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Abstract— Early acidosis detection and asphyxia prediction in
intrapartum fetal heart rate is of major concern. This contribu-
tion aims at assessing the potential of the Scattering Transform
to characterize intrapartum fetal heart rate. Elaborating on
discrete wavelet transform, the Scattering Transform performs
a non linear and multiscale analysis, thus probing not only
the covariance structure of data but also the full dependence
structure. Applied to a real database constructed by a French
public academic hospital, the Scattering Transform is shown to
catch relevant features of intrapartum fetal heart rate time
dynamics and to have a satisfactory ability to discriminate
Normal subjects from Abnormal.

I. MOTIVATION, RELATED WORKS AND CONTRIBUTIONS

Context: Intrapartum fetal surveillance. Electronic fetal
surveillance during labor aims at predicting asphyxia and
thus at the reduction of subsequent fetal and neonatal mortal-
ity and morbidity. In clinical routine, electronic surveillance
is based on monitoring cardiotocogram (CTG), i.e., fetal
heart rate (FHR) and uterine contractions [1]. CTG is as-
sessed by obstetricians according to FIGO guidelines, which
are mostly based on temporal features (baseline estimation,
long-term variability, accelerations and decelerations). It is
considered that abnormal CTG may suggest deterioration of
fetal well-being and requires rapid action by obstetricians
(e.g., operative delivery). While CTG monitoring enables
detection of intrapartum acidosis with high sensitivity, strict
adherence to FIGO rules leads to unnecessary operative
delivery decisions for a large number of cases where post-
birth exams indicate non-stressed newborns [2]. Reducing
the False Positive rate thus constitutes a significant public
health stake, as operative deliveries may come with severe
immediate or later consequences for both the mother and/or
the newborn. In that context, FHR time series analysis be-
yond FIGO criteria has aroused considerable research efforts
(e.g. [3]).
Related works: Intrapartum fetal heart rate charac-
terization. Following the seminal work in [4] for adult
heart rate characterization, and aiming at going beyond
FIGO static temporal and global patterns description by
taking into account temporal dynamics (correlations in time),
spectral analysis has been massively used for the analysis of
intrapartum FHR (e.g., [5]). Essentially, it relies on splitting
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the spectrum into frequency bands and measuring the respec-
tive amounts of energy in each band. Spectrum estimation
for intrapartum FHR however suffers from two important
shortcomings: Intrapartum FHR appears much less stationary
than adult heart rate does, because of significant baseline
variations, the occurrence of decelerations, and, foremost, the
frequency band split is lead by well documented respiratory
and autonomous nervous system regulation mechanisms in
adults, that are both immature and not well document for
intrapartum FHR. To avoid the band splitting issue, the
paradigm of scale invariance (self-similarity, long memory),
has been put forward, that essentially states that all frequen-
cies (or scales) are equally contributing to time dynamics.
This naturally leads to the use of multiscale (or wavelet-
based) analysis. Wavelet analysis, which can also be read as
a time-varying representation of data, explicitly addresses the
non-stationarity issue and have thus been significantly used
to study intrapartum FHR [6], [7], [8], [9].

Because intrapartum FHR time series display significant
departures from Gaussianity, it has also been pointed out
that it can be fruitful to go beyond second order statistical
analysis (correlation, spectrum estimation). This has been
envisaged along two very different directions: Either via
the estimation of entropy rates, which combines temporal
dynamic to joint probability analyses [10]; or via multifractal
analysis that characterizes temporal dynamics fluctuations
from a large range of (both positive and negative) statistical
orders [6], [7], [8], [9], [11]. Both approaches suffer from
severe difficulties in the estimation of joint distributions or
of higher moments.
Goals and Contributions. In that context, the present
contribution aims at exploring the potential of a recently
introduced non linear time series analysis tool, referred to as
Scattering Transform. [12]. A scattering transform is a non-
linear multiscale transform which was shown to be highly
effective to classify audio signals, image textures, and to
analyze multifractal properties [13], [14]. It computes high
order statistical information by iterating on wavelet trans-
forms, as explained in Section II. A database of intrapartum
FHR, described in Section III, has been constructed by obste-
tricians, from selection in a large CTG database collected at
Femme-Mère-Enfant (Woman-Mother-Child) academic Hos-
pital (HFME), in Lyon France. It contains (15) subjects with
abnormal outcomes whose CTG where (correctly) classified
by FIGO rules to Abnormal, and (30) subjects with normal
outcomes, whose CTG classified by FIGO rules either (cor-
rectly) to normal (15 subjects) or (incorrectly) to abnormal
(15 subjects). Using this database, the benefits and potentials



of scattering transforms for intrapartum FHR characterization
are explored in details in Section IV, with emphasis on the
analysis of the potential reduction of the False Positive rate.

