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Abstract
A Gaussian mixed fractional process {Y (t)}t∈R = {PX(t)}t∈R is a multivariate stochastic
process obtained by pre-multiplying a vector of independent, Gaussian fractional process
entries X by a nonsingular matrix P . It is interpreted that Y is observable, while X is
a hidden process occurring in an (unknown) system of coordinates P . Mixed processes
naturally arise as approximations to solutions of physically relevant classes of multivariate
fractional stochastic differential equations under aggregation. We propose a semiparametric
two-stepwavelet-basedmethod for estimating both the demixingmatrix P−1 and thememory
parameters of X . The asymptotic normality of the estimator is established both in continuous
and discrete time. Monte Carlo experiments show that the estimator is accurate over finite
samples, while being very computationally efficient. As an application, we model a bivariate
time series of annual tree ring width measurements.
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1 Introduction

A R
n-valued multivariate stochastic process is called mixed when it has the form

{Y (t)}t∈R = {PX(t)}t∈R, (1.1)

where P is a square, nonsingular real matrix and

{X(t)}t∈R = {(X1(t), . . . , Xn(t))
T }t∈R (1.2)

is a vector of independent processes. The process Y = {Y (t)}t∈R is assumed observable.
The process X = {X(t)}t∈R can be interpreted either as a hidden process whose components
get scrambled by a mixing matrix parameter P , or as one occuring in a different system
of coordinates. A wavelet is a unit L2(R)-norm function that annihilates a certain number
of polynomials [see (2.4)]. In this paper, we propose a new semiparametric, wavelet-based
statistical method for a subclass of processes of the form (1.1), namely, we assume the hidden
process X is component-wise Gaussian, has stationary increments of any order (including
zero), and has fractional memory, namely, the covariance function of its increments has
hyperbolic decay. Our perspective is that of scaling analysis, i.e., of retrieving the scaling
laws governing the behavior of the observable Y (Mandelbrot and Ness 1968; Flandrin 1992;
Wornell and Oppenheim 1992).

As a modeling framework, processes such as (1.1) bring together the literatures on frac-
tional stochastic processes and on blind source separation in signal processing. The former
is well-established for the univariate case, both for Gaussian and non-Gaussian instances
(e.g., Taqqu 1975, 1979; Dobrushin and Major 1979; Granger and Joyeux 1980; Hosking
1981; Fox andTaqqu 1986;Dahlhaus 1989;Beran 1994;Robinson 1995a, b; Stoev et al. 2002;
Bardet and Tudor 2010; Beran et al. 2013; Bardet and Tudor 2014; Clausel et al. 2014a, b).
Partly motivated by several applications such as in signal processing, neuroscience, eco-
nomics and finance, and Internet traffic, the volume of contributions onmultivariate fractional
processes has been expanding at a fast pace (Hosoya 1996, 1997; Lobato 1997; Marinucci
and Robinson 2000; Shimotsu 2007; Becker-Kern and Pap 2008; Nielsen 2011; Sela and
Hurvich 2012; Kechagias and Pipiras 2015a, b, in the time and Fourier domains, and Wendt
et al. 2009; Amblard and Coeurjolly 2011; Amblard et al. 2012; Coeurjolly et al. 2013;
Achard and Gannaz 2016, in the wavelet domain). On the other hand, the literature on blind
source separation is well-established for ARMA-like signals, often driven by applications
such as in acoustics or image analysis (e.g., Belouchrani et al. 1997; Cardoso 1998; Pham
and Cardoso 2001; Moreau 2001; Yeredor 2002; Parra and Sajda 2003; Stone 2004; Ziehe
et al. 2004; Choi et al. 2005; O’Grady et al. 2005; Fevotte and Godsill 2006; Li et al. 2009;
Comon and Jutten 2010).

The main motivation for this paper is to provide statistically accurate and computationally
efficient estimation methodology for a physically relevant subclass of multivariate fractional
processes. There are at least two reasons to consider (Gaussian) mixed fractional models.

First, it was recently shown that processes of the form (1.1) naturally arise as approxima-
tions to solutions of physically comprehensive classes of multivariate fractional stochastic
differential equations (SDEs) under aggregation (Tsai et al. 2018). In other words, if we
digitalize one such solution {Y (t)}t≥0 by aggregation over intervals of length �, i.e.,

Y�
s =

∫ s�

(s−1)�
Y (u)du, (1.3)
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then, for large � and some matrix of coordinates P ,

Y�
s ≈ PXs, s ∈ N ∪ {0} (1.4)

(for more details, see Sect. 2.2). It is well known that many real data sets—e.g., tree ring
widths, river flows, rainfall or network traffic—are obtained by means of aggregation over
a certain time interval, which is indicative of the usefulness of (1.1). Since the latter is a
substantially more parsimonious model than a general multivariate fractional process, it is
natural to investigate its suitability for scientific or technological applications where dimen-
sion plays some role. This motivation is especially significant in the modern era of “data
deluge” or availability of large and complex multidimensional data sets (e.g., Bell et al.
2009; Ball and Brunner 2010; Chen and Zhang 2014).

Second, multivariate fractional processes of the form (1.1) are also closely related to
the so-named operator self-similar (o.s.s.) random processes and fields. A R

n-valued o.s.s.
process Y satisfies the (operator) scaling relation

{Y (ct)}t∈R L= {cHY (t)}t∈R, c > 0, (1.5)

for a (Hurst) square matrix exponent H , where cH is defined by the matrix exponential

exp{log c H} = ∑∞
k=0(log c H)k/k! and L= denotes the equality of finite dimensional dis-

tributions. The literature on operator self-similarity started in the early 1980s (Laha and
Rohatgi 1981; Hudson and Mason 1982) and significantly expanded in the past two decades
(e.g., Maejima and Mason 1994; Mason and Xiao 2002; Biermé et al. 2007; Xiao 2009;
Guo et al. 2009; Didier and Pipiras 2011, 2012; Clausel and Vedel 2011, 2013; Li and Xiao
2011; Dogan et al. 2014; Puplinskaitė and Surgailis 2015; Didier et al. 2017, 2018; Abry and
Didier 2018a). In the context of o.s.s. and related processes, the estimation of the matrix P
is itself of great interest, since it makes up the system of coordinates of the Hurst matrix (see
Example 2.2). However, numerically speaking, parametric M-estimation of the whole matrix
H is notoriously intricate and calls for ad hoc optimization methods even in low dimension
(c.f. Frecon et al. 2016).

One key statistical challenge in the scaling analysis of Y is to retrieve the fractional
information (on memory parameters or the related Hurst exponents) contained in X . From
a mathematical standpoint, the effect of mixing scaling laws can be illustrated by means of
the expression for the spectral density fY of the mixed process Y . For example, fractional
Brownian motion (fBm) is the only Gaussian, self-similar, stationary increment stochastic
process (e.g., Embrechts and Maejima 2002; Taqqu 2003), and its increment process is
called fractional Gaussian noise (fGn). Suppose the hidden process X is a bivariate vector
of independent fGn entries with memory parameters −1/2 < δ1 < δ2 < 1/2. For x �= 0,
each entry of the (continuous time) spectral density function of the observable Y takes the
form

fY (x)i1i2 =
∣∣∣∣e

ix − 1

ix

∣∣∣∣
2

{c1,i1i2 |x |−2δ1 + c12,i1i2 |x |−(δ1+δ2) + c2,i1i2 |x |−2δ2}, i1, i2 = 1, 2,

(1.6)
for so-named amplitude coefficients c• [n.b.: (1.6) can be obtained from (2.22)]. The
univariate-inspired approach of setting up a Fourier-domain log-regression has to cope with
the double-sided challenge of mixed power laws, namely, what can be called the dominance
and amplitude effects. On one hand, under mild assumptions on the amplitude coefficients
in (1.6), the dominant power law |x |−2δ2 always prevails around the origin of the spec-
trum. On the other hand, and paradoxically, even if the estimation of δ2 is the target, the
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magnitude of the amplitude coefficients themselves can arbitrarily bias the estimate over
finite samples by masking the dominant power law (c.f. Abry and Didier 2018b, Introduc-
tion).

