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A B S T R A C T

Background: The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dynam-
ics. While the functional relevance of neural oscillations has been largely investigated, both the nature and the
role of scale-free dynamics in brain processing have been disputed.
New method: Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity
using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain
activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual
motion discrimination task.
Results: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and
multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity
reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical
gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality
during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality
from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured
global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task.
Comparison with existing method(s): We showed that the wavelet leader based multifractal approach extends
power spectrum estimation methods in the way of characterizing _nely scale-free brain dynamics.
Conclusions: Altogether, our approach provides novel _ne-grained characterizations of scale-free dynamics in hu-
man brain activity.

1. Introduction

1.1. Scale-free brain activity

Macroscopic brain activity consists of a mixture of synchronized
and desynchronized activity (He et al., 2010; Breakspear, 2017). The
synchronization of neural oscillations has been hypothesized to medi-
ate neural communication (Engel et al., 2001; da Silva, 2013; Buzsáki,
2010; Wang, 2010), and their coupling, to be involved in informa-
tion processing (Fries, 2005; Lakatos et al., 2005; Jensen and Colgin,
2007; da Silva, 2013; Buzsáki et al., 2012).

However, the existence, the properties and the functional relevance
of scale-free dynamics in brain processing remain an open debate.
Scale-free dynamics have been reported in spontaneous brain activ-
ity (He et al., 2010) and in data collected with various neuroimaging
techniques including fMRI, magnetoencephalography (MEG), electroen-
cephalography (EEG) and local-_eld-potentials (LFP) (He et al., 2010;
Foster et al., 2016). The presence of scale-free dynamics was demon-
strated in the infra-slow frequency range (from 0.01 Hz to 1 Hz, He
et al., 2010; Buzsáki and Mizuseki, 2014; He, 2014; Becker et al.,
2018) and in the slow `uctuations of power of narrow-band neuronal
oscillations (Freeman, 2000; Linkenkaer-Hansen et al., 2001; Monto
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et al., 2008; Palva et al., 2013). The empirical work in both humans
and animals has revealed that scale-free dynamics of brain activity were
modulated by the levels of wakefulness (vs. sleep) (Weiss et al., 2009;
He et al., 2010; Tagliazucchi et al., 2013; Dehghani et al., 2012), con-
sciousness (vs. anesthesia) (He and Raichle, 2009; Barttfeld et al., 2015),
aging and neurodegenerative diseases (Suckling et al., 2008) as well as
task performance (Buiatti et al., 2007; He et al., 2010; He, 2011; Ciuciu
et al., 2012; Monto et al., 2008; Palva et al., 2013; Lin et al., 2016).

The intuition behind the scale-free concept is that the relevant in-
formation in the temporal dynamics of a given signal is coded within
the relations that tie together temporal scales, rather than in the power
of neuronal oscillations in speci_c bands. Its origin remains however
poorly understood. Brain activity recorded with MEG or EEG is most
comparable to LFP, and slow dynamic `uctuations likely re`ect the
up and down states of cortical networks as opposed to spiking activ-
ity per se (Baranauskas et al., 2012). Hence, although fast neuronal ac-
tivity or avalanches could endogenously produce scale-free infra-slow
brain dynamics, a careful statistical assessment remains necessary to
draw conclusions on the nature of observed scale-free dynamics (Bedard
et al., 2006; Touboul and Destexhe, 2010; Dehghani, 2012). A tempo-
ral hierarchy of neural oscillators has been considered a possible source
of scale-free brain dynamics (Penttonen and Buzsáki, 2003; He et al.,
2010) as well as the spatial repartition of neural sources. Dendritic _l-
tering (Destexhe et al., 1999; Werner, 2010; Buzsáki et al., 2012) or
the resistive brain milieu constitute other tentative origins for scale-free
dynamics (Dehghani et al., 2010). That the structural con_guration of
neural networks and their dynamics may be arguably topologically in-
tertwined (Arenas et al., 2008; Werner, 2010; Chaudhuri et al., 2017)
is also important to keep in mind. To better understand the origins and
nature of scale-free brain dynamics, we thus propose to use a rich and
robust statistical framework.

1.2. Scale-free dynamics modeling and assessment

Scale-free dynamics recorded with neuroimaging techniques have
generally been quanti_ed using a 1/f power spectrum model over a
large continuum of frequencies. As a result, the empirical assessment
has often used Fourier-based spectrum estimation. As an alternative,
self-similarity provides a well accepted model for scale-free dynam-
ics that encompasses, formalizes, and enriches the traditional Fourier
1/f spectrum modeling, with models such as fractional Brownian mo-
tion (fBm) or fractional Gaussian noise (fGn) (Novikov et al., 1997; He
et al., 2010; Ciuciu et al., 2012, 2014). The self-similarity, or Hurst, pa-
rameter H matches the spectral exponent , as = 2H 1 for fGn, and
as = 2H + 1 for fBm. In the context of brain activity, H indexes how
well neural activity is temporally structured (via its autocorrelation).
Additionally, although H has been estimated using Detrended Fluctu-
ation Analysis (DFA) (Linkenkaer-Hansen et al., 2001; Buiatti et al.,
2007; He, 2011; Hardstone et al., 2012; Palva et al., 2013; Barttfeld et
al., 2015), it is now well-documented that wavelet-based estimators pro-
vide significant theoretical improvements and practical robustness over
DFA, notably by disentangling true scale-free dynamics from non-sta-
tionary smooth trends (Veitch and Abry, 1999; Torres and Abry, 2003;
Baykut et al., 2005; Ciuciu et al., 2012, 2014). This is further detailed
in Section 2.2.2. For a review on statistically relevant estimation of the
self-similarity parameter, interested readers are also referred to (Bardet
et al., 2003).

Often associated with Gaussianity, self-similarity alone does not fully
account for scale-free dynamics. The main reason is that self-similarity
restricts the description of neural activity to second-order statistics (au-
tocorrelation and Fourier spectrum) and, hence, to additive processes.
Yet, it has been proposed that multiplicative processes may provide
more appropriate descriptions of neural activity (Buzsáki and Mizuseki,
2014). Independently of, and in addition to self-similarity, multifrac-
tality provides a framework to model these non-additive processes
(Shimizu et al., 2004; Suckling et al., 2008; Van de Ville et al., 2010).
Multifractality can be conceived as the signature of multiplicative mech-
anisms, or as the intricate combination of locally self-similar

processes. For instance, if a patch of cortex (i.e. the anatomical reso-
lution of MEG recordings) is composed of several small-networks each
characterized by a single self-similar parameter H, the multifractality
parameter M constitutes an index capturing the diversity of Hs and their
interactions within the patch. Qualitatively, the multifractality para-
meter M quanti_es the occurrence of transient local burstiness or non
Gaussian temporal structures, not accounted for by the autocorrelation
function or by the Fourier spectrum (hence, neither by H nor ). To
meaningfully and reliably estimate M, it has been theoretically shown
that the wavelet-based analysis must be extended to wavelet-leaders
(Wendt et al., 2007).

