2D Hilbert-Huang Transform

(joint work with Jérémy Schmitt, Pierre Borgnat and Patrick Flandrin)

Laboratoire de Physique - ENS Lyon

CNRS UMR 5672

ANR ASTRES 20 octobre 2014

999

Motivations ●00	2D-EMD 0000000000000	Conclusion 00
		2/20
Motivations (in signal µ	processing)	

 Goal : Extract instantaneous amplitude and frequencies [Ville, 1948]

Motivations	2D-EMD	Conclusion
•00	000000000000	00
		2/20
Motivations (in signal proc	essing)	
► Goal : Extract instantaneous [Ville, 1948]	amplitude and frequencies	

- $\circ x$: real-valued 1D signal,
- \mathcal{H} : convolution whose transfer function is $H(\omega) = -j \operatorname{sign}(\omega)$.
- $\circ \mathcal{H}(x)$: Hilbert transform of x,
- $\circ x_a$: analytic signal such that

 Goal : Extract instantaneous amplitude and frequencies [Huang et al., 1998][Daubechies et al., 2010]

Motivations (in signal processing)

- ► Goal : Extract instantaneous amplitudes and frequencies [Huang et al., 1998][Daubechies et al., 2010]
 - 1. Extract the components oscillating around zero (IMFs) + the tend

- 2. Compute the instantaneous amplitudes ans frequencies from each IMF.
 - \rightarrow Analytic signal for d_1 leads to (α_1, ξ_1)
 - \rightarrow Analytic signal for d_2 leads to (α_2, ξ_2)

Motivations	2D-EMD	Conclusion
00●	000000000000	00
		4/20
Motivations (in i	mage processing)	

Objective : spectral analysis of a nonstationary image.
 ⇒ extract local amplitude α, phase ξ and orientation θ.

Objective : spectral analysis of a nonstationary image.
 ⇒ extract local amplitude α, phase ξ and orientation θ.

• Objective : spectral analysis of a nonstationary image. \Rightarrow extract local amplitude α , phase ξ and orientation θ .

Objective : spectral analysis of a nonstationary image.
 ⇒ extract local amplitude α, phase ξ and orientation θ.

 \Rightarrow Superposition of several components (waves, noise, illumination...) \Rightarrow Poor performance of the spectral estimation

Motivations 000	2D-EMD ●००००००००००	Conclusion 00
		5/20
Introduction		

- Proposed solution : a two-step procedure
 - 1. Decomposition step $\Rightarrow \mathbf{x} = \sum_{k=1}^{K} \underbrace{\mathbf{d}_{k}}_{\mathsf{IMF}} + \underbrace{\mathbf{a}_{K}}_{\mathsf{Trend}}$

- Proposed solution : a two-step procedure
 - 1. Decomposition step $\Rightarrow \mathbf{x} = \sum_{k=1}^{K} \mathbf{d}_{k} + \mathbf{a}_{K}$

х

- Proposed solution : a two-step procedure
 - 1. Decomposition step $\Rightarrow \mathbf{x} = \sum_{k=1}^{K} \mathbf{d}_{k} + \mathbf{a}_{K}$

х

 \mathbf{d}_2

- Proposed solution : a two-step procedure
 - 1. Decomposition step $\Rightarrow \mathbf{x} = \sum_{k=1}^{K} \mathbf{d}_{k} + \mathbf{a}_{K}$

х

2. Monogenic analysis on $\mathbf{d}_k \Rightarrow$ amplitude α_k , phase $\boldsymbol{\xi}_k$, orientation $\boldsymbol{\theta}_k$.

 \mathbf{d}_2

2. Monogenic analysis on $\mathbf{d}_k \Rightarrow$ amplitude α_k , phase $\boldsymbol{\xi}_k$, orientation $\boldsymbol{\theta}_k$.

Motivations 000	2D-EMD ⊙●○○○○○○○○○○	Conclusion 00
		6/20
State-of-the-art		

- ▶ Riesz-Laplace transform [Unser et. al., 2009] :
 - ► Combination of a 2D wavelet transform with monogenic analysis.
 - Lack of adaptivity.

Motivations 000	2D-EMD ○●○○○○○○○○○○	Conclusion 00
		6/20
State-of-the-art		

- ▶ Riesz-Laplace transform [Unser et. al., 2009] :
 - ► Combination of a 2D wavelet transform with monogenic analysis.
 - Lack of adaptivity.
- Image empirical mode decomposition (IEMD) + monogenic analysis [Jager, 2010] :
 - Good adaptivity.
 - Lack of robustness and of convergence guarantees.