From a different perspective that is not pursued in this paper, under assumptions there
are linear combinations of the entries of Y that reduce entrywise fractional memory. These
instances form cointegrated systems. One reason to study the latter is that, in general, whether
or not a cointegration relation is present influences the asymptotic distributions of estimators.
This is a well-studied subject in the econometric literature (see, for instance, Marinucci and
Robinson 2001; Robinson and Yajima 2002; Robinson 2008; Hualde and Robinson 2010;
Nielsen and Frederiksen 2011; Shimotsu 2012).

The two-step nature of the proposed wavelet-based methodology reflects a combination
of elements from the two largely separate research traditions of blind source separation
(demixing) and fractional modeling (scaling analysis). More precisely, the method can be
summed up as follows.

(S1) demixing step (change of coordinates) generate an estimator P̂−1 of the demixing
matrix P−1 by jointly diagonalizing two wavelet variance matrices [i.e.,W (2 j ) at two
different octaves j ; see (2.7)] of the mixed process Y ;

(S2) memory parameter estimation step estimate the memory parameters δ1, . . . , δn by
performing a univariate wavelet log-regression on each entry of the demixed process

X̂ = P̂−1Y (Veitch and Abry 1999; Moulines et al. 2007a, b, 2008).

(c.f. Sect. 3.1, which contains an overview of the method). In the preliminary study Didier
et al. (2015), presented without proofs, a demixing estimator is proposed for P that draws
upon the joint diagonalization of sample covariance matrices. However, it is well known
that covariance matrices are sensitive to contamination by trends, that they can be strongly
dependent, and that estimators based on sample covariance matrices may be asymptotically
non-Gaussian (see Breuer and Major 1983, Theorem 1, Coeurjolly 2001, Proposition 1,
or Pipiras and Taqqu 2017, Chapter 5). Among other well-documented benefits, a wavelet
framework tackles all these issues simultaneously, as we now briefly describe.

(i) Computational efficiency the computational complexity of thewavelet transformcanbe
even lower than that of the Fourier transform. For finite filters such as the Daubechies,
it is of the order O(ν), where ν is the sample size (see Daubechies 1992, or Mallat
1999, p. 259).

(i i) Robustness with respect to contamination by trends since wavelet filters contain an
embedded differencing operator, they are insensitive to polynomial trends of order
lower than the chosen number of vanishing moments Nψ—see (2.4) (Flandrin 1992;
Abry andVeitch 1998; Craigmile et al. 2005 or Percival andWalden 2006, Section 9.4).
For the same reason, for a large enough Nψ , wavelet coefficients {D(2 j , k)}k∈Z ∈ R

n

are stationary in the shift parameter k at every octave j [see (2.5) and Remark 2.4]. This
makes wavelets a natural theoretical framework for stochastic systems with stationary
increments of arbitrary order.

(i i i) Quasi-decorrelation the wavelet transform approximately decorrelates a wide range of
stochastic processes (Masry 1993; Bardet 2002). This paves the way for the construc-
tion of log-linear regression- or approximate maximum likelihood-based estimators
with good finite-sample properties (e.g., Veitch andAbry 1999, or Percival andWalden
2006, Section 9.3). Basing step (S1) on wavelet variance matrices of Y ensures that the

demixing estimator P̂−1 is consistent and asymptotically normal even for relatively
small values of Nψ (Theorem 3.1). In addition, the estimator of the vector of memory
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parameters generated at step (S2) is also consistent and jointly asymptotically normal
(Theorem 3.2).

Mathematically, we provide two extensions of Theorems 3.1 and 3.2. First, with a view
toward hypothesis testing, the consistency and asymptotic normality of the estimators gen-
erated at both steps (S1) and (S2) are shown to hold under mild assumptions even in
the presence of equal memory parameters (Corollary 3.1). Second, under the more real-
istic assumption that Y in (1.1) is observed in discrete time, the asymptotic properties
of the proposed estimators do not qualitatively change (Theorems C.2, C.3 and Corollary
C.1).

We stress that, entrywise, the hidden process X is not assumed to be exactly self-
similar, namely, it does not necessarily satisfy relation (1.5) for scalar memory parameters
[see (2.13), (2.14) and (2.18) and the discussion in Example 2.2].

We conducted broad Monte Carlo experiments for instances where X is made up of
independent fBm/fGn components. In dimension 4, the results show that the performance
of the proposed two-step estimation method is similar to that of semiparametric univariate
estimators of memory parameters over finite samples. Comparison with fully parametric
Whittle-type maximum likelihood estimation helps to show that the two-step method’s per-
formance over finite samples is quite accurate for semiparametric estimation in terms of
mean squared error even for relatively small sample sizes (of the order 210). Moreover, the
method bears the advantage of being computationally very fast, a key feature in the modeling
of multivariate systems.

Mixed fractional models were used in the work of Tsai et al. (2018) to fit data from
robotics. We use the two-step method to model a bivariate data set from bristlecone pine
tree rings from California. The two panels in Fig. 1 illustrate the effect of the demixing
(change of coordinates) step (S1), followed by scaling analysis. On the left, demixing causes
the scaling curves to decouple, which is evidence of distinct, hidden power laws in data.
The right panel displays the sample wavelet coherence function, akin to the Fourier domain
coherence function. Demixing turns significant correlations into nearly zero ones for most
octaves. This analysis shows that there is, indeed, evidence that a fractional SDE is a good
approximation to the underlying physical process (for details, see Sect. 5).

This research leads to a number of interesting questions. First, how often can real world
multivariate fractional phenomena be reasonablymodeled as an aggregation over the solution
of a fractional SDE? Driven by computational concerns, this is of special interest when some
degree of robustness vis-à-vis dimension is required. Second, with the purpose of modeling
non-Gaussian systems, what is the physical analogue of a fractional Gaussianmeasure-driven
SDE? Third, are there other classes of multivariate fractional (in particular, o.s.s.) processes
for which estimation of the coordinate system can be done in a computationally efficient way?
Fourth, can results on mixed fractional processes be used to inspire new developments in the
modeling of high-dimensional fractional systems, namely, the situation where the dimension
n itself is comparable to the sample size ν?

This paper is organized as follows. In Sect. 2, we lay out the notation, assumptions and
theoretical background of the paper. In Sect. 3, we construct the two-step wavelet-based
method and establish its asymptotic properties (Section C of the supplementary material
file Abry et al. (2018) contains the analogous results for discrete time measurements). Sec-
tion 4 contains all Monte Carlo studies. In Sect. 5, we analyze and model the aforementioned
tree ring data set. All proofs can be found in Abry et al. (2018), Online Appendix Sections
A–E, together with auxiliary results.
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Fig. 1 Left: log2 W̃ (2 j )i i (wavelet variances) versus j for bivariate tree ring data. Before the demixing step
(S1) (black), both functions log2 W̃ (2 j )11 and log2 W̃ (2 j )22 show scaling behavior with similar memory
parameter values clearly departing from 0 in the stationary range (−1/2, 1/2). This confirms the presence of
fractional memory. After the demixing step (S1), the functions log2 W̃ (2 j )11 and log2 W̃ (2 j )22 still display
scaling behavior, yet with quite distinct memory parameters, and clearly departing from 0. Right: wavelet
coherence function. Before the demixing step (S1) (black), the wavelet coherence function shows significant
(and nearly equivalent) correlations across all scales. After the demixing step (S1) (red), it shows nearly zero
correlation at all scales, which is evidence of successful demixing. (Color figure online)

2 Preliminaries

Before developing the statistical methodology in Sect. 3, in this section we set the notation
and some basic definitions (Sect. 2.1), we recap the connection between aggregation and
mixed processes (Sect. 2.2) and express the framework of assumptions on the observable
process Y and on the wavelet basis for continuous time measurements (Sect. 2.3).