1.3. Goals and contributions

The goal of the present work is to produce a rich and reliable char-
acterization of scale-free temporal dynamics in human brain activity,
and to provide the _eld with a robust and reliable procedure to do
so. This is made possible (i) by the combined use of self-similarity and
multifractality as independent and complementary modeling paradigms,
and (ii) by the recourse to the wavelet and wavelet-leader based assess-
ment framework yielding improved performance and robustness to non-
stationary trend procedures (Veitch and Abry, 1999; Torres and Abry,
2003; Baykut et al., 2005; Ciuciu et al., 2012, 2014). The present work
investigates the existence and characterization of scale-free dynamics in
human cortical activity recorded with MEG, and investigates the modu-
lation of H and M by resting-state and task.

2. Material and methods

2.1. Material

2.1.1. Participants
Twenty-four right-handed participants (10 females; mean age of

22.1 ± 1.9 y.o.) took part in the study. All had normal or cor-
rected-to-normal vision and normal hearing and provided a written in-
formed consent prior to the experiment in accordance with the Declara-
tion of Helsinki (2008) and the local Ethics Committee on Human Re-
search at NeuroSpin (Gif-sur-Yvette, France).

2.1.2. Experimental design
The resting-state block lasted 5 min during which participants kept

their eyes open while staring at a black screen. Participants could
mind-wander freely. 5 min were selected to be suf_cient for an accu-
rate estimation of scale-free properties but not long enough for partic-
ipants cognitive state to drastically change. Resting-state activity was
recorded prior to any exposure to task or stimuli. The task block lasted
12 min during which participants performed a visual motion coherence
discrimination task (Zilber et al., 2014). In each trial (2.5 s), participants
decided which of two intermixed (green and red) clouds of dots was
most coherent. Responses were delivered by button press. The experi-
ment was conducted in a darkened soundproof magnetic-shielded room.
Participants were seated in upright position under the MEG dewar fac-
ing a projection screen placed 90 cm away. The refresh rate of the pro-
jector (model PT-D7700E-K, Panasonic Inc, Kadoma, Japan) was 60 Hz.
Participants were explained the task and were in contact at all times
with the experimenter via a microphone and a video camera. Stimuli
were designed using Matlab (R2010a, Mathworks Inc.) with Psychtool-
box-3 (Pelli, 1997) on a PC (Windows XP).

2.1.3. MEG data acquisition
Brain activity was recorded in a magnetically shielded room us-

ing a 306 MEG system (Neuromag Elekta LTD, Helsinki). MEG record-
ings were sampled at 2 kHz and band-pass _ltered between 0.03 and
600 Hz. Four head position coils (HPI) measured participants head po-
sition before each block; three _ducial markers (nasion and pre-au-
ricular points) were used for digitization and for alignment with the
anatomical MRI (aMRI) acquired immediately after MEG acquisition.
Electrooculograms (EOG, horizontal and vertical eye

2



UN
CO

RR
EC
TE
D
PR
OO

F

D. La Rocca et al. Journal of Neuroscience Methods xxx (2018) xxx-xxx

movements) and electrocardiogram (ECG) were simultaneously
recorded. Before each experiment, 5 min of empty room recordings were
acquired for the computation of the noise covariance matrix used in
solving the MEG inverse problem.

2.1.4. Anatomical MRI acquisition and segmentation
The T1 weighted anatomical MRI (aMRI) was recorded using a 3-T

Trio MRI scanner (Siemens Erlangen, Germany). Parameters of the
sequence were: FOV = 256 × 240 × 176 mm3, voxel size:
1.0 × 1.0 × 1.1 mm3; acquisition time: 7 min46 s; repetition time
TR = 2300 ms; inversion time TI = 900 ms; `ip angle = 9°; transver-
sal orientation, echo time TE = 2.98 ms and partial Fourier 7/8. Cor-
tical reconstruction and volumetric segmentation of participants T1
weighted aMRI was performed with Freesurfer1 (RRID: nif-0000-00304).
This included: motion correction, average of multiple volumetric T1
weighted images, removal of non-brain tissue, automated Talairach
transformation, intensity normalization, tessellation of the gray-white
matter boundary, automated topology correction, and surface deforma-
tion following intensity gradients (Dale et al., 1999). Once cortical mod-
els were complete, deformable procedures could be performed includ-
ing surface in`ation (Fischl et al., 1999) and registration to a spher-
ical atlas (Fischl et al., 1999). These procedures were adopted using
MNE (Gramfort et al., 2014, RRID: scires_000118) to morph individu-
als current source estimates onto the Freesurfer average brain for group
analysis.

2.1.5. MEG data preprocessing
Data preprocessing was done in accordance with accepted guidelines

for MEG research (Gross et al., 2013). Signal Space Separation (SSS) was
performed using MaxFilter to remove external magnetic interferences
and discard noisy sensors (Taulu and Simola, 2006). Ocular and cardiac
artifacts (eye blinks and heart beats) were removed using Independent
Component Analysis (ICA) on raw signals. ICA was _tted to raw MEG
signals, and sources matching the ECG and EOG signals recorded by
dedicated channels were automatically found and removed.2 Then, for
the sake of computational ef_ciency, we downsampled the preprocessed
MEG time series at fs = 400 Hz before applying signal reconstruction as
described in Section 2.1.6, since scale-free analysis was focused on the
low frequency content.

2.1.6. Coregistration and MEG source reconstruction
The co-registration of MEG data with the individual's aMRI was car-

ried out by realigning the digitized _ducial points with the multimodal
markers visible in MRI slices. We used a two-step procedure to ensure
reliable MEG-aMRI coregistration: using MRILAB (Neuromag-Elekta
LTD, Helsinki), _ducials were aligned manually with the multimodal
markers on the MRI slice; an iterative procedure realigned all digitized
points (about 30 more supplementary points distributed on the scalp
of the subject were digitized) with the scalp of the participant and the
MEG coordinates using the mne_analyze tools within MNE (Gramfort et
al., 2014, RRID:nlx_151346). Individual forward solutions were com-
puted using a 3-layer boundary element model (Hämäläinen and Sarvas,
1989) constrained by the individual's aMRI. Cortical surfaces were ex-
tracted with Freesurfer (RRID: nif-0000-00304) and decimated to about
5120 vertices per hemisphere with 4.9 mm spacing. The forward so-
lution, noise and source covariance matrices were used to compute
the noise-normalized dynamic statistical parametric mapping (dSPM)
(Dale et al., 1999) inverse operator (depth = 0.8).3 The unitless in-
verse operator was applied using a loose orientation constraint on in-
dividuals brain data (Lin et al., 2006) by setting the transverse com-
ponents of the source covariance matrix to 0.4. Importantly, consid-
ering that taking the norm of source dipoles is a

1 http://surfer.nmr.mgh.harvard.edu
2 https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_artifacts_

correction_ica.py
3 https://github.com/mne-tools/mne-python/blob/master/tutorials/plot_mne_dspm_

source_localization.py

nonlinear transformation that may modify scale-free properties (Zilber
et al., 2012), we only kept the radial components. Using the individual
cortical parcellation based on the Destrieux atlas (138 labels in total)
provided by Freesurfer, reconstructed time series in vertices belonging to
the same cortical label were grouped and averaged to obtain a unique
time series. In this procedure, the signs of time series within labels were
`ipped according to anatomical orientation of vertices in such a way
that signed activations did not cancel out after averaging (this is a stan-
dard label averaging used by the MNE software).

