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Introduction

Capturing, with few variables, and simulating a scene evolution in an image time series
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PART I|. Dynamic Fractional Random Fields

o NonStationarity e J

o Wavelets and (Non)Stationarity o )
o Random Field Time Series o }

o Videos o }
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NonStationarity

Random Fiel 3F) € 3 LISTIC
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mic Random Fields
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NonStationari

NonStationarity (space)
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NonStational

Random Process

m process stationarity / Autocorrelation Expansion

Condition on the AutoCorrelation Function, ACF

The ACF of random process X, R(t,s) = E[X(t)X(s)] has the following expansion:

R(t,s)= F(t)+F(s) + Slt—s) + D apqt?s? (1)
— e 1<p,g<M

Projective terms Stationary term

Bivariate-polynomial
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NonStationarity

SS STIC
naom process nstationarity / Autocorrelation Expansion

Cond e AutoCorrelation Function, ACF

The ACF of random process X, R(t,s) = E[X(t)X(s)] has the following expansion:

R(t,s)= F(t)+F(s) + Slt—s) + D apqt?s? (1)
— e 1<p,g<M

Projective terms Stationary term

Bivariate-polynomial
i

Example (WSS random processes ~» )

For a Wide Sense Stationary (WSS) random process X(t), we have
Rx(t,s) = Rx(t —s,0) = Rx(t—s) =S(t—s)
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NonStationarity

SS
naom process nstationarity / Autocorrelation Expansion

Condition on the AutoCorrelation Function, ACF

The ACF of random process X, R(t,s) = E[X(t)X(s)] has the following expansion:

R(t,s)= F(t)+F(s) + Slt—s) + D apqt?s? (1)
— e 1<p,g<M

Projective terms Stationary term

Bivariate-polynomial
v

Example (WSS random processes ~» )

For a Wide Sense Stationary (WSS) random process X(t), we have
Rx(t,s) = Rx(t —s,0) = Rx(t—s) =S(t—s)

v

Example (Polynomial random modulation ~- )

(Xk)k—o1.... m# are zero-mean uncorrelated random variables and
=ipecay

M# M#
X(t) = Xctk, Rx(t,s) =Y ojthsk, F(t) = 03/2, and S=0.
k=0 k=0
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NonStationarity

Random P

s F Fra a FBF) ]
m process onstationarity / Autocorrelation Expansion
Condition on the AutoCorrelation Function, ACF

The ACF of random process X, R(t,s) = E[X(t)X(s)] has the following expansion:

R(t,s)= F(t)+F(s) + Slt—s) + D apqt?s? (1)
— e 1<p,g<M

Projective terms Stationary term

Bivariate-polynomial

Example (WSS random processes ~» )

For a Wide Sense Stationary (WSS) random process X(t), we have
Rx(t,s) = Rx(t —s,0) = Rx(t—s) =S(t—s)

Example (Polynomial random modulation ~- )

(Xk)k—o1.... m# are zero-mean uncorrelated random variables and
=ipecay

M# M#
X(t) =) Xtk Rx(t,s) =) ojthsk, F(t) = 03/2, and S=0.
k=0 k=0

Example (fBm ~»

For a fractional Brownian motion with Hurst parameter H, F(t) = S(t) = |¢|2.
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NonStational

Separability and image transforms

Non-Separability characterizes a large class of natural images. We will consider
non-separable extensions.
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NonStational
Random Fields LISTIC

Isotropy and image transforms Ziy =X )

Non-isotropy (anisotropy) dominates istotropy when considering natural images.
Anisotropic field constructions will be obtained by successive directional convolutions.

Anisotropic Quasi-Isotropic

mic Random Fields Image Time Series



NonStation

Geometry and image transforms

Geometry will be obtained by concentrating field energy in certain spectral bands.

Poor Gometry
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NonStationarity

s Fractional Brownian Field (FBF)

Stationarity

Isotropic fractional Brownian field

Let Z3; = Z3/(x,y) be a zero-mean real valued isotropic fractional Brownian field with
Hurst parameter H, 0 < H < 1. The autocorrelation function of Z3 is
RZH (Xy Yy, u, V) =E [ZH(X,}/)Z’}-[(U) V)] with

2
o
Rew (3, uyv) == (2 + 3™ + (02 + V)"
2
o

e [(x = u)? + (y = v)?]