Motivations 000	2D-EMD ○●○○○○○○○○○	Conclusion 00
		6/20
State-of-the-art		

- ▶ Riesz-Laplace transform [Unser et. al., 2009] :
 - ► Combination of a 2D wavelet transform with monogenic analysis.
 - Lack of adaptivity.
- Image empirical mode decomposition (IEMD) + monogenic analysis [Jager, 2010] :
 - Good adaptivity.
 - Lack of robustness and of convergence guarantees.
- Texture-geometry decomposition + monogenic analysis [Aujol, 2008, Gilles, Osher, 2011] :
 - Good convergence guarantees.
 - Lack of adaptivity.

Motivations 000	2D-EMD ○●○○○○○○○○○	Conclusion 00
		6/20
State-of-the-art		

- ▶ Riesz-Laplace transform [Unser et. al., 2009] :
 - ► Combination of a 2D wavelet transform with monogenic analysis.
 - Lack of adaptivity.
- Image empirical mode decomposition (IEMD) + monogenic analysis [Jager, 2010] :
 - Good adaptivity.
 - Lack of robustness and of convergence guarantees.
- Texture-geometry decomposition + monogenic analysis [Aujol, 2008, Gilles, Osher, 2011] :
 - ► Good convergence guarantees.
 - Lack of adaptivity.
- Proposed solution : combine IEMD + texture-geometry + monogenic analysis

Sifting process : research of local extrema and computation of a mean envelope until getting a fluctuation d_k oscillating symmetrically around zero : intrinsic mode function (IMF).

\Rightarrow Problem : lack of convergence guarantees

Conclusion 00 8/20

Texture-geometry decomposition [Aujol, 2008]

► Decomposition of x into (a, d) based on optimization procedure.

Optimization

Optimizatio

а

• Optimization procedure :

$$\mathsf{Find} \quad (\hat{\mathbf{a}}, \hat{\mathbf{d}}) \in \operatorname*{Argmin}_{(\mathbf{a}, \mathbf{d})} \|\mathbf{x} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi(\mathbf{a}) + \psi(\mathbf{d})$$

- $\blacktriangleright \phi$ imposes the trend behavior to ${\bf a}$ (smoothness) : Total Variation.
- $\blacktriangleright \ \psi$ imposes the fluctuation behavior to ${\bf d}$ (oscillatory behavior) :
 - $\psi = 0 \rightarrow \text{TV}$ [Aujol, 2008]
 - ▶ $\psi = \| \cdot \|_{\mathcal{G}} \rightarrow \mathsf{TV}\text{-}\mathsf{G}$ [Gilles, Osher, 2011]
 - (G : Banach space of signals with large oscillations)
- \Rightarrow Problem : lack of adaptivity

Motivations	2D-EMD	Conclusion
000	000000000000	00
		9/20
Pronosed method		

• Decomposition of \mathbf{a}_{k-1} into $(\mathbf{a}_k, \mathbf{d}_k)$ based on optimization procedure.

$$\mathsf{Find} \quad (\hat{\mathbf{a}}_k, \hat{\mathbf{d}}_k) \in \operatorname*{Argmin}_{(\mathbf{a}, \mathbf{d})} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi_k(\mathbf{a}) + \psi_k(\mathbf{d})$$

- ϕ_k imposes the trend behavior to \mathbf{a}_k (smoothness) : Total Variation.
- ψ_k imposes the IMF behavior to \mathbf{d}_k

Motivations	2D-EMD	Conclusion
000	000000000000	00
		10/20

- Constraint applied separately on rows, columns, diagonals and anti-diagonals of d.
- Example of the ℓ -th extremum of the *n*-th row constraint

Motivations	2D-EMD	Conclusion
000	000000000000	00
		10/20

- Constraint applied separately on rows, columns, diagonals and anti-diagonals of d.
- Example of the ℓ -th extremum of the *n*-th row constraint

$$\left| \mathbf{d}[n, i^{(k)}[\ell]] + \frac{\alpha_1^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell-1]] + \alpha_2^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell+1]]}{\alpha_1^{(k)}[\ell] + \alpha_2^{(k)}[\ell]} \right|$$

Motivations	2D-EMD	Conclusion
000	000000000000	00
		10/20
Chains of d		

- ► Constraint applied separately on rows, columns, diagonals and anti-diagonals of **d**.
- Example of the *n*-th row constraint

$$\sum_{\ell} \left| \mathbf{d}[n, i^{(k)}[\ell]] + \frac{\alpha_1^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell-1]] + \alpha_2^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell+1]]}{\alpha_1^{(k)}[\ell] + \alpha_2^{(k)}[\ell]} \right|$$