2.1 Notation and definitions

The dimension of the mixed process Y is denoted by n ≥ 2 throughout the paper.
We shall use the following matrix notation. M(m, n, R) is the vector space of all m × n

real-valued matrices, whereas M(n, R) is a shorthand for M(n, n, R). GL(n, R) is the set of
invertiblematrices (general linear group), O(n) is the set ofmatrices O such that OO∗ = I =
O∗O (orthogonal group), where ∗ represents the matrix adjoint and T is reserved for vector
transpose. S(n, R), S≥0(n, R) and S>0(n, R) are, respectively, the space of symmetric, the
cone of symmetric positive semidefinite and the cone of symmetric positive definite matrices.
The symbol 0 represents a vector or matrix of zeroes. A block-diagonal matrix with main
diagonal blocks P1, . . . ,Pn or m times repeated diagonal block P is represented by

diag(P1, . . . ,Pn), diagm(P), (2.1)

respectively. The symbol ‖ · ‖ represents a generic matrix or vector norm. The �p entrywise
norm of the matrix A is denoted by

‖A‖�p = ‖(ai1,i2)i1=1,...,m
i2=1,...,n

‖�p =
( m∑
i1=1

n∑
i2=1

|ai1,i2 |p
)1/p

. (2.2)
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The Fourier transform of any function f ∈ L2(R) is defined by

f̂ (x) =
∫
R

f (t)e−ixt dt,

where equality holds in the L2(R) sense. For S = (si1,i2)i1,i2=1,...,n ∈ M(n, R), let

vecS(S) = (s11, s21, . . . , sn1, s22, s32, . . . , sn2, . . . , snn),

vecD(S) = (s11, s22, . . . , snn), vec(S) = (s11, . . . , sn1, s12, . . . , sn2, . . . , snn). (2.3)

In other words, the operator vecS(·) vectorizes the lower triangular entries of S, vecD(·)
vectorizes the diagonal entries of S, and vec(·) vectorizes all the entries of S. Note that the
expressions in (2.3) are defined as row vectors; this will make the notation simpler in several
statements.When establishing bounds,C denotes a positive constant whose value can change
from one inequality to the next.

A function ψ is called a wavelet when it satisfies
∫
R

ψ2(t)dt = 1,
∫
R

tqψ(t)dt = 0, q = 0, 1, . . . , Nψ − 1,
∫
R

t Nψ ψ(t)dt �= 0,

(2.4)

for some number Nψ ∈ N of so-named vanishing moments (Daubechies 1992). For any
stochastic process Y taking values in R

n , the vector wavelet transform of Y is naturally
defined as

R
n � D(2 j , k) =

∫
R

2− j/2ψ(2− j t − k)Y (t)dt, j ∈ N ∪ {0}, k ∈ Z, (2.5)

provided the integral in (2.5) exists in an appropriate sense. Under conditions [see (3.1)], the
wavelet spectrum (variance) at scale j is the positive semidefinite matrix

ED(2 j , k)D(2 j , k)∗ = ED(2 j , 0)D(2 j , 0)∗ =: EW (2 j ), (2.6)

regardless of k, and its natural estimator, the sample wavelet variance, is the random matrix

W (2 j ) = 1

K j

K j∑
k=1

D(2 j , k)D(2 j , k)∗, K j = ν

2 j
, j = j1, . . . , jm, (2.7)

for a total of
ν available (wavelet) data points. (2.8)

2.2 Aggregation andmixed processes

Recent work (Chan and Tsai 2010; Tsai et al. 2018) has established the connection between
aggregation procedures and the emergence of mixed processes. We sketch the basic idea
for the reader’s convenience. Many Langevin-type SDE systems have been proposed with
the purpose of modeling anomalous diffusion and non-Markovian dynamics (see, for
instance, Mason and Weitz 1995; Kou 2008; Didier et al. 2012; Lysy et al. 2016). A parsi-
monious multivariate fractional SDE model is given by

dY (t) = �Y (t)dt + �dBh(t), t ≥ 0, −�,� ∈ S>0(n, R), (2.9)
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where Bh(t) = (Bh1(t), . . . , Bhn (t))
T is a vector of independent fBm entries. In (2.9), the

Hurst parameters satisfy the relations

hi = δi − 1

2
,

1

2
< δi <

3

2
, i = 1, . . . , n, (2.10)

where δi , i = 1, . . . , n are the associatedmemory parameters. The solution {Y (t)}t≥0 of (2.9)
exists a.s. and generalizes the univariate fractional Ornstein–Uhlenbeck process (c.f. Cherid-
ito et al. 2003; Prakasa Rao 2010). Consider the case where the continuous time process
{Y (t)}t≥0 is digitalized by aggregation over intervals of length � as in expression (1.3).
Then, as � → ∞,

− diag(�−h1 , . . . ,�−hn )�−1�Y�
s

L→ (Bh1(s) − Bh1(s − 1), . . . , Bhn (s) − Bhn (s − 1))T ,

(2.11)

where
L→ denotes convergence of the finite dimensional distributions (Tsai et al. 2018, p. 5).

Therefore, for large �, the aggregate process Y�
s can be approximated by the mixed process

Ỹs := PXs, s ∈ N ∪ {0}. (2.12)

Recall that fGn is the increment process of fBm. In (2.12), Xs is a vector of n independent
fGn entries with Hurst parameters (2.10) and P = −�−1�diag(�h1 , . . . ,�hn ). Note that
the process (2.12) is a particular case of (1.1), with the latter restricted to discrete time.

2.3 Assumptions

Throughout the paper, unless otherwise stated, we assume the observable process has the
mixed form Y = PX for some coordinates matrix P , where X is made up of entrywise
fractional processes with stationary increments of any order, including zero.

The precise statements appear in assumptions (A1), (A2) and (A3) below. They describe,
respectively, the covariance structure of the hidden process X in the Fourier domain, and
regularity conditions on P and on the high frequency behavior of the components of X .
Assumption (A1): the observed process has the mixed form (1.1), where Xi , i = 1, . . . , n,
in (1.2) is either a Ni th (Ni ≥ 1) order covariance stationary process with harmonizable
representation

{Xi (t)}t∈R =
{ ∫

R

eitx −∑Ni−1
l=0

1
�! (it x)

�

(ix)Ni
|x |−(δi−Ni )gi (x)B̃(dx)

}
t∈R,

Ni − 1/2 ≤ δi < Ni + 1/2, (2.13)

or a covariance stationary process (i.e., Ni = 0) with harmonizable representation

{Xi (t)}t∈R =
{ ∫

R

eit x
eix − 1

ix
|x |−δi gi (x)B̃(dx)

}
t∈R, −1/2 ≤ δi < 1/2. (2.14)

By convention, the so-named memory parameters are ordered as

− 1/2 ≤ δ1 < δ2 < . . . < δn . (2.15)

In (2.13) and (2.14), B̃(dx) is a Gaussian random measure satisfying B̃(−dx) = B̃(dx) and
E|B̃(dx)|2 = dx .
Assumption (A2):

P ∈ GL(n, R), ‖p·�‖ = 1, (2.16)
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where p·�, � = 1, . . . , n, are the column vectors of P . Moreover,

pi(�),� > 0, � = 1, . . . , n, (2.17)

where i(�) = min{i = 1, . . . , n : pi� > 0}.
Assumption (A3): the C-valued functions gi (x) in (2.13) and (2.14) are bounded and, for
some small η > 0, satisfy

||gi (x)|2 − |gi (0)|2| < L|x |β, |gi (0)|, L > 0, i = 1, . . . , n, (2.18)

for any x ∈ (−η, η). In (2.18), β ∈ (1, 2] and satisfies

β + 1 < 2δ1 + 2α (2.19)

for some
α > 1. (2.20)

TheGaussian scheme represented by assumptions (A1–3) is quite general.Mathematically
speaking, it is closely related to the widely used framework constructed in Moulines et al.
(2007a, b, 2008), except that it is defined in continuous time (n.b.: the extension to discrete
time is provided in Section C of the supplementary file Abry et al. 2018). Assumption (A1)
expresses the entrywise processes Xi , i = 1, . . . , n, in terms of Cramér-Wold-type stochastic
integral representations (see Brockwell and Davis 1991, Section 4.8; Yaglom 1987, Section
24.3). Relations (2.13) and (2.14) are equivalent, respectively, to the covariance functions

EXi (s)Xi (t)

=
∫
R

( eisx −∑Ni−1
�=0

1
�! (isx)

�

(ix)Ni

)( eit x −∑Ni−1
�=0

1
�! (it x)�

(ix)Ni

)
|x |−2(δi−Ni )|gi (x)|2dx (2.21)

and

EXi (s)Xi (t) =
∫
R

ei(s−t)x
∣∣∣∣e

ix − 1

ix

∣∣∣∣
2

|x |−2δi |gi (x)|2dx (2.22)

for s, t ∈ R and i = 1, . . . , n.Note that, in (2.15), one incurs no loss of generality by assuming
that the memory parameters are disposed in ascending order, since a permutation matrix can
always be incorporated into the mixing (coordinates) matrix P . Assumption (A2) simply
states that the columns of P are linearly independent unit vectors and sets an orientation for
each of the latter. Assuming P is invertible, the observable process Y (t) = PX(t) is well-
defined and identifiable without (2.16) or (2.17). However, the latter conditions are necessary
for the consistent estimation of a demixing matrix (see Definition 3.1). Assumption (A3) is
typical in a semiparametric estimation setting (e.g., Robinson 1995a; Moulines and Soulier
2003). Note that (2.18) only describes the behavior of the high frequency functions gi (x),
i = 1, . . . , n, around the origin, where larger values of β correspond to greater smoothness.

