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Theoretical analysis of second-order synchrosqueezing transform

Synchrosqueezing transform in the STFT framework

In the following, V£ denotes the short time Fourier transform (STFT) of a
signal f and is defined by:

VE(n, ) = /R F(r)g(r — t)e 2m—Dgy

e Computation of an instantaneous frequency (IF) estimate at time t
and frequency 7 through:

1 9:VE(n,
o= ()

27
@ The synchrosqueezing transform is defined as:

Tr(w. t) = g(lo) /R VE (1, £)5(w — &, 1))
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Theoretical analysis of second-order synchrosqueezing transform

Mode reconstruction for slightly modulated modes

@ Let us consider a multicomponent signal defined as

K
pPRAG)
k=1

with fi(t) = Ax(t)e? () A (t) > 0, ¢ (t) > 0 and
kp1(t) > & (2).

@ Define the set Ba . of multicomponent signals with modulation € and
separation A as:

Ai € CHR)(L®(R), ¢k € C*(R),
sup ¢ (t) < oo, ¢j(t) > OvAk( ) >0, Vt

teR
AL < € [d)(t) <€, VEER
@ The fk’s are separated with resolution A:

Vt, Ghpa(t) = di(t) = 2A
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Theoretical analysis of second-order synchrosqueezing transform
Approximation theorem

Consider f € Ba,. and put é = €'/3. Let g € S(R) with

supp(g&) C [—A,A]. Then, if € is small enough, the following holds:

(a) |VE(n,t)| > € only when there exists k € {1,...,K} s. t.
(n:t) € Zk :={(n, 1), st |n— ()] <A},

(b) Forall k € {1,...,K} and all (n,t) € Zx such that |VE(n,t)| > €, we
have

@r(n, 1) — (b)) <&

(c) Forall k € {1,...,K}, there exists C s.t. for all t € R,

lim / T2 (w, t)dw | — fi(t
5—>0< lw—¢) ()| <€ f (1) ) 4
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Theoretical analysis of second-order synchrosqueezing transform
Extension of the theorem

Definition

A window g, (t) = o 1g(L) is said to be with quadratic decay if g(n)
behaves like %; for any || > A.

@ If one uses such a window the above theorem is still valid provided

A —
[v1A

@ We are going to use non compactly supported window in the Fourier
domain to extend the above theorem to multicomponent signals
containing modes with strong frequency modulation.
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Theoretical analysis of second-order synchrosqueezing transform
New IF estimate

g ~ g
@ Let us put &f(n, t) = % and introduce: te(n,t) =t — %

@ Define ('A‘)f(nv t) = R(d’)f(n7 t))v and /t\f(na t) = R(Ef(nv t))

@ Estimate of frequency modulation introduced in (Oberlin et al., 2015).

Definition

Let f € L2(R) and consider when VE(1, t) # 0 and % £ 2ir the
£\,

quantity

8t(:)f(777 t)

qf(777 t) = 6[—{{(7’}, t) .

An estimate of the frequency modulation is then defined by

Gr(n, t) = R(Gr(n, 1)) -

@ IF estimator finally defined by: ¢'(t) = &r(n, t) + §r(n, t)(t — tr(n, t))
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Theoretical analysis of second-order synchrosqueezing transform

Here we propose a slightly different IF estimate which allows for
mathematical study.

Definition

Let f € L2(R). Define the second order IF complex estimate of f as:

~(2) _ (:)f(na t) + CNIF(77> t)(t - Ef(77> t)) if 8tff(na t) 7& 0
£(n, t) otherwise,

and then its real part:

~(2) _ [ R(@(n,t) + Ge(n, t)(t — (0, 1)) if Oetr(n,t) # 0
o 1) = { ' dz:(n, t) ' othferwise.
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Theoretical analysis of second-order synchrosqueezing transform

Definition of the new Fourier-based SST

We first define a new type of mode before introducing the new synchrosqueezing
transform:

The set l”)’(Az)6 of multicomponent signals with second order modulation € and
separation A corresponds to multicomponent signals made of modes satisfying:

