. This
is a fundamental difference with our previous experiments
with liquid helium [11]. For helium, we have proposed that
the inertia plays an important role in the dynamics: as the
lateral propagation of an avalanche occurs at the same ve-
locity as the propagation of capillary waves, it is likely that
dynamic stress overshoots exist, as proposed by Schwartz
and Fisher [12].

4.2 Avalanches

In order to characterize the dynamics of the contact line,
we have studied the properties of the avalanches. One first
needs a criterion for defining the beginning and the end of
an avalanche. An avalanche always starts by a fast jump,
such as the event at ¢t = 1088 ms in Figure 5. An ini-
tial event can trigger secondary jumps, such as the ones
at t = 1122ms and ¢t = 1198 ms. Deciding where the
avalanche does stop is not always easy: is the fourth event
at t = 1348 ms a direct consequence of the three others? A
reasonable criterion is to consider a line configuration as
pinned if its velocity is everywhere smaller than the drift
velocity. With this criterion, the event at ¢ = 1348 ms be-
longs to the same avalanche as the three others. Finally,
this particular avalanche has a length L along x of the or-
der of 300 um and a height H along y of the order of 25 pym.

Carrying out systematically such a procedure is impos-
sible because of the sequence duration that cannot exceed
four seconds with the fast camera. In order to get enough
statistics, we need to use a standard camera with an ac-
quisition time t,cq = 40 ms. We consider that a line is in
a pinned configuration if its position in two successive im-
ages is not changed by more than three successive pixels.
An avalanche is defined as the swept area delimited by two
successive pinned positions of the CL, which is character-
ized by its length L and its height H (see inset in Fig. 6).
By changing the magnification, we have checked that the
results are not sensitive to the threshold of three pixels.
By changing t..q, we have also checked that t,.q is small
enough not to lump together two distinct avalanches, at
least for drift velocities smaller than 2 ym/s. Still, there
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Fig. 6. Average height H of an avalanche of length L for
different drift velocities and different viscosities. One finds that
H scales roughly like L%, which is consistent with the value
of the roughness exponent (. Inset: schematic representation
of an avalanche.

is an additional difficulty due to the non-local nature of
the elastic interaction: a priori, simultaneous depinning
events are parts of a single avalanche, even if the depin-
ning regions of the CL are disconnected. We have studied
carefully a number of fast sequences. It turns out that,
when the CL jumps on a defect, its velocity is increased
only in a rather small region around the defect (see Fig. 5),
typically 100 um. Thus, we consider simultaneous discon-
nected jumps as non-correlated avalanches.

As a first result, we have found that the CL goes
through almost the same configurations for different runs.
Thus the motion is deterministic, which ensures that the
thermal noise is negligible for such macroscopic defects.
The absence of dependence in v is a further evidence that
the system is close to the depinning threshold.

Figure 6 shows H as a function of L. Only avalanches
containing at least one defect, i.e. with H > &, are repre-
sented. The aspect ratio of the avalanches depends neither
on drift velocity nor on viscosity of the liquid. One expects
that the scaling of H(L) is the same as the one of the
roughness W (L). Indeed, for h > £ = 10 pm, H(L) scales
as a power law with an exponent of 0.51 &+ 0.03, which is
the same value as the one of the roughness exponent (.

The distribution in size of the avalanches is shown
in Figure 7. The probability P(L) of occurrence of an
avalanche is plotted as a function of its length L. This
probability is obtained by counting the number N (L) of
avalanches for each value of L. This number is normalized
first by the effective area Ay swept by the CL during
the experiment, which is equal to the total advance of
the CL (vxduration of the experiment) times the effec-
tive length of the CL. Let us call Lgeq the size of the
acquisition field. The avalanches detected on the edge of
the acquisition field are not counted so that the effec-
tive length of the CL on which avalanches of width L
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Fig. 7. Probability P(L) of occurrence of an avalanche of
length L for different drift velocities and different viscosities. P
is the number of avalanches divided by the effective area swept
by the CL and by the effective pixel size. This curves are ob-
tained with the same magnification of the microscope; other
magnifications lead to the same curves. The solid line is the
power law dependence expected from numerical simulation.

are detected is Lgelq — L. Finally, in order to compare
quantitatively experiments done with various magnifica-
tion, P(L) is also normalized by the pixel size p in the
substrate plane: P(L) = N(L)/(p Atot). One finds that
the size distribution is very reproducible, and depends
neither on the drift velocity nor on the viscosity of the
liquid. At depinning threshold, one expects this distribu-
tion to follow a power law: we have also shown in Figure 7
the scaling law P(L) ~ L~!?® deduced from numerical
simulation [10]. Actually, the curve P(L) is found to de-
crease faster than a power law. This is different from the
helium case, where the P(L) was found to decrease rather
more slowly than predicted. This difference between the
two systems is consistent with the idea that inertia pro-
motes larger avalanches.

5 Discussion

In contrast with the helium experiment, the viscous lig-
uids used in the present experiment lead to an ordinary
overdamped motion of the contact line. Thus, most as-
sumptions leading to equation (1) seem to be valid: quasi-
static motion and no thermal noise. However, we still find
a value of ¢ which is larger than predicted; the size dis-
tribution of avalanches is also unexpected. Let us propose
two possible explanations for this discrepancy.

First, it has been shown by Rosso and Krauth that
small non-harmonic correction to the elastic energy can
lead to a strong change in the roughness exponent [15].
Since their work is restricted to short-range elastic inter-
actions, it is not possible to conclude how ¢ would be
modified for long-range elasticity. Moreover, in the case
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of the CL the first correction to the dominant quadratic
term is not a fourth-order term, but a third-order term in
the CL displacement [16].

Second, it is assumed in equation (1) that the dissipa-
tive term is linear in velocity. Physically, this corresponds
to a viscous dissipation due to the shear flow in the wedge
close to the contact line [4]. The dissipation coefficient y
is then proportional to the viscosity, and is a complicated
function of the contact angle [17]. In our experiment, the
maximal local velocity during a jump does not depend on
viscosity. This is an indication that one cannot account for
the dissipation by a simple shear flow in the wedge [18].
In our range of velocities and contact angle, it is more
likely that the CL dynamics should be described in terms
of activated molecular jumps at the CL [18]. In such a
molecular-kinetic model, one expects the velocity to be
a highly non-linear function of the applied force F'. This
has been checked in a number of experiments [18,19]. In
the present experiment, such a model is presumably rele-
vant: the hysteresis on homogeneous glass (or chromium)
substrate shows clearly that there exists some microscopic
disorder at a scale much smaller than . Moreover, the lo-
cal CL dynamics involves a wide range of velocities. Thus,
it is possible that a strongly non-linear v(F')-dependence
changes the dynamics of the system, even at the depinning
threshold.

Further experimental work is needed to get a better
understanding of the CL behaviour. Studying precisely
more simple problems like the pinning on a single defect
could help to understand the effect of a non-linear dissi-
pative term. It would also be interesting to investigate the
dynamics of the system for higher drift velocities, closer
to the maximum local velocity in the jumps.
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