II. SCATTERING TRANSFORM

A scattering transform iteratively computes the modulus
of complex dyadic wavelet transforms [12]. Let X(t) denote
the time series to analyze. A complex wavelet ψ(t) is a band-
pass filter, supported over positive frequencies. Let ψj(t) =
2−jψ(2−jt) be the dilation of ψ by 2j . A complex dyadic
wavelet transform computes the convolution X ?ψj(t) at all
scales 2j and at all times t.

First order scattering coefficients are defined as the time
average of wavelet coefficient modulus:

SX(j1) = 2−J
2J∑
t=1

|X ? ψj1(t)| . (1)

where 2J is the signal size. The SX(j1) are computed up
to a coarsest scale jm < J : 1 ≤ j1 ≤ jm.

The information lost by averaging |X ? ψj1 | is recovered
by computing its wavelet coefficients {|X ?ψj1 | ?ψj2(t)}j2 .
The amplitude of these new coefficients is averaged in time
at all scales 2j2 , such that: 2jm ≥ 2j2 > 2j1 , and normalized
by first order coefficients (1), which defines the second order
scattering coefficients:

SX(j1, j2) =

∑2J

t=1 ||X ? ψj1 | ? ψj2(t)|∑2J

t=1 |X ? ψj1(t)|
. (2)

Since 2jm ≥ 2j2 > 2j1 ≥ 1, there are jm first order
coefficients SX(j1) and jm(jm−1)/2 second order scatter-
ing coefficients SX(j1, j2). A scattering transform computes
coefficients of any order m by averaging in time the values
of m successive wavelet convolutions and modulus [12].
In this study, we concentrate on first and second order
scattering coefficients which carry the most important signal
information for classification and scaling analysis [14], [13].

If X(t) is a realization of a scaling process, then averaging
several realizations of SX(j1) computes an expected values
which can be shown to decay like 2j1H where H is the Hurst
exponent measuring long range second order correlations.
In this case, one can also prove [14] that averaging several
realizations of SX(j1, j2) yields a function that only depends
upon j1 − j2 and which decays like 2(j1−j2)z , where this
second exponent z depends upon the scaling properties of
higher order moments of X . It characterizes non-Gaussian
behavior and discriminates different types of multiscale pro-
cesses. In the following, we shall see that it provides relevant
information to characterize FHR status.

III. DATABASE

Data Collection. Intrapartum CTG has been routinely
monitored at HFME for more than 30 years, continuously
for fetus with initial intermediate FHR during labor or with
high risk of fetal asphyxia (post-date delivery, intra-uterine
growth restriction, diabetes). CTG is currently aquired using
scalp electrode STAN 21 or 31 systems, 12bit resolution,

500Hz sampling rate, (STAN, Neoventa Medical, Moelndal,
Sweden), that outputs lists of R-peak occurrence in ms
{tn}n=1,...,N . Umbilical cord artery acid-base status was also
systematically recorded for each newborn, with obstetrician
annotations motivating the decision for operative delivery.
Labor and delivery were completed according to the STAN
clinical guidelines.
Database. Subjects have been carefully selected by a
referent obstetrician to create a database representative of
typically observed CTGs and umbilical cord pH describing
fetal acid-status just before delivery. They were grouped into
3 classes:
i) FIGO-TN: 15 fetuses with normal fetal outcome (defined
as Apgar score of 10 at 5 minutes of life and arterial cord
pH > 7.30, hence non-acidotic thus healthy) and CTG
classified as normal – True Negatives (TN);
ii) FIGO-TP: 15 fetuses with respiratory fetal acidosis
(umbilical arterial pH < 7.05, hence abnormal) and CTG
classified as abnormal (hence correctly diagnosing fetal-state
as abnormal) – True Positives (TP);
iii) FIGO-FP: 15 fetuses with normal fetal outcome (Apgar
score of 10, arterial cord pH > 7.30, hence healthy), yet with
abnormal CTG (hence incorrectly diagnosed as abnormal) –
False Positives (FP).
Preprocessing. As often done in intrapartum FHR char-
acterization [15], [16], the lists of R-peaks were trans-
formed into regularly sampled beat-per-minute (bpm) time
series, X(t), by linear interpolation of the measurements
{(tn/1000, 60000/(tn+1− tn))}n=1,...,N . The sampling fre-
quency was set to fs = 8 Hz, FHR can be checked to carry
no significant information beyond 3 to 4Hz. Interpolation
at higher fs has been observed to yield no improvement in
classification.