H

Stationary (S) and Projective (P) terms :

2
S(t,s) = f% [+ = P(t,s)
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Modulated Isotropic fractional Brownian field

Random field G (4) is the modulation of an isotropic fractional Brownian random field Z;,(4) by
using a complex exponential with frequency point (ug, vq) € [0, 7t] X [0, 7t].

G’H(q)(t»S] = eiuqteivqsz’}{(q)(t) S)- (2)

@ Random field G;(4) has autocorrelation function
Réyy (g (650 9) = E [Gay () (6,5)Gq () (Y] | = Rz ) (85, x,y)eMa i) eMa ) ()

@ Random field Gy, (4) is non-stationary.

Generalized Q-factor fractional Brownian field

Consider a sequence of Hurst parameters Hqo = {H1, Ha, ..., H(q)} and
Define a generalized fractional field from a convolution of Q independent and non-stationary fields

Q:{Gﬂ(q),qzl, 2, ,Q}

Q
Eng = Q) Guia) (4)
q=1

@ The Q-factor Generalized FBF (GFBF) S%Q is a non-stationary random field.
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NonStational

Generalized FBF (G

o NonStationarity e J

o Wavelets and (Non)Stationarity e )
o Random Field Time Series o }

o Videos o }
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NonStationarity

Random Fiel wnian Field (FBF) Generalized FBF (GFBF)

o Wavelets and (Non)Stationarity o )
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Wavelets & (Non)Stationarity

Wavelets

Wavelet Packets (WP)

Functional space W; ] (WP subband) spanned by orthogonal wavelet packet functions:

y[ny,mo

. 2
{T[ZJ'kl,ZJ'kz]VVj,[nl‘nz] : (ki ko) € Z }

where Wy 0, = & is a scaling function, T is the shift operator and the wavelet packet function,

W Tl satisfies in the Fourier domain (notation F):
FW, (g 1np] (W1, W2) = FWj oy (1) F W, (w32), (5)
FW, [oyuma] = i [ng n] TP (@)

the multiscale wavelet packet filter, Hj’ [n1,m]’ satisfies
2 J
j/2 —1
H [ g (W1, 2) = [THjm (@), By (@) =272 T H 27 )

i=1 =1

for e'é € {0, 1}, where Hy and H; are standard scaling filter (Hp) and wavelet filter (Hi).

The subband W coefficients of Z define a random field c; ,
Jy[n1,mo] J, [n1,mo]

ol 1ol = [ Z (1T 1)W1y ) (412
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Wavelets & (Non)Stationari
Statiol € n TIC

Wavelet Packets & NonStationarity

o X; ~» zero-mean 229 order random field, with t € RV.
@ X; ~» continuous in quadratic mean

Condition (ACF) / on the autocorrela function expansion

The AutoCorrelation Function, ACF, can be written in the form:

R(t,s)= F()+F(s) + Slt—s) + Y  opqtPs?
N D 1<p,a<M

Projective terms Stationary term

Bivariate-polynomial
with  F()W,,,k(t) € LYRY), and tPsIW; , k()W ne(s) € LHRY x RV)

for every 1 < p,q < M, where S is an even function.
”

Theorem (wide sense stationarity)

Let r be the wavelet order. Under Condition (ACF), the discrete random sequence
¢ »»n#0, is wide sense stationary for r > M + 1: Rjr)n[k,l’,] = Rj’)n[k — €], with

r 1 r 2 2 mw
R! [m]:EJR]-'S(w) 7w ()] e do. @)

v
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Wavelets & (Non)Stationari

Stationarity

avelet Packets & NonStationarity

Statistical Properties of the Wavelet Packet Coefficients of Random Processes

Asymptotic properties of the discrete random process cj[ri?

Theorem (Decorrelation - Independence)

Let P = (hge)e = (U’){Wf,np (_,-)}jEN) be a path in the wavelet packet tree. Assume

that P # Py where Py is the approximation path.
@ Assume FS is continuous at the frequency wp defined by

j—+oo 2 ’

where G is a separable permutation recursively defined by
G(20+e)=3G) +e—2 L%J

2
@ Then, the autocorrelation R . of cf . uniformly satisfies:
Jsnp () Jsnp ()
. . . -
Jim (i R 147) = ZS(apole ®
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Wavelets & (Non)Stationarity

Wavelet Packets and the Fractional Brownian tio

Fractional Brownian Motion: only one vanishing moment is required for stationarity of
its the wavelet coefficients (the scaling coefficients remains non-stationary).