(a) function fi s. t. Ak and ¢ satisfy the following conditions:

Ak(t) € L2(R) N C2(R), ¢x(t) € C3(R),

O(t), Dy (1), by (1) € LX(R),
A(t) > 0, inf ¢ () > 0, supg(t) < oo,
teR teR

A < e JA(D)] <€ and [¢, (1) < e,

(b) the functions fys satisfy the following separation condition

Grpa(t) — dp(t) >2A VteR , Vke{l,.,K—-1}.

v
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Theoretical analysis of second-order synchrosqueezing transform

Definition

Let h be a positive L' normalized window belonging to C°(R), and
consider 7,9 > 0, the second order Fourier-based SST of f with threshold
~ and accuracy 0 is defined by:

~2)
~ 1 1, (w—07"(n,t)
o= Ve 0y p (@2 D o
0= 20 IVE? (3,8) > Fn ( 0
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Theoretical analysis of second-order synchrosqueezing transform

Theorem

Consider f € B(AQL, g = €l/s,

g a window satisfying for all t and k =1,--- | K, ]-'(g(T)e"Wz‘z’Z(t)Tz)(n) behaves
like # when |n| > A.

Then, provided € is sufficiently small and that \/|17|A < g€ < C for some constant
Y
C, the following hold:

(a) |VE (n,t)| > € only when there exists k € {1,...., K} such that (n, t) € Zk.
(b) Forall k € {1,...,K} and all (n, t) € Zx such that |VE (n, t)| > & we have

2P (1, t) — (1) < €

(c) Moreover, for each k € {1, ..., K}, there exists a constant C such that

i 1 T, elox(t
(i 00 -

where My z .= {w : |w — ¢, (t)| < €}.
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Improving the synchrosqueezing transform using demodulation

@ The results of the synchrosqueezing transform, highly sensitive to the
choice of the window’s length.

@ We are interested in limiting the influence of the window on the
reconstruction of the modes by means of demodulation.
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Improving the synchrosqueezing transform using demodulation

Sensitivity to o of the synchrosqueezing transform

@ IF estimate & (n, t) is tied to two inequalities, (the window is a L!
normalized Gaussian window):

|VE (n, t Zf/ )8-(n—¢i(t)] < el10(t)

|0eVE (0, ) — 21'??2 fi(t)gi(t)ga(n — ¢i(t)| < e(T20(t) + 2m|nlT1,6 (1)),
I=1

with Flg( ) KO'/1+7TU2IQZA/( )and rzg( ) Kll+7T0'122A/( )

From this we may say, that better approximation is obatined usmg a small o.

@ However, in such a case the separation between the different modes is made
harder since g(cA) has to be negligible, which puts a great constraint on o
(it has to be large).
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Improving the synchrosqueezing transform using demodulation
Algorithm for Demodulation
@ To compute an estimate of the ridge (t, ¢, (t)) knowing the number K of
mode, we compute the local minimum of:

K
Er((pi)k=1, k) = kz_:l—/RTf(taw(f))lzdtJr/R()\w/k(f)z+5<P/k/(t)2)df,

where Tr is the synchrosqueezing transform.

@ We obtain a set of curves (t, pi(t))k=1,... .k which approximates the
different ridges. However, due to discretization effects these estimates
cannot be directly used for demodulation.

If the signal f is defined on [0,1], @« (t) will be an integer for all ¢.

@ We use EMD to smooth the obtained ridges and thus non integer value
estimates.

@ We use these smoothed ridges to demodulate, we compute:
fou(t) = f(t)e—i%r(fo Bi(t)dx—epo(t))
where @, (t) = i(t) — h(t), where h(t) is the first mode obtained with
EMD.
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Improving the synchrosqueezing transform using demodulation

Algorithm for Demodulation:continued

@ Apply synchrosqueezing transform to fp s and extract the kth mode

@ Reconstruct the kth mode by multiplying by e=27(s ®(t)dx—o(1))

Illustration of the demodulation process:
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Improving the synchrosqueezing transform using demodulation

[llustration of the improved reconstruction process

Effect of the demodulation process:
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