IV. SCATTERING OF INTRAPARTUM FETAL HR

Fig. 1. Average of log2 SXc(j1) versus j1 (a) and of log2 SXc(j1, j2)
versus j2 − j1, for j1 = 1 (b), j1 = 2 (c), j1 = 3 (d), computed over 15
realizations for each c = FIGO-TN, FIGO-TP, FIGO-FP. Thick error bars
corresponds to ±1 standard deviation, measured within classes, while the
thin error bars corresponds to the extreme observations within each class.



TABLE I
CORRELATION BETWEEN SCALING EXPONENTS.

C ĤS
c , H

L
c ĤS

c , ẑc(1) ĤS
c , ẑc(2) ĤS

c , ẑc(3)

FIGO-TP ρ = 0.96 ρ = 0.73 ρ = 0.57 ρ = −0.13
FIGO-FP ρ = 0.87 ρ = 0.57 ρ = 0.01 ρ = 0.25
FIGO-TN ρ = 0.83 ρ = 0.66 ρ = 0.77 ρ = 0.66

TABLE II
RANKSUM TESTS: P-VALUES

c Ĥc ẑc(1) ẑc(2) ẑc(3)

TP/TN 0.00 0.00 0.00 0.02
TP/FP 0.00 0.01 0.01 0.09
FP/TN 0.02 0.17 0.25 0.15

Analysis parameters. To assess the ability of scattering
to characterize acidosis, the present study concentrates, for
each of the 3 × 15 subjects, on the last 30-minute before
delivery, corresponding to 2J samples. Scattering coefficients
are computed, using a complex cubic spline wavelets [12],
at scales 2j1 and 2j2 , 1 ≤ j1 < j2 ≤ jm < J , where
2jm = 211 corresponds to 211/Fs = 256s ≈ 4 min,
considered as a typical time analysis unit by obstetricians
and as a satisfactory trade-off between time resolution and
stability in estimation. There are thus jm = 11 first order
coefficients SX(j1) and jm(jm − 1)/2 = 55 second order
coefficients SX(j1, j2).

The set of signals of each class c = FIGO-TN, FIGO-TP,
FIGO-FP are considered realizations of a random process
Xc(t). Fig. 1 displays averages of SXc(j1) and SXc(j1, j2)
across each of the classes c, in log-log coordinates, by
analogy to scale invariance analysis.
Scaling Analysis. Fig. 1 (a) shows that for each of the 3
classes, the averages of SXc(j1) behave as SXc(j1) ∼ 2j1Hc

for 2 ≤ j1 ≤ 10, where Hc denotes the Hurst exponent for
class c. It also shows, (b), (c) and (d), that SXc(j1, j2) '
2(j2−j1)zc(j1), for 3 ≤ j2 − j1 ≤ 8. It correspond to
time scales ranging from 2j1/fs × 23 to 2j1/fs × 28. For
example, with j1 = 2, scaling exists in the range 4 to 128s,
thus matching the scaling range observed for averages of
SXc(j1). This suggests to compute, by means on linear
regression, for the FHR times series of each subject of the
3 classes, the estimates ĤS

c and ẑc(j1) for j1 = 1, . . . jm.
For the same data and under same conditions, the Hurst

exponents has also been estimated with the wavelet-Leader
multifractal analysis tool detailed in [6]): ĤL

c . Estimates ĤS
c

and ĤL
c show high correlation coefficients (cf. Table I, first

column) and are found consistently to take values above
0.8 for all 3 classes, thus showing significant long range
correlations. This corroborates the analysis already reported
on this same database in [7], [8], [9].