2.2. Methods

2.2.1. Scale-free modeling: From Fourier spectrum to selfsimilarity and
multifractality

Scale-free dynamics are classically modeled by a power-law de-
crease of the Fourier power spectrum (f) with respect to frequen-
cies f: (f) C|f| . Such power laws can be understood as the signa-
tures of the more general and better theoretically framed concept of
self-similarity (Samorodnitsky and Taqqu, 1994). In essence, self-sim-
ilarity amounts to modeling scale-free dynamics in data as fractional
Gaussian noise (fGn), a Gaussian stationary stochastic process, consist-
ing of the fractional integration (with parameter H 1/2) of a white
(i.e., delta-correlated) Gaussian process. The sole parameter H, theoret-
ically related to as = 2H 1, governs the entire covariance struc-
ture and thus, together with Gaussianity, completely de_nes temporal
dynamics. More precisely, the self-similar parameter H quanti_es the al-
gebraic decrease of the autocorrelation function: H = 1/2 indicates the
absence of correlation, H < 1/2 corresponds to negative correlation and
H > 1/2 marks long range positive correlation. While the classical de-
finition of fGn implies 0 < H < 1, it can be theoretically extended to
H > 1 (with the recourse to the notion of generalized processes and tem-
pered distributions; Samorodnitsky and Taqqu, 1994), while preserving
the original intuition beyond fGn: the larger |H 1/2|, the more struc-
tured the temporal dynamics of data (as illustrated in Supplementary
Movie 1). Beyond the global control of temporal dynamics via the co-
variance function, Gaussian self-similarity also implies the absence of
`uctuations in the regularity of local temporal dynamics. Such local reg-
ularity is often quanti_ed via the Hölder exponent h(t) > 0 (Wendt et
al., 2007). For Gaussian self-similar processes, such as fGn, t, h(t) H.

The multifractal paradigm extends self-similarity by preserving a
control of the global temporal dynamics via the covariance function,
driven by H, while enriching it with possible `uctuations along time of
the local regularity h(t) (Wendt et al., 2007). Multifractal models, such
as multifractal random walk (MRW), are thus essentially stationary non
Gaussian processes, de_ned as the fractional integration (of parameter
H 1/2) of a white (i.e., delta-correlated) Gaussian process, whose am-
plitude is modulated by another independent process, whose covariance
decreases logarithmically slowly, with an amplitude controlled by the
multifractality parameter M 0 (Bacry et al., 2001). Self-similarity pa-
rameter H preserves the intuitive interpretation of global and overall de-
pendence and structure in the temporal dynamics of data, while the ad-
ditional multifractal parameter M allows local and transient departures
from Gaussianity, hence burstiness in temporal dynamics, via `uctua-
tions along time of the local regularity (as illustrated in Supplementary
Movie 2).

More technically, multifractal temporal dynamics imply that the
`uctuations along time of local regularity are erratic, i.e., the function
h(t) is itself a very irregular function. Therefore, temporal dynamics are
not well-described by the local function h(t), but rather by a global func-
tion, the so-called multifractal spectrum 0 D(h) < 1. The multifractal
spectrum, which consists of the fractal dimension of the set of points
on the real line sharing the same regularity h(t) = h (cf. Wendt et al.,
2007 for a technical definition), thus conveys a global information on
the geometrical structure of h(t), hence on temporal dynamics beyond
the mere covariance function. These notions are pedagogically, hence
qualitatively, illustrated on synthetic data in Fig. 1.
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Fig. 1. Schematic introduction to multifractality. (A) Multifractal signals observed at three different time scales from coarse (top) to _ne (bottom). Local temporal dynamics can be quan-
ti_ed by the Hölder exponent h(t), a local regularity index. In this pedagogical example, h(t) can only take three values: red, green and yellow. For multifractal signals, h(t) is per se a very
irregular function along time, with all possible h existing in any small subpart of the data. (B) For monofractal signals (with the same covariance function as the multifractal signals, hence
same H), no `uctuations of local regularity are observed and the local h and the global H are everywhere identical. In these three examples of monofractal signals, the global regularity
H of each signal increases from top to bottom. (C) The multifractality illustrated in (A) can be captured by a multifractal spectrum D(h), quantifying by means of fractal (Hausdora)
dimension of the geometrical structure of time points that share the same local regularity h(t) = h. The most frequent Hölder exponent h, indicated in red, is closely related to the global
self-similarity index H whereas multifractality M encompasses all local regularities h by re`ecting the width of D(h). Importantly, D(h) remains the same for the whole signal and any
subpart, it is hence scale invariant. (For interpretation of the references to color in this _gure legend, the reader is referred to the web version of the article.)

While the multifractal spectrum D(h) can theoretically consist of
any shape, it is often ef_ciently approximated, for practical use, as a
parabola controlled by H and M: D(h) 1 (h H)2/2M. For Gaussian
self-similar processes, M 0 and D(h) = (h H), with the Dirac-delta
function. Parameters H and M thus provide independent and comple-
mentary characterization of scale-free dynamics in data (Wendt et al.,
2007), with M adding the possibility to model burstiness in temporal dy-
namics by local departures from Gaussianity, while the global structure
of temporal dynamics remains controlled by H.