Example of fractional Brownian motions fBm, H = 0.75, Spectrum C /w25 J

o fBm random process: If X is a fractional
Brownian motion with Hurst parameter H,
0< H <1, then

02D(H)

FS(w) = W» 9)
where D(H) = T'(2H + 1) sin(ntH) and T is
the standard Gamma function.

o Spectrum FS has 1 singularity point.

7 [1] [7]
Rq'olm] R e 5m] R s[ml

o S

e

o R R A T e R
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Wavelets & (Non)Stationari

Case: Fields

Wavelet Packets and the (Generalized) Fractional Brownian Fields

o WP spectrum of GFBFs: spectral poles at different frequency location (~ paths).

Fractional Brownian Field

1 27(22+1)7r20.2

L /1 &2 = sin(mz)I2(1+z)°

Yz (1) = 600

(10)

y

Fractional Brownian Field Modulation

Yoy (5 V) = E(H(9)) (11)

((u—ug)?®+ (v — yg)2) @+t

Generalized Fractional Brownian Field

E(H(q))
Yen, H PRCEE (12)
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Wavelets & (Non)Stationarity

& NonStationarit Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Z, H=0.75
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Wavelets & (Non)Stationarity

Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

LAIAY

l
'l'”"'l'.h ; l 'l.h '1' "lll
i

LR H'“'-lllhl:tl.
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Wavelets & (Non)Stationarity

Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Gaussian poles and uniform Hurst parameters Gamma poles and uniform Hurst parameters
g'H4 5H4

LA

' “.“'qu't

til}
\

N
A
i
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Wavelets & (Non)Stationarity

e: Fields  2D-Wavelet Packet Spectrum

Wavelet Packet “Stationarization” ~» Power Spectral Density estimatio

— 2D Wavelet Packet Spectrum —
@ Set: P — {0, 1,...,2 71} x {0, 1,...,2 71} of frequency indices.

@ Apply G to P to obtain a new (reordered) grid N composed with indices (ny, np) = (6*1 (p1), G L(p )), where

G”)+€J. (13)

the permutation G is defined by G(0) = 0 and G(2¢ +€) =3G(L) +e —2 \‘
2

@ Compute: binary sequences (ele )(:1,2““‘], (e% )(:1‘2““‘]- € {0, 1}/ associated with elements (ny, np) of N,
from
J . J .
("1 = Z e]l'2/72 // ny = Z 6%2/72> . (14)
=1 =1
@ Compute: quaternary sequences (g )g—1 2 ... j € {0,1,2,3)/ associated with elements of grid N, from

0o if (el e?) = (0,0),
. 1.2
W oel 42 1 {f (LlXLQ) (0,1), (15)
2 if (el e2) = (1,0),
3 if (el e?) = (1,1).
@ Compute: the set of frequency indices n € {0, 1,...,4 1} associated with grid N, according to
J j—t
n= 3 ped ", (16)
(=1
@ Replace, in grid N, every pair (n1, ny) by its corresponding n obtained from steps above.
@ Set: for every (p1, pp) € P and the corresponding n € N,
P17t poTT
A<17,27> = Varlg ,l. (17)
2 2 ’
[ ] ]

17/55
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Wavelets & (Non)Stationarit
Packet Spectrum LISTIC

Wavelet Packet “Stationarization” ~» Power Spectral Density estimatio

FT-PSD “D3" WP-PSD “D3"

“D3” / Brodatz

FT-PSD “D10” WP-PSD “D10”
“D10” /Brodatz

mic Random Fields
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Wavelets & (Non)Stati

Packet Spectrum

Wavelet Packet “Stationarization” ~» Power Spectral Density estimation

FT-PSD “D87" WP-PSD “D87"
"D87" / Brodatz

FT-PSD “Fabric.11” WP-PSD “Fabric.11"
“Fabric.11" / VisTeX
: N
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Wavelets & (Non)Stationarity

Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Gaussian poles and uniform Hurst parameters Gamma poles and uniform Hurst parameters
g'H4 5H4

LA

' “.“'qu't

M}
\

N
A
il
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Wavelets & (Non)Stationarity

2D-Wavelet Packet Spectrum

& NonStationarity P
Gaussian poles and uniform Hurst parameters Gamma poles and uniform Hurst parameters
SwE, SwE, Swén, Swn, Swy Swén,
i

Uniform poles and uniform Hurst parameters
Swé, Swé, Swég SwEng

Uniform poles and constant of Hurst sequence
Swngﬁ SW£H6 SW£H6 SWg'ng SW8H21
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Wavelets & (Non)Stationarit