Motivations	2D-EMD	Conclusion
000	00000000000	00
		10/20

- ► Constraint applied separately on rows, columns, diagonals and anti-diagonals of **d**.
- Example of the constraint for every rows

$$\sum_{n \geq \ell} \left| \mathbf{d}[n, i^{(k)}[\ell]] + \frac{\alpha_1^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell-1]] + \alpha_2^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell+1]]}{\alpha_1^{(k)}[\ell] + \alpha_2^{(k)}[\ell]} \right|$$

Motivations	2D-EMD	Conclusion
000	00000000000	00
		11/20

► Constraint applied separately on rows :

$$\sum_{n} \sum_{\ell} \left| \mathbf{d}[n, i^{(k)}[\ell]] + \frac{\alpha_{1}^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell-1]] + \alpha_{2}^{(k)}[\ell] \mathbf{d}[n, i^{(k)}[\ell+1]]}{\alpha_{1}^{(k)}[\ell] + \alpha_{2}^{(k)}[\ell]} \right. \\ \left. \Rightarrow \boxed{\|M_{1}^{(k)}d\|_{1}} \right|$$

► Constraints on rows, columns, diagonals and antidiagonals :

$$(\forall i \in \{1, \ldots, 4\}) ||M_i^{(k)}d||_1$$

► Resulting penalization term :

$$\psi_k(\mathbf{d}) = \sum_{i=1}^4 \lambda_i^{(k)} \| \mathcal{M}_i^{(k)} d \|_1$$
 with $\lambda_i^{(k)} > 0 \Rightarrow$ convex function

Motivations 000	2D-EMD 0000000●000000	Conclusion 00
		12/20
Criterion		

• For every
$$k = 1, \cdots K$$
 :

$$(\hat{\mathbf{a}}_k, \hat{\mathbf{d}}_k) \in \operatorname*{Argmin}_{(\mathbf{a}, \mathbf{d})} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi_k(\mathbf{a}) + \psi_k(\mathbf{d})$$

Motivations	2D-EMD	Conclusion
000	000000000000	00
		12/20

Criterion

• For every
$$k = 1, \cdots K$$
:

$$(\hat{\mathbf{a}}_k, \hat{\mathbf{d}}_k) \in \underset{(\mathbf{a}, \mathbf{d})}{\operatorname{Argmin}} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi_k(\mathbf{a}) + \psi_k(\mathbf{d})$$

φ_k(**a**) = η^(k) ||L **a**||_{2,1} with L = [H^{*}V^{*}]^{*} and η^(k) > 0
 H, V : linear operators horizontal/vertical finite differences || · ||_{2,1} : non-smooth proximable convex function

Motivations	2D-EMD	Conclusion
000	000000000000	00
		12/20

• For every
$$k = 1, \cdots K$$
:

$$(\hat{\mathbf{a}}_k, \hat{\mathbf{d}}_k) \in \underset{(\mathbf{a}, \mathbf{d})}{\operatorname{Argmin}} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi_k(\mathbf{a}) + \psi_k(\mathbf{d})$$

- $\phi_k(\mathbf{a}) = \eta^{(k)} \| L \mathbf{a} \|_{2,1}$ with $L = [H^* V^*]^*$ and $\eta^{(k)} > 0$ H, V: linear operators horizontal/vertical finite differences $\| \cdot \|_{2,1}$: non-smooth proximable convex function • $\psi_k(\mathbf{d}) = \sum_{i=1}^4 \lambda_i^{(k)} \| M_i^{(k)} d \|_1$ with $\lambda_i^{(k)} > 0$
- $\psi_k(\mathbf{d}) = \sum_{i=1}^{\tau} \lambda_i^{(n)} || M_i^{(n)} d ||_1$ with $\lambda_i^{(n)} > 0$ $M_i^{(k)}$: linear operators $|| \cdot ||_1$: non-smooth proximable convex function

Motivations	2D-EMD	Conclusion
000	000000000000	00
		12/20

Criterion

• For every
$$k = 1, \cdots K$$
:

$$(\hat{\mathbf{a}}_k, \hat{\mathbf{d}}_k) \in \underset{(\mathbf{a}, \mathbf{d})}{\operatorname{Argmin}} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi_k(\mathbf{a}) + \psi_k(\mathbf{d})$$

- φ_k(**a**) = η^(k) ||L **a**||_{2,1} with L = [H*V*]* and η^(k) > 0 H, V : linear operators horizontal/vertical finite differences || · ||_{2,1} : non-smooth proximable convex function
 ψ_k(**d**) = Σ⁴_{i=1} λ^(k)_i ||M^(k)_id||₁ with λ^(k)_i > 0 M^(k)_i : linear operators || · ||₁ : non-smooth proximable convex function
- Non-smooth convex optimization problem.