Example 2.1 For a fixed i = 1, . . . , n, a choice of triple (δi , Ni , gi (x)) determines entry Xi

of the hidden process X . For example, for a fixed memory parameter value δi , a fBm, a fGn
(in continuous time), or a fractional Ornstein–Uhlenbeck process corresponds, respectively,
to the instances

gi (x) ≡ C (Ni = 1), gi (x) ≡ C (Ni = 0), or

gi (x) = ix
eix − 1

C

λ + ix
(Ni = 0)
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for some λ > 0. The instance Ni = 0 and gi (x) = C ix
eix−1

|x |δi (1 − e−ix )−δi 1[−π,π) corre-
sponds, in discrete time, to FARIMA(0, δi , 0) (e.g., Taqqu 2003, Section 6). In terms of the
covariance functions (2.21) and (2.22), these four instances can be expressed as

EXi (s)Xi (t) = C2
∫
R

⎧⎪⎪⎨
⎪⎪⎩

(eisx − 1)(e−it x − 1)|x |−2 |x |−2(δi−1) (fBm)
ei(s−t)x |eix − 1|2|x |−2 |x |−2δi (fGn)
ei(s−t)x |x |−2δi |λ2 + x2|−1 (fOU)

ei(s−t)x |1 − e−ix |−2δi 1[−π,π)(x) (FARIMA(0, δi , 0))

⎫⎪⎪⎬
⎪⎪⎭

dx .

Example 2.2 If the high frequency functions gi (x) are constant and Ni−1/2 < δi < Ni+1/2,
Ni ≥ 1, i = 1 . . . , n, then the observed process Y satisfies the operator self-similarity
property (1.5), with Hurst matrix

H = Pdiag
(
δ1 − 1

2
, . . . , δn − 1

2

)
P−1. (2.23)

If, in particular, Ni = 1, i = 1, . . . , n, then Y is an instance of operator fractional Brownian
motion, namely, a Gaussian, operator self-similar, stationary increment process (Mason and
Xiao 2002; Didier and Pipiras 2011, 2012).

Remark 2.1 For a fixed i , in the boundary cases δi = Ni − 1/2 the finiteness of second
moments in (2.13) and (2.14) implies that the high frequency function gi (x) must decay fast
enough as x → ∞ so as to make up for the lack of integrability of the power law. On the
range δi < −1/2, see Remark C.2 in Section C.

Remark 2.2 The assumption (2.15) that memory parameters are pairwise distinct is lifted in
Corollary 3.1.

Remark 2.3 Mathematically speaking, it is natural to ask how useful it is to consider the
model (1.1) with a full rank matrix P ∈ M(m, n, R), where m �= n. However, both cases
m > n and m < n fall outside the scope of this paper. When m > n, the observed process Y
is improper, namely, its finite dimensional distributions are contained in a proper subspace
of R

n for some t �= 0 (even if, in addition, the high frequency functions gi , i = 1, . . . , n, are
constant, Y cannot be operator self-similar: see Example 2.2 or Hudson and Mason 1982).
When m < n, the spectral densities involved are potentially much more complicated, with
sums of power laws. Either situation demands the construction of particular methods.

In Sect. 3, we implicitly make the following assumptions on the underlying wavelet basis.
Hence, we omit them in statements.
Assumption (W1): ψ ∈ L1(R) is a wavelet function satisfying (2.4) for

Nψ ≥ Nn + 1, (2.24)

where Nn is as in (2.13) or (2.14).
Assumption (W2):

supp(ψ) is compact. (2.25)

Assumption (W3): For α > 1 as in (2.20),

sup
x∈R

|ψ̂(x)|(1 + |x |)α < ∞. (2.26)

Conditions (2.24) and (2.25) imply that ψ̂(x) exists, is everywhere differentiable and its first
Nψ − 1 derivatives are zero at x = 0 (see Mallat, Theorem 7.4). This implies, using a Taylor
expansion, that

|ψ̂(�)(x)| = O(|x |Nψ−�), � = 0, . . . , Nψ, x → 0. (2.27)
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Condition (2.26), in turn, implies that ψ is continuous (see Mallat 1999, Theorem 6.1).

Example 2.3 Assumptions (W1–W3) are generally satisfied, for example, by a Daubechies
wavelet function (see Daubechies 1992; Moulines et al. 2008, p. 1927, or Mallat 1999). If ψ

is a Daubechies wavelet with Nψ vanishing moments, supp(ψ) = [0, 2Nψ − 1] (see Mallat
1999, Proposition 7.4).

Remark 2.4 Assumption (W1) requires using a number of vanishingmoments Nψ larger than
the unknown integration order Nn . In practice, though, the latter parameter is rarely greater
than 2, so the requirement is easily met even for low values of Nψ .

Remark 2.5 Section C, on measurements in discrete time, requires a slightly different set of
assumptions on the wavelet basis.

3 Wavelet-based estimation (continuous time)

In this section, we construct the two-step wavelet-based estimator. We assume a continuous
time sample path of Y is available, since discrete time measurements do not qualitatively
change the nature of the results, as shown in Section C.

Before getting into detailed definitions and discussions, we briefly motivate the two-
step method in Sect. 3.1. Sections 3.2 and 3.3 contain the main mathematical results of the
paper, namely, the construction of the demixing step (S1) and the post-demixing memory
parameter estimation step (S2), respectively. Note that (S1) only involves wavelet analysis
at fixed scales, whereas (S2) generally requires taking a coarse scale limit a(ν)2 j → ∞,
due to the lack of exact self-similarity in (2.13) and (2.14).

To develop the two-step method, we need some basic and asymptotic properties of the
wavelet transform and variance of the process Y at fixed scales. Under assumptions (A1–3)
and (W1–3), the wavelet domain process {D(2 j , k)}k∈Z is stationary in k, namely,

{D(2 j , k + h)}k∈Z L= {D(2 j , k)}k∈Z, h ∈ Z (3.1)

[seePropositionB.1, (P2)].Consequently, thewavelet variancematricesEW (2 j ) andW (2 j ),
as defined by (2.6) and (2.7), respectively, do not depend on k. In addition, the vectorized sam-
ple wavelet variance vecSW (2 j ) at a fixed set of octaves is asymptotically normal (Theorem
B.1).

3.1 Overview of the two-stepmethod

We can express the expected value of the sample wavelet variance matrix as

EW (2 j ) = PE(2 j )1/2diag(22 jδ1 , . . . , 22 jδn )E(2 j )1/2P∗, j = j1, . . . , jm, (3.2)

where E(2 j ) is a diagonal matrix-valued auxiliary function [see Proposition B.1, (P3),
expressions (B.1) and (B.5)]. Consider the matrix

B = diag(2− j1δ1 , . . . , 2− j1δn )E(2 j1)−1/2P−1, (3.3)

where  is (any) diagonal matrix whose nonzero entries are ±1. Note that B jointly diago-
nalizes all matrices (3.2), namely,

BEW (2 j )B∗ is diagonal for any j . (3.4)
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On the other hand, by expressions (3.2) at scale a(ν)2 j and (3.3),

B EW (a(ν)2 j ) B∗ ∼ diag(2− j1δ1 , . . . , 2− j1δn )E(2 j1 )−1/2E1/2
g

· diag
(
(a(ν)2 j )2δ1 , . . . , (a(ν)2 j )2δn

)
E1/2
g E(2 j1 )−1/2diag(2− j1δ1 , . . . , 2− j1δn ), (3.5)

as ν → ∞. In (3.5), we use the property that

E(a(ν)2 j ) → Eg, ν → ∞, (3.6)

for a diagonal matrix of constants Eg depending on g1, . . . , gn [see Proposition B.1, (P3)].
Due to demixing, all matrices on the right-hand side of the asymptotic relation (3.5) are
diagonal. Moreover, only one is a function of the asymptotic scale a(ν)2 j , namely,

diag
(
(a(ν)2 j )2δ1 , . . . , (a(ν)2 j )2δn

)
.