2.2.2. Scale-free analysis: From spectral estimation to wavelet and wavelet-
leader analysis

The scaling exponent has classically been evaluated by means of
spectrum estimation, i.e., by linear regressions in a log-log plot of es-
timated power spectrum versus frequency (as sketched in Fig. 2). In
the present work, all Fourier spectra are estimated using the Welch pe-
riodogram procedure. Alternatively, time domain approaches such as
detrended `uctuation analysis (DFA) (Linkenkaer-Hansen et al., 2001),
also based on linear regressions, rely on quantifying the power of `uctu-
ations in data increments computed at different lags (acting as scales). It
is however now well-documented that multiscale representations, such
as wavelet transforms, are well-suited for the analysis of scale-free dy-
namics and achieve optimal and robust estimation performance cf. e.g.,
Abry and Veitch (1998), Torres and Abry (2003), Veitch and Abry
(1999), and Bardet et al. (2003). Let 0(t) denote a reference pattern, re-
ferred to as the mother wavelet, the discrete wavelet coef_cients dX(j, k)
are de_ned on a dyadic grid (scale a = 2j and time t = k2j) as:

dX(j, k) = X(t)2 j
0(2 jt k)dt. Under mild conditions on the choice of

0(t), it has been shown that for self-similar processes (Abry and Veitch,
1998):

(1)

with (q) = qH, thus permitting a robust and ef_cient estimation of H
by linear regressions (Abry and Veitch, 1998). It can further be shown
that, with the particular choice q = 2, , referred to as the
wavelet spectrum, can be read as an estimator of the Fourier spectrum
(f) (Veitch and Abry, 1999). Therefore, under elementary transforma-

tions, the Fourier and wavelet spectra can be mapped one onto the
other, as , with f0 a constant that depends
on the choice of 0 (and that can be well approximated for a large class
of wavelets as f0 3/4 × fs, with fs the sampling frequency) (Abry and
Veitch, 1998; Veitch and Abry, 1999). This is quantitatively illustrated
in Fig. 2. While both spectra yield equivalent information on the global
temporal dynamics, it has been documented that the wavelet spectrum
yields a more robust and more reliable estimate of H than Fourier spec-
trum does for (Veitch and Abry, 1999). Notably, it was shown that
the wavelet spectrum is less prone to bias induced by smooth trends
or smooth non stationarity effects, than the classical Fourier spectrum,
hence yielding robust estimates of the scale-free exponents.
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Fig. 2. Scale-free brain dynamics: Fourier vs. wavelet-based power spectra at rest and during task. (A) Group-average Fourier (thin lines) and wavelet (thick lines) power spectra computed
in an occipital sensor (inset) for empty room (grey), resting-state (brown) and task (green) recordings. In both Fourier and wavelet log-power spectra, the linear _t indicates scale-free
dynamics, and delineates the implicated range of scales (j (8, 12)) corresponding roughly from 0.1 Hz (i.e. j = 12) to 1.5 Hz (i.e. j = 8). The slopes quantify the scaling exponents (of
power spectra 1/f ) and the self-similarity index H. Human brain activity is characterized by a pink noise ( 1) regime whereas empty room recordings correspond to brown noise ( 2):
hence, and importantly, this graph clearly shows that instrumental noise is a not a spurious cause for observing scale-free dynamics in brain activity. (B and C) Group-average Fourier (thin
lines) and wavelet-based (thick lines) power spectra computed in two frontal (red) and occipital (blue) cortical labels at rest (B) and during task (C). Larger values correspond to steeper
slopes, as shown in the frontal region (front, red label) compared to the occipital (occ, blue label). All plots clearly show that wavelet and Fourier spectra can be formally mapped one onto
the other. (For interpretation of the references to color in this _gure legend, the reader is referred to the web version of the article.)

For multifractal processes, when M > 0, the scaling exponents (q)
no longer follow the linear form qH, but rather consist of a concave
function, which in _rst approximation and for practical purposes can be
written as (q) = qH Mq2/2. The scaling exponents (q) are further re-
lated to the multifractal spectrum D(h) via a Legendre transform (Wendt
et al., 2007).

For more than one decade (Jaaard et al., 1998) it has been proved
that a relevant estimate of parameter M requires to replace the wavelet
coef_cients with wavelet-leaders, de_ned as local suprema of the
wavelet coef_cients dX(j , k ), across a local neighborhood

j,k = [(k 2)2j + 1, (k + 1)2j], for all _ner scales 2j 2j (Wendt et al.,
2007):

(2)

Under mild restrictions, it has been shown that (Wendt et al., 2007):

(3)

(4)

These two fundamental relations show that parameters H and M can be
estimated as linear regressions in diagrams C1(j) vs. j and C2(j) vs. j, re-
spectively. This is illustrated in Fig. 3. To ease exposition, the functions
C1(j) and C2(j) will hereafter be referred to as the wavelet-leader spec-
tra.

2.2.3. Estimation set-up
In practice, in the following data analysis, spectral estimation was

conducted using a standard Welch periodogram estimation procedure,
with a classical Hamming windowing (window size of 8192 samples,
roughly corresponding to 20 s, and 50% overlap in adjacent windows).
Wavelet analysis was conducted using a fast pyramidal discrete wavelet
transform algorithm, using Daubechies least asymmetric orthonormal
wavelets with N = 2 vanishing moments (Mallat, 1998). Scale-free and
multifractal analyses were performed using the state-of-the-art wavelet
leader toolbox made publicly available4 and fully detailed in Wendt et
al. (2007), and now available as well in Python.5 It has been carefully
checked that varying details in data analysis set-up leads to similar con-
clusions. For the sake of reproducibility, the Python scripts correspond-
ing to the whole MEG data analysis we performed are made publicly
available.6

4 http://www.ens-lyon.fr/PHYSIQUE/Equipe3/Multifractal/software.html
5 https://github.com/neurospin/mfanalysis
6 https://github.com/neurospin/dynacomp_mf_analysis
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Fig. 3. Self-similarity and multifractality in spontaneous infraslow brain activity at rest. Normalized time series representing an individual's brain activity recorded in two different pairs
of MEG sensors at rest (A C) and during task (D F). The pairs of sensors in rest and task conditions were selected in order to show two extreme examples where different self-similarity
(but no multifractality) or different multifractality (but same self-similarity) can be observed, respectively. In (A C), the black and red traces characterize frontal and occipital MEG sen-
sors (magnetometers) at rest, respectively, as depicted in the topographies. In (D F), the same colors are used to refer to central and right frontal MEG sensors (magnetometers) during
task. In (A C), the two signals show a difference in self-similarity. In (D F), the two signals show differences in multifractality but no differences in self-similarity. Plots (B,E) correspond to
periodogram based spectral estimation (cf. Section 2.2.3). Plots (C,F) correspond to wavelet-leader analysis (as detailed in Section 2.2.2). In particular, on top of panels (C,F), the quantities
C1(j) and C2(j) de_ned in Eqs. (3) and (4) are computed as a function of time scale j. The H and M indexes are derived from these quantities using a regression analysis performed over
the scaling range (j1, j2) = (8, 12) which matched the (0.1, 1.5) Hz frequency range (j = 8 corresponds to 1.5 Hz and j = 12 corresponds to 0.1 Hz). The latter was used in panels (B,E) for
estimating the values. The multifractal spectra D(h) are reported at the bottom of panels (C,F). (For interpretation of the references to color in this _gure legend, the reader is referred to
the web version of the article.)