Motivations	2D-EMD	Conclusion
000	000000000000	00
		12/20

• For every
$$k = 1, \cdots K$$
 :

iterion

$$(\hat{\mathbf{a}}_k, \hat{\mathbf{d}}_k) \in \operatorname*{Argmin}_{(\mathbf{a}, \mathbf{d})} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \phi_k(\mathbf{a}) + \psi_k(\mathbf{d})$$

- φ_k(**a**) = η^(k) ||L **a**||_{2,1} with L = [H*V*]* and η^(k) > 0 H, V : linear operators horizontal/vertical finite differences || · ||_{2,1} : non-smooth proximable convex function
 ψ_k(**d**) = Σ⁴_{i=1} λ^(k)_i ||M^(k)_id||₁ with λ^(k)_i > 0 M^(k)_i : linear operators || · ||₁ : non-smooth proximable convex function
- Non-smooth convex optimization problem.
- Solved with Condat-Vũ primal-dual splitting algorithm [Condat, 2013, Vũ, 2013].

Motivations 000	2D-EMD ∞∞∞∞∞∞∞∞∞∞∞∞∞	Conclusion 00
		13/20
2D–EMD Algorithm		

$$\begin{array}{l} \text{STEP 1 - Initialization} \\ \text{Set } \mathbf{a}_0 = \mathbf{x}, \\ \text{Choose the number of IMFs } K \text{ to be extracted}, \\ \text{Set } k = 1. \\ \text{STEP 2 - 2D proximal mode decomposition : extract } \mathbf{a}_k \text{ and } \mathbf{d}_k \text{ from } \mathbf{a}_{k-1}. \\ \text{Compute } (M_i^{(k)})_{1 \leq i \leq 4} \text{ from } \mathbf{a}_{k-1}, \\ \text{Compute } \mathbf{a}_k \text{ and } \mathbf{d}_k \text{ by minimizing the convex criterion :} \\ (\mathbf{\hat{a}}_k, \mathbf{\hat{d}}_k) = \operatorname{Argmin}_{(\mathbf{a},\mathbf{d})} \|\mathbf{a}_{k-1} - \mathbf{a} - \mathbf{d}\|_2^2 + \eta^{(k)} \|L \mathbf{a}\|_{2,1} + \sum_{i=1}^4 \lambda_i^{(k)} \|M_i^{(k)}d\|_1 \\ \text{While } k < K, \text{ set } k \leftarrow k+1 \text{ and return to STEP 2.} \end{array}$$

Motivations 000	2D-EMD ○○○○○○○○●○○○○	Conclusion 00
		14/20
Experiments		

2D-EMD	Conclusion
0000000000000	00
	14/20
	2D-EMD 000000000000000000000000000000000000

Motivations	2D-EMD	Conclusion
000	00000000000000	00
		14/20
_		
Experiments		

х

Motivations 000	2D-EMD 00000000000000	Conclusion 00
		14/20
Experiments		

 \Rightarrow The components are not separated

Motivations	2D-EMD	Conclusion
000	0000000000000	00
		14/20
Experiments		

Motivations	2D-EMD	Conclusion
000	0000000000000	00
		14/20
Experiments		

Motivations	2D-EMD	Conclusion
000	00000000000000	00
		14/20
Experiments		

Motivations 000	2D-EMD 00000000000000	Conclusion 00
		14/20
Experiments		

 $\begin{array}{c} \textbf{x} \\ \Rightarrow \text{Scale mixing} \end{array}$

Motivations 000	2D-EMD ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞	Conclusion 00
		14/20
Experiments		

Motivations 000	2D-EMD 00000000000000	Conclusion 00
		14/20
Experiments		

Motivations 000	2D-EMD 00000000000000	Conclusion 00
		14/20
Experiments		

 \mathbf{d}_2

Motivations 000	2D-EMD	Conclusion 00
		14/20
Experiments		

 \Rightarrow EMD behavior : extract fastest oscillations

Motivations	2D-EMD	Conclusion
000	00000000000000	00
		15/20

Spectral analysis

1D Hilbert Transform	2D Riesz Transform
$x_h = h * x$	$\mathbf{x}_r = (h^{(1)} * \mathbf{x}, h^{(2)} * \mathbf{x}) = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$
$H(\omega)=-j\omega/ \omega $	$H^{(i)}(\underline{\omega}) = -j\omega_i / \underline{\omega} \text{ for } i = \{1, 2\}$ $\underline{\omega} = (\omega_1, \omega_2)$