Therefore, up to a known constant, the memory parameters δ1, . . . , δn appear as the slope of
the main diagonal entries of (3.5) on a log-log scale.

With the random matrices W (·) in place of EW (·), this reasoning holds up to stochastic
error. Therefore, using the (random) sample wavelet matrices W (a(n)2 j ), we can construct
a two-step estimation method consisting of, first, jointly diagonalizing the latter matrices,
and, second, running a log-regression procedure on the diagonalized matrices.

3.2 Wavelet-based demixing (step (S1))

The joint diagonalization of twomatrices is a well-known problem. For the case of symmetric
matrices, its description and full characterization canbe stated as follows [seeTheorem4.5.17,
(b), in Horn and Johnson (1985)]. Suppose C0 and C1 are symmetric and C0 is nonsingular.
Then, there are a nonsingular S ∈ M(n, R) and complex diagonal matrices �0 and �1 such
that

C0 = S�0S
∗, C1 = S�1S

∗, (3.7)

if and only if the matrix C−1
0 C1 is diagonalizable (in its Jordan form). In light of this, we can

cast a joint diagonalization algorithm in the form of pseudocode.

Pseudocode for exact joint diagonalization (EJD)

Input: C0, C1 are symmetric matrices and the former is positive definite;

Step 1: set W = C−1/2
0 so that C−1

0 = W∗W ;
Step 2: compute Q ∈ O(n) (orthogonal matrix) in the spectral decomposition WC1W

∗ = Q∗D1Q;
Step 3: compute the demixing matrix B := QW ;
Step 4: stop and exit.

(n.b.: Steps 1–4 of the EJD algorithm should not be confused with steps (S1) and (S2) of
the proposed wavelet-based estimation method).

Example 3.1 In view of (3.2), it is clear thatC0 = EW (2J1),C1 = EW (2J2), J1 < J2, can be
jointly diagonalized, where the underlying process is defined in (1.1) under the assumptions
(A1 − 2). In addition,

C−1
0 C1 = (P∗)−1

(
diag(22(J2−J1) δ1 , . . . , 22(J2−J1) δn )E(2J1)−1E(2J2)

)
P∗.
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This expression constitutes a diagonal Jordan decomposition, whence (3.7) holds.

The proposed wavelet-based estimator B̂ν of a demixing matrix is defined next.

Definition 3.1 ((S1) demixing step) Consider two octaves 0 ≤ J1 < J2 for which E(2J1),
E(2J2) have strictly positive diagonal entries and

diag(22(J2−J1) δ1 , . . . , 22(J2−J1) δn )E(2J1)−1E(2J2) has pairwise distinct diagonal entries.
(3.8)

For ν ∈ N, the wavelet-based demixing estimator B̂ν is the output of the EJD algorithmwhen
setting

C0 = W (2J1) and C1 = W (2J2). (3.9)

In the following theorem, we establish the consistency and asymptotic normality of the
estimator B̂ν . This involves characterizing the set of solutions provided by the EJD algorithm,
which includes a class of non-identifiability factors denoted by I in the theorem.

Theorem 3.1 For j ∈ N, let E(2 j ) be as in (B.5). Also let

I = { ∈ M(n, R) :  has the form diag(±1, . . . ,±1)}. (3.10)

(i) Then,
MEJD = { diag(2−J1δ1 , . . . , 2−J1δn )E(2J1)−1/2P−1, ∈ I} (3.11)

is the set of matrix solutions produced by the EJD algorithm when setting

C0 = EW (2J1) and C1 = EW (2J2); (3.12)

(ii) in addition, assume condition (3.8) holds and suppose the (random)matrix Q∗ = Q̂∗ ∈
O(n) from Step 2 of the EJD algorithm is chosen as to satisfy condition (2.17). Then,
there is  ∈ I such that the obtained estimator sequence {B̂ν}ν∈N satisfies

B̂ν
P→  diag(2−J1δ1 , . . . , 2−J1δn )E(2J1)−1/2P−1, ν → ∞; (3.13)

(iii) an estimator sequence {B̂ν}ν∈N as described in (ii ) satisfies

√
ν(vec(B̂ν −  diag(2−J1δ1 , . . . , 2−J1δn )E(2J1)−1/2P−1))T

d→ N (0, �F (J1, J2))
(3.14)

for some matrix  ∈ I, where the asymptotic covariance matrix �F (J1, J2) is a
function of F, and F is defined in Theorem B.1, with m = 2.

Remark 3.1 Note that, for J1 < J2 and under (2.15), condition (3.8) always holds for
large enough J1, J2. This is a consequence of Proposition B.1, (P4), and of the fact that
E(2J1)−1E(2J2) → I as J1, J2 → ∞.

Remark 3.2 By (3.13), the sequence B̂−1
ν has a limit in probability of the form B−1 :=

Pdiag(β1, . . . , βn), |βi | �= 0, i = 1, . . . , n, i.e., involving a non-identifiability factor post-
multiplying the mixing matrix P . However, note that � := Pdiag(δ1, . . . , δn)P−1 =
B−1diag(δ1, . . . , δn)B, i.e., the columns of B−1 consist of (non-unit) eigenvectors of the
memory matrix � [c.f. (B.4)]. Consequently, �̂ := B̂−1

ν diag(̂δ1, . . . , δ̂n)B̂ν is a natural esti-
mator of the latter, where δ̂1, . . . , δ̂n are univariate (e.g., wavelet-based) estimators of the
individual memory parameters obtained from the demixed process.

Producing a direct estimator of P is straightforward. Just normalize each column of the
matrix estimator B̂−1

ν and multiply it by −1 if necessary to arrive at a matrix P̂ with positive
diagonal entries (cf. (2.16)). This procedure is used in Sect. 4.
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Remark 3.3 More precisely, the covariance matrix in the limit (3.14) can be written as
�F (J1, J2) = A3�2A∗

3, where �2 and A3 are given by expressions (B.50) and (B.51),
respectively. It is clear that the expression for �F (J1, J2) is quite intricate, and the construc-
tion of theoretical confidence intervals is a matter for future investigation (c.f. Wendt et al.
2017).

3.3 Wavelet-based estimation of memory parameters after demixing/changing the
coordinates (step (S2))

Starting with the output of step (S1) (Sect. 3.2), let B̂ν be the demixing matrix described
in (3.13). Then, the demixed process is defined by

X̂(t) := B̂νY (t), t ∈ R, (3.15)

of which only ν (wavelet) data points are available [c.f. (2.8)]. Establishing a semiparametric
estimator requires taking coarse scale limits as the sample size ν goes to infinity. So, let a(ν)

be a divergent dyadic sequence that is slow by comparison to ν [see (3.23)]. For j ∈ N, let

WX̂ (a(ν)2 j ), EWX (a(ν)2 j ), (3.16)

be the sample wavelet variance of X̂ and the wavelet variance of the hidden process X ,
respectively, at scale a(ν)2 j . We are now in a position to define an estimator of the vector of
memory parameters δT = (δ1, . . . , δn) of the hidden process X . The estimator stems from
log-linear weighted least squares regressions on each main diagonal entry of the matrices
WX̂ (a(ν)2 j ) for different j .

Definition 3.2 ((S2) Memory parameter estimation step) Let

WX̂ (·)i i ′ , EWX (·)i i ′ , i, i ′ = 1, . . . , n, (3.17)

be the (i, i ′)th entries of thematricesWX̂ (·) andEWX (·), respectively.Consider the regression
weight vectors

wi = (wi
1, . . . , w

i
m)T , (3.18)

where
m∑

�=1

wi
� = 0, 2

m∑
�=1

j�w
i
� = 1, i = 1, . . . , n. (3.19)

The wavelet-based estimator of the memory parameters δ1, . . . , δn in (2.15) is obtained by
log-regressing the main diagonal terms WX (a(ν)2 j )i i on the scale indices a(ν)2 j , j =
j1, . . . , jm , i.e.,

δ̂ =
⎛
⎜⎝

δ̂1
...