3. Results: self-similarity and multifractality in human brain
activity recorded with MEG

3.1. Assessing self-similarity in MEG data: range of frequencies, Fourier vs.
wavelet power spectra

Fig. 2 reports the group-average Fourier and wavelet spectra in sen-
sors and in cortical source estimations of the entire MEG data time
series. As theoretically expected (cf. Section 2.2.2), the Fourier (thin
lines) and the wavelet spectra (thick lines) superimposed very well,
yielding consistent patterns across methods. Fig. 2 also shows that both
spectra displayed power law behaviors over a broad range of frequen-
cies ranging from roughly 0.1 Hz to 1.5 Hz. Importantly, Fig. 2A com-
pares Fourier and wavelet spectra of human brain MEG data to those
of empty-room MEG recordings. This formal comparison unambigu-
ously showed that the spectra differed both in amplitude and in shape:
the spectral exponent of human brain recordings was in the so-called
pink noise regime (1 2) while empty-room recordings rather dis-
played brown noise temporal dynamics ( 2). Thus, scale-free dynam-
ics observed in MEG recordings through power spectrum analysis (both
Fourier and wavelet) was not caused by instrumental or sensor noise,
but rather resulted from macroscopic human brain activity.

Thus, and overall, Fig. 2A C thus revealed that power law behaviors
could be consistently observed during resting-state and during task, in
the range of octaves (j1, j2) = (8, 12). This range is associated with fre-
quencies

(0.1, 1.5) Hz or, equivalently, with time scales (2j1=8/fs,
2j2=12/fs) (0.66, 10) s.

To further provide an intuitive understanding of scale-free dynam-
ics, we compared the Fourier and wavelet spectra of normalized MEG
time courses (Fig. 3). We selected two different pairs of sensors for one
participant at rest (Fig. 3A C) and during task (Fig. 3D F) in order to il-
lustrate two extreme case examples. In Fig. 3A, the occipital sensor time
series (red) appeared visually less structured over time (i.e., closer to
white noise behavior) than the frontal sensor time series (black). This
visual appreciation was quanti_ed using a classic Fourier analysis show-
ing a power law behavior at low frequencies (P(f) 1/f ), with a scaling
exponent that was smaller for the occipital sensor (red trace) (Fig. 3B).
Conversely, we found that the frontal sensor (black) showed a larger
scaling exponent, hence a steeper slope, or equivalently, a stronger tem-
poral autocorrelation, and was quanti_ed by a stronger long-range de-
pendency (Fig. 3B). The same analysis held when conducted from the
wavelet spectrum (Fig. 3C), with very satisfactory matches for the esti-
mated scaling exponents H and according to = 2H 1.

3.2. Beyond self-similarity in MEG data by assessing multifractality

To demonstrate the interest of a multifractal description in brain ac-
tivity, we _rst report the analysis of the same MEG time series recorded
at rest already used in the previous Section (Fig. 3A). Multifractal analy-
sis yielded negative estimates of the multifractality parameter (Fig.
3C): M 0 indicating no multifractality at rest. This can be vizual-
ized by the -shape of the multi
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fractal spectra D(h), which only differed by their location on the h-axis,
re`ecting different self-similarity exponents H. In other words, for these
time series, there was no additional information provided by using mul-
tifractal analysis.

We then repeated the same analysis on two MEG time-series col-
lected during task (Fig. 3D). These case study time-series where cho-
sen on purpose because they showed very similar Fourier spectra (Fig.
3E), hence displaying the same s, and predictably, the same held true
for the wavelet spectra (Fig. 3F) showing the same Hs. Interestingly
however, the frontal signal (red) appeared far more irregular and lo-
cally bursty than the central one (black). This was again quanti_ed us-
ing multifractal analysis (Fig. 3F), which revealed that although H (top
left) was identical in both frontal and central time series, the frontal
time series was characterized by a positive M = 0.045 > 0 (hence, dis-
played multifractality), while the central sensor did not (M < 0). The
multifractal spectra for both time series thus summarized the two case
study observations: whereas the location of their peaks coincided (same
H), only one spectrum (red) showed a large parabola shape (M > 0).

These examples were chosen as pedagogical illustrations of the po-
tential richness of scale-free temporal dynamics found in brain time se-
ries. Specifically, while the typical power spectrum analysis would con-
clude that these different time series share the same scale-free character-
istics, multifractal analysis clearly showed differences in their temporal
dynamics by quantifying the existence of transient and local irregulari-
ties observed in the frontal sensor (red) that did not exist in the central
sensor data (black). Multifractality thus complements self-similarity in
the characterization of scale-free dynamics in time series by quantifying
local transient dynamics that are not well accounted for by the autocor-
relation or by the Fourier spectrum.

3.3. Group-level analysis of scale-free brain dynamics

Having extended the framework for the assessment of scale-free
brain dynamics to self-similarity H and multifractality M, we then pro-
ceeded with a comprehensive analysis of scale-free brain activity across
all individuals (n = 24). For this, we assessed scale free activity in
source reconstructed time series averaged within each cortical re-
gions (see Section 2.1.6). The estimation of parameters H and M relied
on the wavelet-leader multifractal formalism described in Section 2.2.2:
i.e., MEG wavelet-leader spectra C1(j) and C2(j) were systematically
computed on resting-state and task recordings separately for each cor-
tical label and on a per individual basis. Results were then averaged
across individuals to form and , respectively. Importantly,
since linear regression and group-level averaging were both linear af-
ter taking log in Eqs. (3) and (4), we could interchange them without
impacting the results. For this reason, in what follows, we illustrated
group-level values of and in log-scale diagrams from which
we deduced the respective group-level H and M. The latter actually
matched the group-level averages of subject-speci_c values of H and M,
shown in the cortical maps of Figs. 4 and 5.

3.4. A fronto-occipital gradient of self-similarity

Fig. 4A reports the grand average for resting-state obtained
in two cortical labels (one frontal in red, one occipital in blue). The
self-similarity exponent H was found to be larger in the frontal label as
compared to the occipital label. To systematically quantify this effect,
the calculation of was conducted over the whole cortical surface.
Using T-statistics, the null hypothesis H = 0.5 was tested at the group
level. To account for multiple comparisons across the 138 labels cover-
ing the whole cortical surface, a correction was implemented using the
false discovery rate (FDR) detection at = 0.05: pcorrected < 0.05. Fig.
4C reports the spatial distribution of statistically significant mean val-
ues of H (H > 0.5), yielding a key _nding: the spatial distribution of es-
timated Hs during rest revealed a fronto-occipital gradient, in which H
significantly decreased from frontal (H 1.2) to occipital regions (H

0.8 0.9). This gradient was consistent with prior observations of
scale-free activity observed in MEG and EEG recordings (Dehghani et
al., 2010): larger H in frontal regions (i.e., steeper slopes for the spec-
tra) would indicate stronger and longer temporal correlations,i.e.
more-structured temporal dynamics, compared to occipital regions.