As can also be seen in Table I, columns 2 to 4, correlation
coefficients between ĤS

c and ẑc(j1) are low, thus indicating
clearly that the SXc(j1, j2) conveys information related to
high order dependence structure of intrapartum FHR that are
not provided by the first order SXc(j1), which only depends
upon the covariance and hence upon second order moments.

The analysis reported above shows that the scaling ex-
ponents Ĥc and ẑc(j1) measured for each subject indepen-
dently, are robust features, probing the scaling properties of
the dependence structure of intrapartum FHR time series,
and thus extending the Hurst parameter related to scaling of
the sole covariance structure.
Intrapartum FHR classification. Fig. 1 also indicates
that the scattering coefficients of Class FIGO-FP tend to be
closer to that of Class FIGO-TN than to that of Class FIGO-
TP, a much desired property that tend to suggest that scaling
exponents Ĥc and ẑc(j1) may help in Intrapartum FHR clas-
sification. To quantify that observation, boxplots for ĤS

c and
ẑc(j1 = 2) are shown in Fig. 2 (a) and (b), complemented
with Table II that reports the p-values of Wilcoxon rank sum
tests, aiming at rejecting equality in mean for the ĤS

c and
ẑc(j1) for different pairs of classes. Boxplots and p-values
clearly indicates that, for any estimated scaling exponents,
Class FIGO-FP resembles more to Class FIGO-TN than to
Class FIGO-TP.

Experimentally, it is found that, amongst the second order
scaling exponents ẑc(j1), j1 = 2 yield the best classification
(showing the larger p-value for the pair FIGO-TN/FIGO-FP
with low p-value for the pair FIGO-TP/FIGO-FP). Therefore,
Fig. 2 (bottom left) displays the scatter plot ĤS

c versus ẑc(2),
for all subjects of the 3 classes: It clearly shows that Class
FIGO-TP lives in the top right corner while Class FIGO-
TN seats in the bottom left corner. A significant number of
FIGO-FP subjects stand close to Class FIGO-TN subjects.

For classification performance evaluation, given the small
number of subjects within each class, the recourse to ad-
vanced classification schemes (such as SVM, Logistic Re-
gression or PCA based procedures) fed by the vectors of
features ĤS

c and ẑc(j1) for each class, appears inappro-
priate. Instead, for this case study analysis, classification
performance are quantified in the ĤS

c versus ẑc(2) plot,
by considering that the Abnormal domain has a shape
arbitrarily chosen to be a rectangle. Thus, varying the shape
and size of the upper right rectangular Abnormal domain
permits to obtain the ROC Curve reported in Fig. 2 (bottom
right). It quantifies classification performance in terms of the
probability pD of correct detection, or sensitivity, of Abnor-
mal subjects (corresponding to Class FIGO-TP) against the
probability of False Alarms, pFA, on incorrect detection of
Normal subjects, or 1−specificity, (corresponding to Classes
FIGO-TN and FIGO-FP). This ROC Curve indicates very
satisfactory performance: The curve lives close to the upper
left corner (the Golden standard); The most difficult case
(pD = 1, i.e., all Abnormal subjects are detected - a stringent
requirement of clinicians) yields a pFA = 0.26, which
already significantly outperforms the pFA = 0.50 obtained
from FIGO-rules for the same database.

V. CONCLUSIONS AND FUTURE WORKS

In the present contribution, it has been shown that the joint
use of of only two scattering features ĤS

c and ẑc(j1) achieves
a satisfactory characterization of intrapartum FHR and effi-
cient discrimination between Normal and Abnormal subjects.
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Fig. 2. Classification Performance. Box plots (top row) for ĤS
c (a) and

ẑc(j1 = 2) (b). Within each boxplots, Classes are from left to right: FIGO-
TP, FIGO-FP, FIGO-TN. Scatter plot (c) of all subjects of the 3 classes for
in the ĤS

c versus ẑc(j1 = 2) domain and corresponding ROC Curve (d).

These features that consist of scaling exponents, measured
from the scattering coefficients SX(j1) and SX(j1, j2), thus
confirm that scaling is a central property enabling to char-
acterize intrapartum FHR time dynamics and enrich scaling
analysis: While first order scattering coefficients essentially
permits to measure Hurst exponent, second order coefficients
significantly enrich scaling analysis by enabling to quantify
scaling behaviors in the full dependence structure.