δ̂n

⎞
⎟⎠ :=

⎛
⎜⎝
∑m

�=1 w1
� log2 WX̂ (a(ν)2 j� )11

...∑m
�=1 wn

� log2 WX̂ (a(ν)2 j� )nn

⎞
⎟⎠ . (3.20)

Remark 3.4 The choice of regression weights (3.18) and (3.19) can be made as to minimize
bias and compensate for the increasing variance of samplewavelet variances for larger octaves
j . From weighted linear regression and some approximations, a common choice is

w j = 1

ς2
j

jS − S j

S S j j − S2
j

, j = j1, . . . , jm, (3.21)
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where

S =
jm∑

j= j1

1

ς2
j

, S j =
jm∑

j= j1

j

ς2
j

, S j j =
jm∑

j= j1

j2

ς2
j

. (3.22)

In (3.21) and (3.22), based on approximations to the distribution of univariate sample wavelet
variances, one further sets ς2

j = ζ(2, n j/2)/ log22, where ζ(·, ·) is a generalized Riemann
zeta function [see the discussions in Veitch and Abry (1999, pp. 881–882), Abry et al. (2000,
p. 73) and Stoev et al. (2002, p. 1880)].

The consistency and asymptotic normality of the estimator δ̂ are established in the fol-
lowing theorem.

Theorem 3.2 Let δ̂
T = (̂δ1, . . . , δ̂n) be the estimator defined by (3.20). Let a(ν) be a dyadic

sequence such that
a(ν)

ν
+ ν

a(ν)1+2β → 0, ν → ∞, (3.23)

where β satisfies (2.19). Then, δ̂ is consistent, namely,

δ̂
P→ δ, ν → ∞. (3.24)

Moreover,
√

ν

a(ν)

⎡
⎢⎣
⎛
⎜⎝

δ̂1
...

δ̂n

⎞
⎟⎠−

⎛
⎜⎝

δ1
...

δn

⎞
⎟⎠
⎤
⎥⎦ d→ N (0,W), ν → ∞. (3.25)

In (3.25), the asymptotic covariance matrix is given by

W = diag((w1)T V (δ1)w1, . . . , (wn)T V (δn)wn),

the weight vectors wi , i = 1, . . . , n satisfy (3.19), and the matrix
V (δ) = {Vk1,k2(δ)}k1,k2=1,...,m is defined entrywise by

Vk1,k2(δ) =
4πb4δ−1

jk1 , jk2

22( jk1+ jk2 )δK 2(δ)

∫
R

x−4δ

∣∣∣∣∣ψ̂
( 2 jk1 x

b jk1 , jk2

)∣∣∣∣∣
2 ∣∣∣∣∣ψ̂

( 2 jk2 x

b jk1 , jk2

)∣∣∣∣∣
2

dx, (3.26)

where K (δ) = ∫
R

|ψ̂(x)|2|x |−2δdx and b jk1 , jk2
= gcd(2 jk1 , 2 jk2 ).

One consequence of Theorem 3.2 is that the individual memory estimators δ̂1, . . . , δ̂n are
asymptotically independent. In fact, the joint asymptotic distribution of δ̂, estimated from
the demixed process X̂ , is equal to that of the joint entrywise wavelet-based estimators of
δ1, . . . , δn obtained from the hidden process X (see Remark B.1). In other words, asymptot-
ically, the demixing step (S1) washes out the effect of the mixing (coordinates) matrix P on
the estimation procedure.

Note that removing the condition (2.15) can alter the limits (3.25) (see Remark B.2).

Example 3.2 In the case where Y has stationary increments (see Example 2.2), together
Theorems 3.1 and 3.2 imply that the whole Hurst matrix parameter (coordinates matrix and
Hurst eigenvalues) can be estimated.

Remark 3.5 In practice, the choice of a(ν) involves a statistical compromise. A large value
of a(ν) with respect to ν implies a relatively small bias, but also a relatively large variance.
Simulation results suggest the ratio ν/a(ν)2 j should be no less than 23.
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For hypothesis testing,weneed to consider the casewhere some, or all,memoryparameters
δ1, . . . , δn are equal (c.f. Hualde 2013). In light of Remark B.2, this requires making some
change to the assumptions. However, to attain consistency and asymptotic normality in steps
(S1) and (S2), it suffices to add minor constraints on the high frequency functions gi (x),
i = 1, . . . , n, and hence replace (A1) and (A3) with the following assumptions.
Assumption (A1′): the observed process Y has themixed form (1.1), where each component
Xi , i = 1, . . . , n, of the hidden process in (1.2) has the form (2.13) or (2.14), and thememory
parameters can be ordered as

−1/2 ≤ δ1 = . . . = δn1 < δn1+1 = . . . = δn2 < . . . < δn p+1 = . . . = δn .

Assumption (A3′): In addition to satisfying (A3), the high frequency functions gi (x),
i = 1, . . . , n, are such that the matrix diag(22(J2−J1) δ1 , . . . , 22(J2−J1) δn )E(2J1)−1E(2J2)
has pairwise distinct diagonal entries.

Corollary 3.1 Suppose themixed process Y satisfies assumptions (A1′), (A2) and (A3′). Then,
the conclusions of Theorems 3.1 and 3.2 hold.

4 Monte Carlo studies

To study the statistical performance of the two-stepwavelet-basedmethod over finite samples,
we assumed the hidden process X is made up of 4 independent fBm components observed
in discrete time. For notational simplicity, write X := Bh, Y := BH (see Example 2.2). In
this case, recall that relation (2.23) holds between the memory parameters and the individual
Hurst exponents, namely,

hi = δi − 1

2
∈ (0, 1), i = 1, . . . , n.

We simulated R = 10, 000 sample paths of sizes ranging from n = 210 to 220 (results
are reported for the smallest and largest sample size only) with individual Hurst parameters
h = (0.2, 0.4, 0.6, 0.8) and mixing matrix

P =

⎛
⎜⎜⎝

0.6834 − 0.7142 0.6960 − 0.1165
− 0.0096 0.4539 − 0.0908 0.7740
0.4771 − 0.2345 0.3359 − 0.4243
0.5525 − 0.4784 − 0.6281 0.4553

⎞
⎟⎟⎠ (4.1)

(see also Remark 4.2 on the choice of P). The entrywise Hurst exponents are denoted by
hX ,i , hY ,i , i = 1, . . . , n, whereas h X̃ ,i , i = 1, . . . , n, denote the Hurst exponents of the

demixed sequence X̃ = P̂−1Y for normalized demixing matrix estimates P̂−1.
The results consist of comparisons of the Monte Carlo log-averages of the sample wavelet

variance 〈log2 W̃X (2 j )i i 〉, 〈log2 W̃Y (2 j )i i 〉 and 〈log2 W̃X̃ (2 j )i i 〉 (〈·〉 represents aMonte Carlo
average) for each of the n = 4 components for the sample sizes 220 and 210 (Figs. 2, 5);
boxplots for ĥ X ,i − hi , ĥY ,i − hi and ĥ X̃ ,i − hi , i = 1, 2, 3, 4 (Figs. 3, 6); and boxplots for

the 16 entries of P̂−1P − I (Figs. 4, 7). Following the procedure described in Remark 3.2,
the columns of P̂ were adjusted as to eliminate the non-identifiability factor. In all cases,
the sample wavelet variance matrices were computed based on Daubechies wavelet filters
with Nψ = 2 vanishing moments. Using a different wavelet with Nψ ≥ 2 leads to similar
conclusions.
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In Figs. 2 and 5, as expected for the mixed data Y all components of 〈log2 W̃Y (2 j )i i 〉
display patent departures from the original data 〈log2 W̃X (2 j )i i 〉. After demixing, all compo-
nents of 〈log2 W̃X̃ (2 j )i i 〉 remarkably superimpose those of 〈log2 W̃X (2 j )i i 〉, with the possible
exception of a few coarse scales for h = 0.2 and 0.4. In addition, the boxplots in Figs. 3 and 6
show that the Monte Carlo distributions for ĥ X̃ ,i − hi resemble those of ĥ X ,i − hi , which

illustrates the successful demixing of Y . Figures 4 and 7 further indicate that P̂−1 is very
well estimated with negligible biases. In all comparisons, as expected the observed estimator
properties improve significantly when passing from the relatively small sample size 210 to
the large sample size 220. In addition, simulation results not displayed also show that the
standard deviation of the estimates decreases with the sample size according to the scaling
ratio C/

√
ν for some C > 0, as anticipated.