Packet Spectrum

o NonStationarity e J

o Wavelets and (Non)Stationarity o )
o Random Field Time Series o }

o Videos o }
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Wavelets & (Non)Stationarity

Fields  2D-Wavelet Packet Spectrum

o Random Field Time Series o }
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emporal spectrum warpi

Wavelet Packet spatio-temporal spectrum warping
— Simulation of Fractional Field Time Series
Let Zy, be an fBf with WP coefficients (c; (n; n,1) and associated spectrum yy.
Let 0 < «(t) < 1. Define

jsIn1,m]

£7 («(t) pel—ag <P17T pzﬂ))

J [n1>n2J(t) = W‘YO o 2’ 9j (18)
&2 %0+ (ap)
i nyma) K1y k2] = O [y 1 (£)65, g ) K1, K2,y (19)
Y di| ki, k W
Jyn1,mol ( Z Jn1,m] l 1y 2JT2/ lk1yko) YY) Ty o] ( yY)- (20)
ki,kp €Z
o1
= D Yimm(%y) (21)
n1,ny=0

is a fractional Brownian field with Hurst parameter «(t) and associated WP spectrum

x(t)+1
ye= o)y, o (22)
& *0 1 (o)
v
n
n
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Random Field Time Series
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Random Field Time Series

Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping
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Random Field Time Series

Image Time Series Synthesis from WP spectrum warping

Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis
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Random Field Time Series
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Random Field Time Series

Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping
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Random Field Time Series
Tim STIC

Image Time Series Analysis from WP spectrum power decay

ROI'ISAAC Hurricane Time Series of Spatial “Hurst” Parameters
S

i

Spectral information of critical dates

. ) ) 1 95 153
Critical dates for Hurst parameter time series

Date 1 95 153

195 243 288 195 243 288
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o NonStationarity e )
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@ Random Field Time Series o }
o Videos o }
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Random Field Time Series

atio-temporal 6 w e Series Sy Time Series Analysis

Outline

o Videos o )
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Videos

Fractional Brownian Fields Interacting Generalized Fractional Fields Fractional Field Regularization
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Videos

Fractional Brownian Fields Interacting Generalized Fractional Fields Fractional Field Regularization
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Videos

Fractional Brownian Fields Interacting Gener d Fractional Fields Fractional Field Regularization
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o PART Il. Multiplicative Interacting Random Field Time Series o )
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PART II. (SAR) Random Fields in Multiplicative Envir

@ Sampling in time (increasingly close acquisition dates) J

[TerraSAR-X (TS-X)]: 11 day acquisition cycle.

@ Spatial resolution (different acquisition modalities and spectral bands). J

Satellite — [TS-X]: resolution = 1m , scene with size 5-10km X 5km.
Airborne — [FSAR]: resolution = 0.25 m, pixel spacing 15 cm X 17cm.

@ Stochasticity in multiplicative algebra (speckle effect). J

Random field image time series (trend/stationary decomposition, change-image, etc.).
nt A BOME B4 SeemuBa

1995
S

7

Argentiére Mer de Glace — Leschaux
Localisation 45°56'15"N /7°00'30" E 45°55'15" N/ 6°55'45" E
Surface /Length | 15 (km?) /9 (km) 3.5 (km?) / 4.7 (km)

Mean slope ~14° (26%) ~9° (17%)
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PART II. (SAR) Random Fields in Multiplicative Environment

o SAR Model & Stationarity e J
o Geometric Wavelets and SAR e }
o SAR ITS Analysis o )

o Conclusion e }
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PART II. (SAR) Random Fields in Multiplicative Environment

o SAR Model & Stationarity e J
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LISTIC
SAR Model & Stationarity

Multiplicative interaction model in a sparsifying domain context

Function f is sparse in YV domain, where W is a linear transform, but we observe:
f(k) + F(K)IX(K) —1] ()
elog f(k)+log X (k) (%)
where
o f and X are strictly positive function and random sequence,

o (X(k))k are unitary-mean, stationary random variables,

o X is independent with f.
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SAR Model & Stationarity

Multiplicative interaction model in a sparsifying domain context

Function f is sparse in YV domain, where W is a linear transform, but we observe:
fk) + f(k)IX(k) —1] ()
elog f(k)+log X (k) (%)
where
o f and X are strictly positive function and random sequence,

@ (X(k))xk are unitary-mean, stationary random variables,

o X is independent with f.