3.5. During task, an overall decrease of self-similarity accentuates the
fronto-occipital gradient

In Fig. 4D, the spatial distribution of H significantly departed away
from 0.5 during task yielding, by comparison to rest, another key _nd-
ing: the decrease of H during task appeared to be global and almost sig-
nificant everywhere over the cortical surface. Interestingly, the anatom-
ical fronto-occipital gradient at rest appeared to be further strength-
ened during perceptual task completion (cf. lateral views in Fig. 4D).
We contrasted the H parameter estimates between rest and task us-
ing paired t-tests. FDR was applied to correct for multiple comparisons
across cortical labels at = 0.05. In Fig. 4E, the statistical assessment
of changes in H between rest and task con_rmed our qualitative appre-
ciation. Specifically, H was significantly diminished during task in nu-
merous cortical regions including occipital, parietal, and primary mo-
tor cortices as well as right supplementary area (SMA) and ventrolateral
prefrontal cortex (vlPFC) bilaterally. All these regions were previously
shown to be essential in the perceptual task participants were engaged
in Zilber et al. (2014).

3.6. Weak multifractality in resting-state

The group-average at rest for two cortical labels is illustrated in
Fig. 5A. We found no multifractality (M < 0) in the frontal label (red)
but found multifractality (M = 0.017) in the occipital label (blue). As
previously done for estimates of H, we performed the analysis of multi-
fractality at rest over the whole cortical surface. Using T-statistics, the
null hypothesis M = 0 was tested at the group-level. The same FDR
correction at = 0.05 was applied to correct for multiple comparisons
across labels. Fig. 5C reports the spatial distribution of statistically sig-
nificant mean values of M (M > 0). At rest, the presence of multifractal-
ity was con_ned to a few regions: the posterior superior temporal sulci,
the occipital cortex, the right temporo-parietal junction and the frontal
cortices, bilaterally. The observed values of M mostly ranged between
0.01 and 0.02, with the exception of the frontal poles which reached
M = 0.03.

3.7. Multifractality: localized increase in regions engaged in the task

During task, the group-level wavelet-leader spectra (Fig. 5B)
suggested an absence of multifractality in frontal regions (M = 0) but
an increase of multifractality in occipital regions. M was increased by
about 60% in occipital cortices, hence showing steeper slopes for .
A statistical assessment of multifractality over the whole cortical surface
during task revealed a spatially extended set of cortical regions show-
ing significant multifractality (Fig. 5D; mean values of M (M > 0)). Ad-
ditionally, the multifractal parameter M took overall larger values com-
pared to the distribution we had observed during resting-state. We no-
tably found larger M values in cortical regions involved in the percep-
tual task participants were engaged in Zilber et al. (2014), namely: vi-
sual cortices (primary, secondary and visual motion region (hMT+)) as
well as parietal cortices and the posterior superior temporal sulci.

When statistically contrasting the M parameter estimates between
rest and task (paired t-tests, FDR correction for multiple comparisons
across cortical labels at = 0.05), we found significant changes in
M in brain regions including the right occipital cortices, SMA, the
left temporo-parietal junction and posterior cingulate cortex (Fig. 5E).
These changes corresponded to an increase in multifractality, though
they remained limited in magnitude to a maximal increase of 0.01 (to
be compared to an average value of the order of 0.02). This was a
remarkable observation considering that the analysis was conducted
over the whole cortical surface with no a priori restriction on the
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Fig. 4. Fronto-occipital gradient of self-similarity. For comparison with Fig. 2, we show group-average wavelet-leader structure functions in the same frontal (red) and occipi-
tal (blue) cortical labels during rest (A) and task (B) blocks. The linear _ts were computed over the scaling range 8 j 12 and matched the (0.1, 1.5) Hz frequency range used before
for linear regression in the power spectra. The associated slopes provides estimates of group-level Hurst exponents H. (C and D) Group-average cortical maps (lateral and medial views
on top and bottom, respectively, left hemisphere on the left) of Hurst exponents H at rest and during task, respectively. In both rest and task, a fronto-occipital gradient of self-similarity
could be observed going from higher H in frontal regions to lower H in parieto-occipital regions). (E) Cortical maps contrasting H in task and resting-state testing the null hypothesis that
HTASK = HREST. The statistical significance was assessed on a per label basis by computing a paired Student t-test and correcting for multiple comparisons with FDR at = 0.05. Estimates
of H were smaller in task than in rest as shown by negative differences ( H = HTASK HREST < 0). This contrast indicated that, globally, self-similarity significantly decreased when partic-
ipants performed a task as compared to when they rested. (For interpretation of the references to color in this _gure legend, the reader is referred to the web version of the article.)

timing of the stimuli or cognitive operations implicated in the deci-
sion-making; rather, our analysis was performed over the whole time
series.

A supplementary analysis of high-pass _ltered data (cut-oa fre-
quency of 0.1 Hz) was performed to exclude any effect of artifacts over-
lapping on the infraslow frequency range (see Figure S1A). Further-
more, the passive Localizer recording, which was implemented to lo-
calize the hMT+ visual motion area in each individual (see (Zilber
et al., 2014) for details), was analyzed to

exclude the impact of a mere motor response in the modulation of
scale-free parameters (see Figure S1B). Both analyses showed similar
cortical distributions of parameters H and M to those shown in Figs.
4 and 5. Altogether, these results suggest that multifractal characteriza-
tion of brain activity may capture relevant signatures of brain process-
ing that are associated with task-relevant brain regions.
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Fig. 5. Multifractal brain activity. Group-average wavelet-leader structure functions in the same frontal (red) and occipital (blue) labels at rest (A) and during task (B). The linear
_ts were computed over the scaling range 8 j 12 and matched the (0.1, 1.5) Hz frequency range used before. The associated slopes provided estimates of the multifractal exponents
M. (C and D) Statistically significant (H0 : M = 0) grand-average cortical maps of multifractal exponents M at rest and during task, showing sparser topographies than for self-similarity
H, especially at rest. (E) Cortical maps contrasting M in task and resting-state testing the null hypothesis that MTASK = MREST. The statistical significance was assessed on a per label basis
by computing a paired Student t-test and correcting for multiple comparisons with FDR at = 0.05. Estimates of M were bigger in task than in rest as shown by positive differences
( M = MTASK MREST < 0) in several regions involved in the task, notably visual, parietal and motor cortices. This contrast indicated that, locally, multifractality significantly increased
when participants performed a task as compared to when they rested. (For interpretation of the references to color in this _gure legend, the reader is referred to the web version of the
article.)