Analytic signal :	Monogenic signal :
$x_a = x + jx_h = \alpha e^{j\xi}$	$\mathbf{x}_m = (\mathbf{x}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)})$
$\alpha = x_{a} = \sqrt{\left(x\right)^{2} + \left(x_{h}\right)^{2}}$	$oldsymbol{lpha} = \sqrt{ig(\mathbf{x} ig)^2 + ig(\mathbf{x}^{(1)} ig)^2 + ig(\mathbf{x}^{(2)} ig)^2}$
$\xi = \arg(x_a) = \arctan\left(\frac{x_b}{x}\right)$	$oldsymbol{\xi} = rctan\left(rac{\sqrt{\left(\mathbf{x}^{(1)} ight)^2 + \left(\mathbf{x}^{(2)} ight)^2}}{\mathbf{x}} ight)$
	$oldsymbol{ heta}={\sf arctan}({\sf x}^{(2)}/{\sf x}^{(1)})$

Motivations	2D-EMD	Conclusion
000	000000000000000	00
		16/20
E to the second s		

Experiments

• IEMD + Monogenic analysis (θ_k)

Votivations	2D-EMD	Conclusion
000	000000000000000000000000000000000000000	00
		16/20
E		

Experiments

• IEMD + Monogenic analysis (θ_k)

\Rightarrow Poor results due to bad separation

Motivations	2D-EMD	Conclusion
		16/20
Experiments		

• TV-G decomposition + Monogenic analysis (θ_k)

Motivations 000	2D-EMD 000000000●00	Conclusion 00
		16/20
Experiments		

• TV-G decomposition + Monogenic analysis (θ_k)

\Rightarrow Poor results due to scale mixing

Motivations 000	2D-EMD 00000000000000000	Conclusion 00	
		16/20	
Experiments			
• Proposed method + Monogenic analysis (θ_k)			
d 1	$ heta_1$	Colormap of $oldsymbol{ heta}_1$	

Motivations 000	2D-EMD ○○○○○○○○○○●○○	Conclusion 00
		16/20
Experiments		
► Proposed method +	Monogenic analysis $(\boldsymbol{ heta}_k)$	
d ₂	$ heta_2$	Colormap of $ heta_2$

Motivations	2D-EMD	Conclusion
000	000000000000000	00
		17/20

Conclusion 00 17/20

Conclusion 00 17/20

Conclusion 00 17/20

Conclusion 00 17/20

Conclusion 00 18/20

Proposed method on real data : monogenic analysis

\Rightarrow Extract smallest waves.

Conclusion 00 18/20

Proposed method on real data : monogenic analysis

\Rightarrow Extract a secondary wave.

Conclusion 00 18/20

Proposed method on real data : monogenic analysis

\Rightarrow Extract the 2 longest waves.

Motivations	2D-EMD	Conclusion
000	000000000000000000000000000000000000000	•0
		19/20
Conclusions		

- ► Convergence guarantees.
- Good numerical results.
- Flexible approach due to various possible choices for ϕ_k , ϕ_k , and φ_k .
- ► Robustness to sampling effects and allows to deal with non-smooth trend.

Motivations 000	2D-EMD 000000000000	Conclusion ○●
		20/20
References		

- N. Pustelnik, P. Borgnat, and P. Flandrin, "A multicomponent proximal algorithm for Empirical Mode Decomposition," EUSIPCO, Bucharest, Romania, 27-31 August, 2012.
- N. Pustelnik, P. Borgnat, and P. Flandrin, "Empirical Mode Decomposition revisited by multicomponent non smooth convex optimization," Signal Processing, vol. 102, pp. 313-331, Sept. 2014.
- ► J. Schmitt, N. Pustelnik, P. Borgnat, and P. Flandrin, 2D Hilbert-Huang Transform, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Florence, Italy, May 4-9, 2014
- ► J. Schmitt, N. Pustelnik, P. Borgnat, P. Flandrin, L. Condat, 2-D Prony-Huang Transform : A New Tool for 2-D Spectral Analysis, IEEE Trans. Image Proc., 2014.