The results obtained from this small-size database are
promising. Further we are planning to develop this work
along different lines. First, as can be seen in Fig. 2 (bottom
right), a number of Normal subjects remain misclassified.
Comparisons against other features (FIGO-based; entropy-
based [10]; multifractal-based [9]) will be undertaken to see
whether, besides overall classification performance, the mis-
classified subjects are always the same or differ, when using
different types of features. Additionally mis-classifications
related to specific types of features will be correlated to
obstetricians annotations, to establish sub-classes of false
positives. Concentrating on the FIGO-FP subjects that are
not correctly classified using the scattering, might help to
figure out what property can actually discriminate the time
dynamics of such cases from that of actually Abnormal sub-
jects and to assess the role of decelerations in the difficulty
to correctly classify them. Second, instead of focusing on the
last 30 minutes before delivery, the Scattering Coefficients
will be computed along time, within sliding windows of
duration of 10 to 20 minutes. The optimal duration will
be studied in a systematic manner as the outcome of the
following trade-off: Obstetricians seek for shorter decision
time, but too short time window yields poorer estimation
and thus poorer classification performance. Third, the infor-
mation measured by the jm first order coefficients S(j1) and
jm(jm − 1)/2 second order coefficients S(j2) have been
so far summarized into the sole scaling exponents ĤS

c and

ẑc(j1), so that classification can be achieved by the joint
thresholding of those quantities, with no a priori reference
to a training set. We will however also study the whole set of
scattering coefficients as features used to feed more advanced
classification procedures. Fourth, scattering will be applied to
the classification of a very large database (∼ 4000 subjects)
being currently gathered at HFME, Lyon. In that context, the
small-size database studied here, will be considered as the
training set for the classification of the much larger database
and more advanced classification procedure will be used.

REFERENCES

[1] E. Chandraharan and S. Arulkumaran, “Prevention of birth asphyxia:
responding approprietly to cardiotocograph (ctg) traces,” Best Pract.
Res. Clin. Obstet. Gynaecol., vol. 21, pp. 609–624, 2007.

[2] I. Amer-Wahlin, C. Hellsten, H. Hagberg, A. Herbst, I. Kjellmer,
H. Lilja, C. Mansson, L. Martensson, P. Olofsson, A. Sundstrom, and
K. Marsál, “Cardiotochography only versus cardiotochography plus
st analysis of fetal electrocardiogram for intrapartum fetal monitoring:
a swedish randomised controlled,” Trial. Lancet., vol. 358, no. 9281,
pp. 534–538, 2001.

[3] B.D. Fulcher, A.E. Georgieva, C.W.G. Redman, and N.S. Jones,
“Highly comparative fetal heart rate analysis,” in Engineering in
Medicine and Biology Society (EMBC), 2012 Annual International
Conference of the IEEE, 28 2012-sept. 1 2012, pp. 3135 –3138.

[4] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Berger,
and R. J. Cohen, “Power spectrum analysis of heart rate fluctuation:
a quantitative probe of beat-to-beat cardiovascular control,” Science,
vol. 213, no. 4504, pp. 220–222, 1981.

[5] J. Van Laar, M. Porath, C. Peters, and S. Oei, “Spectral analysis
of the fetal heart rate variability for fetal surveillance: review of the
literature,” Acta Obstetrica et Gynecologica, vol. 87, pp. 300–306,
2008.

[6] H. Wendt, P. Abry, and S. Jaffard, “Bootstrap for empirical multifractal
analysis,” IEEE Signal Proc. Mag., vol. 24, no. 4, pp. 38–48, 2007.
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Cl. Gharib, P. Gaucherand, and M. Doret M. Doret Cl. Gharib,
P. Gaucherand, “Methodology for multifractal analysis of heart rate
variability: From LF/HF ratio to wavelet leaders,” in Proceeding of
the IEEE Engineering in Medicine and Biology Conference. (IEEE
EMBS), Buenos Aires, Argentina, 2010.

[9] M. Doret, H. Helgason, P. Abry, P. Gonçalvès, Cl. Gharib, and
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