Which model?

| A

Given f and W, who is the lesser between the two blue evils present in (x), (x%) for
the VW-domain representation of f(k)X(k)?
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SAR Model & Stationari

SAR |, Wavelets & Stationarity

Model (x): additive noise model with signal-dependent noise
The additive 'noise’ in model (%) is a random sequence Z:

Y (k) = F(K)IX(K) — 1].

Let W = W, , be a wavelet subband. We have: WY is non-stationary in general,
excepted some few cases, for instance when

o f is constant, or
o f is polynomial with order r and the W generating functions have at least r

vanishing moments.

Dynamic Random Fields and Image Time Series 33/55
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SAR Model & Stationarity

SAR Model, Wavelets & Stationarity

Model (x): additive noise model with signal-dependent noise

The additive 'noise’ in model (%) is a random sequence Z:
Y (k) = f(k)[X(k)—1].

Let W = W, , be a wavelet subband. We have: WY is non-stationary in general,
excepted some few cases, for instance when

o f is constant, or
o f is polynomial with order r and the W generating functions have at least r

vanishing moments.
v

Model (xx): 'additive’ noise in a multiplicative algebra

Wavelet in a multiplicative algebra [binary operations (®, ®) = (x,/\)] or geometric
wavelet, WC  involves geometric approximations and differencing, with:

WE X = WEFl @ W X].

and WC X inherits the stationarity property of X.
”
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SAR Model & Stationarity
LISTIC
Outline

o SAR Model & Stationarity e J
o Geometric Wavelets and SAR e }
o SAR ITS Analysis o )

o Conclusion e }
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SAR Model & Stationarity
LISTIC
Outline

o Geometric Wavelets and SAR o }
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SAR Geometric Wavelets

ric wavelets Geometric convolution

Multiplicative algebra

Consider a data sequence x = (x[l])¢cz, with x[f] € Rt for every { € Z. Assume that
this sequence represents a multiplicative 'process’. Then:

@ “zero” or “nothing” or “no change” corresponds to identity element “1"”

@ a “small” value is a value close to 1 (103 and 103 have the same significance in
terms of absolute proportion,

o The support of x is {{ € Z : x[{] # 1},

o Consequence: a missing value must be replaced by 1.
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SAR Geometric Wavelets

Geometric convolution

Geometric wavelets / Geometric convolution

Multiplicative algebra

Consider a data sequence x = (x[l])¢cz, with x[f] € Rt for every { € Z. Assume that
this sequence represents a multiplicative 'process’. Then:

o “zero” or “nothing” or “no change” corresponds to identity element “1"”

@ a “small” value is a value close to 1 (103 and 103 have the same significance in
terms of absolute proportion,

o The support of x is {{ € Z : x[{] # 1},

o Consequence: a missing value must be replaced by 1.
”

Geometric convolution

Let h = (h[¢])¢cz denotes the impulse response of a digital filter. We define the
geometric convolution of x and h on the vectorial space (R*, x,/\) as:

[Teez (xl)PHY
Heez/; (x[k — ﬂ)h[u £ h x x[k],

vkl = x % h[K]
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SAR Geometric Wavelets

ric wavelets / Definition

Geometric wavelet decomposition

Define the geometric wavelet decomposition of x by:
c1,0lk] = x x ho[2K], (23)

c1,1lk] = x % hy[2k], (24)

and, recursively, for € € {0, 1} (geometric approximations when € = 0 and geometric
differences/details when e = 1):

cj+1‘2n+e[k} =Cjn* h7e[2k}- (25)
v
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SAR Geometric Wavelets

ion Geometric wavelets STIC

Geometric wavelets / Definition

Geometric wavelet decomposition

Define the geometric wavelet decomposition of x by:
c1,0lk] = x x ho[2K], (23)

c1,1lk] = x % hy[2k], (24)

and, recursively, for € € {0, 1} (geometric approximations when € = 0 and geometric
differences/details when € = 1):

Cj+1,2n+e (k] = Cjn % he[24]. (25)
v
We have:
cjnlk] = (&41,2n % holk]) X (&j4120+1 % hylk]) . (26)
where
. - ulk] if e=0,
UbLEROS { 1 i e=1. o)

4
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SAR Geometric Wavelets

Geometric wavel

Geometric wavelet decomposition implementation

o Define a variable environment and a data type where

o '0" (of the standard type) behaves as '1’
o '+ calls’ involve X operation,
e "X calls’ involve /\ operation.

o Call this environment and use your 'standard’ additive tools

OR

@ compute the log function of the input data,

o apply 'standard’ additive wavelets to the log of data,

@ apply exp function to wavelet coefficients.
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SAR Model & Stationarity SAR Geometric Wavelets SAR ITS Analysis Conclusion

Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

DiagDet
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SAR Model & Stationarity SAR Geometric Wavelets SAR ITS Analysis Conclusion
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SAR Geometric Wavelets

Geometric wavelets: sparsity and noise

Sparsity in a in multiplicative noise model means:
o shrinking to 1, the data that are close to 1 ...

o provided that noise is nice (in the geometric wavelet domain)!