Remark 4.1 Theorems 3.2 and C.2 (for continuous and discrete time, respectively) leave open
the question of how to optimally choose the octaves J1 < J2. For multiple choices of wavelet
octaves, namely, J1 = 1 [which involves the largest number of sum terms in (2.7)] and
J2 = 2, . . . , 6, Table 1 shows the performance of the individual Hurst exponents’ estimators
in terms of Monte Carlo bias, standard deviation and (square root) mean squared error. For
sample sizes 220 and 210, the results indicate that for low values of the Hurst exponents, the
use of two widely separated wavelet octaves produces better results in terms of mean squared
error, whereas for large values of the Hurst exponents the choice of octaves has little impact
on the estimation.

Remark 4.2 Simulation studies not included show that the choice of the mixing matrix (4.1)
does not substantially affect the finite sample results. Moreover, the demixing estimator in
step (S1) is very robust with respect to the condition number of the mixing matrix P . The
distributions of the estimated scalar Hurst eigenvalues after demixing are barely affected for
condition numbers of the order of at least 105.

To gauge the comparative statistical and computational performance of the two-step
method, maximum likelihood (ML)-type estimation is a natural choice due to its wide
applicability and well-known asymptotic properties. Notwithstanding its usually excellent
statistical performance, ML estimation is notoriously slow (e.g., see Beran 1994, Chapter
5, Craigmile et al. 2005; see also the broad discussion in Caragea and Smith (2007) and
references therein). For example, evaluation of the multivariate Gaussian likelihood involves
calculating the inverse and determinant of a nν × nν matrix, which according to most com-
monly used algorithms, takes O(ν3) steps. For many data sets in the modern era of “Big
Data”, ν is of the order of many thousands or more (see, for instance, Fontugne et al. 2017
on Internet traffic). This makes such computation prohibitively time consuming, especially
in the presence of fractional memory. Various approximate likelihood methods have been
proposed that are more efficient to compute, while not sacrificing much statistical efficiency.
Some of these methods exploit fast transforms of the data such as the fast Fourier transform.
One popular method of this kind is the Whittle estimator (e.g., Palma 2007, Section 4.4),
which requires reexpressing the likelihood function in the Fourier domain and using some
approximations. More details about multivariate Whittle-type estimation can be found, for
instance, in Hosoya (1996, 1997) and Robinson (2008). In our Monte Carlo experiments, we
compared the statistical and computational finite sample performances of two-step wavelet-
based and Whittle-type ML estimation for mixed bivariate (operator) fractional Gaussian
noise. As a representative case, we picked the second instance in Table 2 in Tsai et al. (2018).
In other words, we assumed X in (1.1) is a vector of two independent fGn entries with Hurst
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Table 1 Choice of scales 10,000 Monte Carlo runs, sample sizes 220 and 210, h = (0.2, 0.4, 0.6, 0.8)

h J1, J2 ĥ Bias SD
√
MSE ĥ Bias SD

√
MSE

(220) (210)

0.20 1,2 0.25 0.05 0.04 0.06 0.33 0.13 0.10 0.15

1, 3 0.22 0.02 0.03 0.04 0.26 0.06 0.08 0.10

1, 4 0.22 0.02 0.03 0.03 0.24 0.04 0.08 0.09

1, 5 0.21 0.01 0.02 0.03 0.23 0.03 0.08 0.09

1, 6 0.21 0.01 0.02 0.03 0.22 0.02 0.09 0.09

0.40 1, 2 0.40 − 0.00 0.02 0.02 0.45 0.05 0.08 0.10

1, 3 0.40 − 0.00 0.01 0.02 0.41 0.01 0.07 0.07

1, 4 0.39 − 0.01 0.01 0.02 0.40 0.00 0.07 0.07

1, 5 0.40 − 0.00 0.01 0.01 0.40 0.00 0.07 0.07

1, 6 0.39 − 0.01 0.01 0.01 0.40 − 0.00 0.07 0.07

0.60 1, 2 0.60 − 0.00 0.01 0.02 0.60 − 0.00 0.07 0.07

1, 3 0.59 − 0.01 0.01 0.02 0.59 − 0.01 0.06 0.06

1, 4 0.59 − 0.01 0.01 0.02 0.58 − 0.02 0.07 0.07

1, 5 0.59 − 0.01 0.01 0.02 0.58 − 0.02 0.08 0.08

1, 6 0.59 − 0.01 0.01 0.02 0.58 − 0.02 0.07 0.07

0.80 1, 2 0.79 − 0.01 0.01 0.02 0.76 − 0.04 0.07 0.08

1, 3 0.79 − 0.01 0.01 0.02 0.78 − 0.02 0.07 0.07

1, 4 0.79 − 0.01 0.01 0.02 0.77 − 0.03 0.07 0.07

1, 5 0.79 − 0.01 0.01 0.02 0.77 − 0.03 0.07 0.07

1, 6 0.79 − 0.01 0.01 0.02 0.77 − 0.03 0.07 0.07
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Fig. 2 Scaling: logW·,·(2 j ) versus j for each of the n = 4 components based on the wavelet variance scales
21 and 22. The plots were produced by means of 10,000 Monte Carlo runs of sample size 220, with parameter
values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2
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Fig. 3 Boxplots based on the wavelet variance scales 21 and 22 for i = 1, 2, 3, 4, ĥ X ,i − hi (hidden, left),
ĥY ,i − hi (mixed, middle) and ĥ X̃ ,i − hi (demixed, right), for each of the n = 4 components, sorted by
ascending order in terms of h. The plots were produced by means of 10,000 Monte Carlo runs of sample size
220, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2
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Fig. 4 Boxplots based on the wavelet variance scales 21 and 22 for the 16 entries of ̂P−1P − I . The (i1, i2)th

boxplot denotes the (i1, i2)th entry of
̂P−1P − I . The plots were produced by means of 10,000 Monte Carlo

runs of sample size 220, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2
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Fig. 5 Scaling: logW·,·(2 j ) vs. j for each of the n = 4 components based on the wavelet variance scales 21

and 22. The plots were produced by means of 10,000 Monte Carlo runs of sample size 210, with parameter
values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2
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Fig. 6 Boxplots based on the wavelet variance scales 21 and 22 for i = 1, 2, 3, 4, ĥ X ,i − hi (hidden, left),
ĥY ,i − hi (mixed, middle) and ĥ X̃ ,i − hi (demixed, right), for each of the n = 4 components, sorted by
ascending order in terms of h. The plots were produced by means of 10,000 Monte Carlo runs of sample size
210, with parameter values h = (0.2, 0.4, 0.6, 0.8) and Nψ = 2
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Fig. 7 Boxplots based on the
wavelet variance scales 21 and 22

for the 16 entries of ̂P−1P − I .
The (i1, i2)th boxplot denotes the

(i1, i2)th entry of
̂P−1P − I . The

plots were produced by means of
10,000 Monte Carlo runs of
sample size 210, with parameter
values h = (0.2, 0.4, 0.6, 0.8)
and Nψ = 2
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parameter values h1 = 0.40, h2 = 0.85 and chose the change of coordinates matrix P as to
match the matrix A in Section 2 of Tsai et al. (2018), i.e.,

A =
(

2 1
−3 1

)
, (4.2)

where A = Pdiag(e(h1), e(h2)) for functions e(hi ) := {�(2hi + 1) sin(πhi )/2π}1/2,
i = 1, 2. In light of the results in Tsai et al. (2018) for fully parametric (hence, more
accurate) estimation, Table 2 shows that the two-step method performs well, MSE-wise, for
a semiparametric estimator especially given the relatively small sample size 210. In particular,
the individual Hurst parameter estimation performance is similar to that of semiparametric
estimation for univariate time series.

To shed light on computational aspects, we implemented Whittle-ML estimation in Mat-
lab. We used the function fminsearch.m to minimize the approximate log-likelihood
function with respect to the parameters h1, h2 and A [see Tsai et al. 2018, Expression (8)].
In Table 3, computational times are compared. It can be seen that the computational time
per realization of Whittle-ML grows rapidly as a function of the path size ν, and the ratio
between computational times for the two methods grows exponentially fast. Hence, in spite
of the Whittle approximation, ML-type estimation demands further efforts to ease the com-
putational burden of minimization with respect to O(n2) unknown parameters. By contrast,
the computational robustness of the two-step method with respect to the sample path size is
striking.