3.8. Covariation of self-similarity and multifractality from rest to task

So far, we reported significant differences for both H and M when
contrasting rest and task, namely: while self-similarity H significantly
decreased in task as compared to rest (Fig. 4E), multifractality M sig-
nificantly increased in task as compared to rest (Fig. 5E). Additionally,
the changes in M were con_ned to a limited number of brain regions
whereas the changes observed in

H were more global, thereby yielding a global accentuation of the
fronto-occipital gradient. Considering the possible overlap of cortical
regions displaying both changes, we then asked to which extent the
two characteristics of scale-free dynamics may be related. We cor-
related the changes in H and M from rest to task on a label-by-la-
bel basis (Fig. 6). This analysis revealed that in some of the corti-
cal regions showing task-related multifractality (Fig. 6A), there was
a significant negative correlation between individual changes from

9
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Fig. 6. Covariations of self-similarity and multifractality. Significant negative correlation between changes of H ( H = HTASK HREST) and M ( M = MTASK MREST). (A) Cortical source es-
timates associated with significant correlations (color-coded Pearson's r values) observed between H and M. The null hypothesis reads r = 0 in each cortical label. Statistical significance
was assessed on a per individual and per label basis by computing a paired Student t-test. Corrections for multiple comparisons were performed using FDR at = 0.05. (B) Scatter plot of

H versus M, averaged over all brain regions reported in (A). The significant negative correlation indicated concomitant local decreases of H (negative H) and increase of M (positive
M). Each dots is an individual and crosses are outliers (n = 24). The outliers were automatically excluded as their distance to the mean was >2.5 to the model.

rest to task of H ( H = HTASK HREST) and M ( M = MTASK MREST)
(Fig. 6B).

These results constituted a particularly important _nding: theoreti-
cally, H and M are independent parameters, which model very differ-
ent aspects of scale-free dynamics. While self-similarity H provides in-
sights on the temporal autocorrelation of brain activity, M informs on
the burstiness of the signals. The observed negative covariation between
self-similarity and multifractality is non-trivial and crucially suggests a
potential coupling in the covariation of both indices. We discussed these
_ndings further below.

4. Discussion

To brie`y sum up, our key _ndings are: the existence of a fronto-oc-
cipital gradient of self-similarity in the human brain which increases
during task as compared to rest. Second, and to the best of our knowl-
edge, we observed for the _rst time multifractality on MEG data col-
lected in a healthy human population and describe an anatomical dis-
tribution of multifractality during resting-state and task. Local changes
in multifractality in task as compared to rest indicate a possible func-
tional relevance of multifractal infra-slow dynamics in brain processing.
Our empirical results raise several points of discussions and conclusions
regarding the assessment of scale-free temporal brain dynamics. We dis-
cuss the main ones below.

4.1. Robust description of infraslow, scale-free dynamics, in human brain
activity

Overall, our results support the notion that scale-free temporal dy-
namics constitute a signature of human brain activity as recorded with
MEG. We showed that scale-free properties were neither induced by,
nor to be confused with, instrumental or sensor noise considering that
empty-room recordings did not display the same characteristics.
Scale-free dynamics were observed in a range of frequencies correspond-
ing to 0.1 f 1.5 Hz. Such time scales are consistent with currently
available data in the literature for the estimations of H or (Monto
et al., 2008; He et al., 2010; He, 2014; Becker et al., 2018), and typ-
ically characterize infra-slow neural dynamics (Wang, 2010; Buzsáki
and Mizuseki, 2014; He, 2014). Scale-free temporal dynamics con-
ceptually implies that, within the scaling range, no frequency plays
a particular role. Conversely, all frequencies in that range contribute
jointly and in a related manner to the described dynamics. Such re-
lation is quanti_ed by , or in a richer framework which we pro-
pose here, by the joint description of H and M

parameters. Scale-free temporal dynamics thus correspond to arrhyth-
mic signatures con_ned to infra-slow brain dynamics, which comple-
ment oscillatory activity typically seen at higher frequen-
cies (>2 Hz) (Wang, 2010; Buzsáki and Mizuseki, 2014; He, 2014). It
is also noteworthy that while the concept of scale-free temporal dy-
namics theoretically implies the absence of any speci_c time scale, in
practice, scale-free analyses have covered a _nite range of frequencies,
0.1 f 1.5 Hz.

We thus propose that the classical parameter used to model
scale-free dynamics as a power-law decay of the Fourier spectrum can
be ef_ciently replaced by the self-similarity parameter H, which models
the decay of the wavelet spectrum. While both exponents are theoreti-
cally equivalent and related ( = 2H 1), it has been well documented
in the scienti_c literature that H and wavelet analysis bene_t from im-
proved estimation performance (robustness to smooth non-stationari-
ties) (Abry and Veitch, 1998; Veitch and Abry, 1999; Ciuciu et al., 2012,
2014). The larger H (or ) i.e., the steeper the decay of power laws ,
the more structured the temporal dynamics of the time series i.e., the
stronger the long range dependency quanti_ed by the temporal correla-
tions.

4.2. Multifractality: going beyond self-similarity

In addition to self-similarity, our results demonstrated the existence
of multifractality while participants performed a task and, to a lesser
extent, during resting-state. This speci_c result underline the richness
of infraslow brain dynamics and of the usefulness of the framework
we propose to characterize scale-free brain activity. Specifically, we
showed that multifractality allows distinguishing time series that share
the same global correlation structure (i.e., the same self-similarity) but
different local transient structures and burstiness over time (i.e., multi-
fractality). In other words, multifractality quanti_es local scale-free tem-
poral dynamics as transient departures from Gaussianity and support
the recent mention that multiplicative processes should be taken into
account in the assessment of macroscopic brain activity (Buzsáki and
Mizuseki, 2014). Hence, our approach is key to proper scale-free mod-
eling although it remains seldom discussed in the neuroscience litera-
ture (Shimizu et al., 2004; Suckling et al., 2008; Ciuciu et al., 2012).
Additionally, and from a signal processing perspective, our results sug-
gest that the multifractal random walk, which consists of a multifractal
extension of fractional Gaussian noise (cf. Section 2.2.1 for details), is a
likely more accurate model to describe spontaneous brain activity in the
infraslow regime (<2 Hz).
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4.3. Anatomical distribution of self-similarity and multifractality in resting-
state activity

The spatial distributions of self-similarity and multifractality quanti-
_ed at rest and during task were obtained using the theoretically robust
and practically ef_cient wavelet-leader multifractal framework (Wendt
et al., 2007). With this approach, we observed a fronto-occipital gra-
dient of the self-similarity parameter H in resting-state. This observa-
tion was congruent with previous _ndings in the literature (Dehghani
et al., 2010; Becker et al., 2018), but also extended them from scalp
level to cortical source estimates. The fronto-occipital gradient corre-
sponded to larger values of self-similarity in frontal regions and lower
values in posterior regions. This pattern converges with the known dis-
tribution of temporal scales at which neural processing operate: a recent
meta-analysis has notably showed a hierarchy of intrinsic time-scales
going from slower dynamics in frontal to faster dynamics in sensory
cortices (Murray et al., 2014). Comparable temporal hierarchies have
been functionally described in the human visual system (Gauthier et al.,
2012) and across brain systems (Hasson et al., 2015). These temporal
hierarchies are functionally compatible with _ner time scales needed
for sensory sampling, and integrative processes over longer time scales
occurring in frontal cortices for higher cognitive operations (Fuster,
2001; Miller and Cohen, 2001; Wood and Grafman, 2003). By indexing
the anatomical distribution of temporal autocorrelation functions, the
fronto-occipital gradient in H provides an alternative means to charac-
terize the hierarchy of temporal scales in cortex.

Additionally, during resting-state, the presence of weak multifrac-
tality, naturally one order smaller than values of H, is consistent with
well-behaved multifractal synthetic models (Wendt et al., 2007) or val-
ues reported for brain data (Shimizu et al., 2004, 2007; Suckling et al.,
2008; Ciuciu et al., 2008, 2012, 2017; Weiss et al., 2009). The presence
of M, especially during task performance, suggested that multifractality
may be a relevant index for brain processing.

4.4. Global decrease of self-similarity from rest to task

By contrasting brain activity during engagement in a task against
resting-state, we observed a general decrease of H over the whole cor-
tex, suggesting an overall and global shortening of temporal autocorre-
lation during task performance. Additionally, the decrease in self-sim-
ilarity was not uniform across brain regions, which contributed to the
strengthening of the fronto-occipital gradient. In other words, rela-
tively less short-time dynamics were found in frontal regions and more
short-time dynamics were observed in posterior regions during task than
during rest. The accentuation of the fronto-occipital gradient in H be-
tween rest and task is overall consistent with faster and richer dynam-
ics deployed for the analysis of sensory information in cortical regions
engaged in the task (Palva and Palva, 2012). This observation also con-
verges with previous fMRI studies showing a lower regional H dur-
ing task than during resting-state (He, 2011; Ciuciu et al., 2012) and
stronger decreases of H with higher cognitive loads (Chang et al., 2012).
The most salient differences of self-similarity were observed in regions
involved in the task (occipital cortex, motor cortex, SMA and vlPFC), i.e.
the decrease in H was the largest in these regions. This observation is
in line with the hypothesis that self-similarity may quantify neural ex-
citability, with smaller values of self-similarity indexing higher levels of
neuronal excitability in a given brain region (He et al., 2010; He, 2011;
Palva and Palva, 2012; Palva et al., 2013).

4.5. Local increase of multifractality from rest to task

Although we found a large number of cortical labels showing a sig-
nificant presence of multifractality during task, contrasting task against
rest revealed increases of M in only a small number of cortical re-
gions. The relatively small changes of M in magnitude, the limited
sample size (i.e. 24 individuals only) and the potentially large inter-in-
dividual variability may explain why

only a fraction of cortical regions were reported as statistically signif-
icant in the paired t-test. Nevertheless, the presence of the highest M
values in regions (occipito-parietal cortices, visual motion area, pSTS)
involved in the visual motion discrimination task used here (Zilber et
al., 2014) suggests that multifractality might be functionally relevant to
cortical processing. The local changes of multifractality would be con-
sistent with the notion that multifractality may re`ect the combina-
tion of multiplexed self-similar processes, i.e. the superimposition of sev-
eral self-similar processes associated with different neural populations
within the same cortical patch (given the limits of the spatial resolution
with MEG). As such, one working hypothesis for multifractality in brain
processes is that it may index the number of neural processes within a
cortical region employed in a given task. This working hypothesis will
be actively investigated.

4.6. Covariation of self-similarity and multifractality from rest to task

We evidence an interesting covariation pattern in self-similarity and
multifractality from rest to task: the MEG brain dynamics evolved from
well structured and long term correlated global temporal dynamics
(large H) with weak burstiness (M 0, weak multifractality) at rest, to
less structured global temporal dynamics (lower H, lesser long range
dependence, or more power at the upper bound of the scaling range,
i.e., around 1Hz) during task performance, showing though much larger
transient irregular and non Gaussian behaviors (larger M, multifractal-
ity). Let us emphasize that this covariation (decrease in H, increase in
M) was non trivial and was not induced by the modeling nor by the
analysis we undertook. This covariation thus constitutes a signature of
the changes induced in brain dynamics when participants engaged in a
perceptual discrmination task.

Our tentative explanation for this covariation is the following: the
local decrease of temporal autocorrelation (H) suggests that neural pop-
ulations in a given cortical region and at a large temporal scale (lower
infra-slow i.e. 10 s) tend to operate more independently while, at the
same time, the increase of temporal burstiness (M) in the same region
suggests that the same neural populations may interact at _ner tempo-
ral scales (higher infra-slow, i.e. 1 s). Distinct dynamic modes may thus
take place as a function of task requirements: while neural excitability
may be suf_cient to detect the presence/absence of a stimulus in the
environment (He et al., 2010; He, 2011; Monto et al., 2008), temporal
multiplexing may be required for thorough analysis of sensory inputs. In
other words, temporal multiplexing may occur when a certain level of
neural excitability has been reached. However, both a multivariate ap-
proach and activity from speci_c neural populations (e.g. recorded via
intracranial elecrodes) should be explored to further investigate this hy-
pothesis in future work.

5. Conclusions

Relying on the robust and ef_cient wavelet and wavelet-leader
analysis framework, our present contribution showed that multifrac-
tality provides a fruitful paradigm to complement self-similarity in
the modeling of scale-free temporal dynamics and infraslow macro-
scopic brain activity. We showed that spontaneous human brain activ-
ity at rest is well characterized by a strong self-similarity and weak
multifractality, indicating a significantly globally-structured activity,
with long range dependencies. The strength of this structured activity
showed a fronto-occipital gradient. We showed that performing a task
induced a non trivial (negatively correlated) local coupling of self-sim-
ilarity and multifractality with an overall decrease of self-similarity
(yet, strengthening of the fronto-occipital gradient) accompanied by a
local increase of multifractality in task-relevant brain regions. Over-
all, this pattern indicates less structured (or less correlated) tempo-
ral dynamics yet bursty occurrences of well-structured local scale-free
patterns (not accounted for by self-similarity but well quanti_ed by
multifractality). Altogether, these observations support the hypothesis
that (i) self-similarity, as indexed by parameter H, inversely re`ects
neural excitability, with large H corresponding to lower excitability and
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vice versa and that (ii) multifractality, indexed by M, might code for
multiplexing of neural processes.

The present analysis of scale-free dynamics in brain temporal dy-
namics will be continued by exploring the bene_ts of using more re_ned
analysis tools based on p-leaders (Leonarduzzi et al., 2017) or on mul-
tivariate models, rather than univariate, for self-similarity (Abry et al.,
2018) and multifractality (Jaaard et al., 2018; Ciuciu et al., 2017).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jneumeth.2018.09.010.
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