5 Application

As an application, we fit a bivariate series of annual tree ring measurements from bristlecone
pine trees in California. The data can be found in the Time Series Data Library, which
is available on the website DataMarket (https://datamarket.com/data/list/?q=provider:tsdl).
The so-named White Mountain and Methuselah pine tree data sets are provided by C. W.
Ferguson, E. Schulman and H. C. Fritts, and by D. A. Graybill, respectively.

Many tree ring data sets exhibit long range dependence properties (Tsai and Chan 2005;
Bai and Taqqu 2018). Annual tree ring width measurements can be modeled as aggregates
of the underlying continuous time growth rate process over time intervals between two
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Table 2 Monte Carlo biases, standard deviations and (square root) mean squared errors of the two-stepmethod
over 10,000 replications with sample size ν = 210 from the two-step wavelet-based method for the parameters
h1 = 0.40, h2 = 0.85 and A = (ai j )i, j=1,2 as in (4.2), j1 = 1, j2 = 5, Nψ = 1

Parameter Bias SD
√
MSE

h1 0.0166 0.0495 0.0522

h2 − 0.0077 0.0415 0.0422

a11 − 0.0124 0.0932 0.0940

a12 − 0.0031 0.0976 0.0976

a21 0.0194 0.0635 0.0664

a22 − 0.0169 0.1018 0.1032

Table 3 Computational performance. Whittle-type ML (using Matlab’s fminsearch.m) and two-step
wavelet based methods, dimension n = 2

Sample path size Time in seconds (per realization) Time ratio
ML Two-step wavelet (ML/two-step wavelet)

28 7.6 0.0570 133.3

210 91.2 0.0631 1445.3

212 1209.5 0.0815 14,840.0

214 18376.0 0.1243 147,840.0

consecutive sampling time points. Assuming reasonable physical models, the latter, in turn,
can be approximated by a mixed fractional process, as explained in Sect. 2.2. Although the
full data set covers the period 5142 BC–1962 AD, we focus instead on the subperiod 4141
BC–1962 AD, since preliminary wavelet-based analysis revealed stationarity in the latter.
The time series are displayed in Fig. 8, top plots.

Data analysis is conducted both in the time and wavelet domains. In the time domain,
we examine the data by means of sample autocorrelation and cross-correlation functions
(ACFs and CCFs, respectively). It is well known that spurious cross-correlation may occur
as a result of the presence of fractional memory in each time series; thus, CCFs are only
displayed for pre-whitened data following the standard procedure described in Cryer and
Chan (2008, Section 11.3). In the wavelet domain, we show main diagonal wavelet scaling
plots log2 W̃ (2 j )11 and log2 W̃ (2 j )22 [see (C.4)] as functions of log2 2

j = j , as well as
the so-named sample wavelet coherence function ŵ12(2 j ), j = j1, . . . , jm . The latter is a
wavelet version of the CCF and can also be used to check the cross-correlation in bivariate
data. For each j , the associated term is defined by

ŵ12(2
j ) = W̃ (2 j )12

/√
W̃ (2 j )11W̃ (2 j )22

(see Whitcher et al. 2000).
The sample ACF for each time series, shown on the lower panel in Fig. 8, suggest that the

time series have long memory. This is confirmed by wavelet analysis, as displayed in Fig. 1
(left plot). Indeed, both log2 W̃ (2 j )11 and log2 W̃ (2 j )22 suggest scaling behavior with Hurst
parameters that clearly depart from 1/2, i.e., long memory, where, in this case,

hi = δi + 1

2
∈ (0, 1), i = 1, 2.
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Fig. 8 Upper: time series plots of tree ring measurements. Lower: sample autocorrelations of tree ring mea-
surements

Moreover, the fact that both curves resemble each other (namely, close Hurst parameter
values) can be explained as the preponderance of one of the two underlying scaling laws (see
the discussion in the Introduction). The upper panel in Fig. 9 displays the CCF. It reveals
that the sequences are contemporaneously strongly correlated but not cross-correlated at any
nonzero lag values. This is confirmed by the wavelet coherence function (Fig. 1, right plot),
which shows significant and nearly constant correlation across all scales.

The demixing step (S1) of the proposed wavelet-based method yields the following esti-
mated demixing matrix

P̂−1 =
(
0.9112 − 0.7827
0.1467 1.1922

)
.

Demixed ring tree time series are computed by applying P̂−1 to the original data. Inspection
of the CCF for the demixed tree ring data reveals that the proposedwavelet-basedmethod suc-
cessfully decorrelated the data (lower panel in Fig. 9). This is further confirmed by thewavelet
coherence function (Fig. 1, right plot), which evidences near zero correlations at all scales but
a fewof the coarsest. In addition, both functions log2 W̃ (2 j )11 and log2 W̃ (2 j )22 (for demixed
data) still display scaling behavior. However, the Hurst exponents seem quite distinct and
bounded away from 1/2. This is confirmed by the proposed estimation method. After demix-
ing, the memory parameter estimation step (S2) yields the estimates ĥ1 = 0.65, ĥ2 = 0.93
(using scales ( j1, j2)=(3,7)), and ĥ1 = 0.65, ĥ2 = 0.96 (using scales ( j1, j2)=(3,9)). In other
words, there is little sensitivity of the parameter estimates to the choice of octave range.

Table 4 displays the Monte Carlo mean and standard deviation of ̂h1 − h2 = ĥ1 − ĥ2
assuming h1 = h2 = h for some values of h within the range of interest. The difference
between the estimated Hurst parameters for the demixed tree ring data is |0.65 − 0.96| >

2.575× ŝd(̂h1 − ĥ2), with the statistic ĥ1 − ĥ2 lying far outside the 99% confidence interval
(see Table 4). In other words, there is evidence for the hypothesis h1 �= h2 in the demixed
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Fig. 9 Upper: sample cross-correlation between (pre-whitened) tree ring measurements. Lower: sample cross-
correlation of the demixed (and post-demixing pre-whitened) data. The dashed lines correspond to the threshold
±1.96/

√
ν at 5% significant level

Table 4 Monte Carlo standard deviation for the statistic ĥ1 − ĥ2 assuming h1 = h2 = h. Simulations were
conducted with ( j1, j2) = (3, 9), Nψ = 1, sample size = 6000, number of Monte Carlo runs = 10,000

h ŝd(̂h1 − ĥ2)

0.7 0.0335

0.8 0.0338

0.9 0.0342

ring tree data. Note that this could not have been detected had we skipped step (S1), i.e., if
Hurst exponent estimation had been conducted directly on the original data.

6 Conclusion

A Gaussian mixed fractional process {Y (t)}t∈R = {PX(t)}t∈R is a multivariate stochastic
process obtained by pre-multiplying a vector of independent, Gaussian fractional process
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entries X by a nonsingular matrix P . It is interpreted that Y is observable, while X is
a hidden process occurring in an (unknown) system of coordinates P . Mixed processes
naturally arise as approximations to solutions of physically relevant classes of multivariate
fractional SDEs under aggregation. We construct a semiparametric two-step wavelet-based
method for estimating both the demixing matrix P−1 and the memory parameters of X . The
asymptotic normality of the estimators is established both in continuous and discrete time.
Monte Carlo experiments show that the finite sample estimation performance is accurate
over finite samples, while being very computationally efficient. As an application, we model
a bivariate time series of annual tree ring width measurements.

The research in this paper leads to a number of intriguing questions: (i) can other real
world multivariate fractional phenomena be reasonably modeled as an aggregation over the
solution of a fractional SDE? If so, as shown in this paper, parameter estimation can be carried
out in a computationally faster and more dimension-robust way than by a general method-
ology for multivariate fractional processes; (i i) what is the natural physical non-Gaussian
analogue of a fractional Gaussian measure-driven SDE?; (i i i) are there other classes of mul-
tivariate fractional (in particular, o.s.s.) processes for which Hurst eigenvector estimation
can be done in a computationally efficient way?; (iv) can results on mixed fractional pro-
cesses be used to inspire new developments in the modeling of high-dimensional fractional
systems?
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