44

Statistical properties of geometric wavelet coefficients of speckle (noise model (xx))? J
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SAR Geometric Wavelets

Autocorrelation of geometric wavelet packet coefficients

Consider N-length Haar type approximation filter hg and detail filter hy given by
holkl =v for k=1,2,...,N. (28)
hy[k] = (1) 'v for k=1,2,...,N. (29)

When using a sequence h¢,, he,,... yhe; of such filters (wavelet packet subband
W, »), then the equivalent wavelet filter is

_ sin(22Nw) 2
}H 2JH (sm w-l—e;m])) (30)

and the autocorrelation RDj , where D; , = IogC [ ] is:

o L 02 2
(Snsm(2 Nw) ))) vy (W) cos 2 mw dw. (31)

R Z
ol =2 [ T (it ey

0 b=1
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SAR Geometric Wavelets

ic wavelets / Stochasticity / Autocorrelation

In the usual wavelet splitting scheme, only approximation coefficients are decomposed
again (the shift parameter n € {0,1}). This implies filtering sequences with the form

ho, ho,..., ho, he,
—_—

j times €j+1€{071)
Consider a j-length approximation sequence (hé{aar)z:1 2 of standard Haar type
(N = 2). Then, the equivalent filter of this sequence is:
. /sinc(21 2
’HHaar ’ =2 M , where sincw = sinw/w. (32)
sinc(21w)

The autocorrelation Rgf‘aor of the corresponding geometric wavelet coefficients is then:

>

2/ (7 [sinc(2lw) 2 :
R%j‘;r[m]: ;Jo (m) Yy (w) cos 2 mw dw (33)

Limit Autocorrelation Function

lim RE2*[m] = vy (0)5[m] (34)

jo+oo 40

Abdourrahmane M. ATTO Dynamic Random Fields and Image Time Series 42/55




SAR Geometric Wavelets

Stochasticity

Geometric wavelets ochasticity / Distribution of REGG

The Reciprocally Extended Generalized Gamma (REGG) probability density function
with scale parameter 3 > 0 and shape parameters K,7y as:

k—1 x\Y
e gy (x) = LL (%) ()7, with «y > 0. (35)
o (3)

Function f g

@ is the probability density function of a Generalized Gamma random variable if
Kk >0 and y > 0 whereas it

o represents a Generalized Inverse Gamma random variable if k < 0 and y < 0.

Consider the random variable defined by

N—1
1—[ (X[k — h[u
=0
where (X, Xk—1,..., Xk—n+1) are assumed to be independent and identically REGG

distributed random variables with parameters (k, 3,7v).
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SAR Geometric Wavelets

ric wavelets

If h = hg is the Haar approximation filter of order N, then, the probability density
function of Z is given by

lvl/v A
200 = ey L Peyvn (36)
BT (%) x
where B = BV, G is the Meijer function defined by
Gr Z(X T, >,LJ”"°° TI7, Fbe = )T, T —ac +5)
by ... b 2imt) e joo[ 1§ _ i T(L—=be +s) [15_, 1 T(ac —s) ’
with
NN )it y>o0
Ay.n = N 0o i
0o N if y<O
K— Vv K—V K— Vv
Peyvn=|1— ,1— - R

N times
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SAR Geometric Wavelets

If h = hq is the Haar detail filter of order N, then,

R
fZ(X):LGBv,N (BV )V Pe vy (37)
BV*FN (5) X
_ 6(1—(44)N)/2V'

where 3+ *

o ESIEY
if y<O
() )
(ML) times
K—V K—Vv K—V
1— 1— e 1—
p Y Y Y
VYL, VLN =
oy K+ Vv K+ Vv K+ Vv
oy Ty Ty
4] times
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SAR Geometric Wavelets

Stochasticity

istribution of REGG

Geometric wavelet coefficients of REGG

o Highly non-Gaussian.
o Highly asymmetric.

o Heavy tails.
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SAR Geometric Wavelets

Geometric wavelet coefficients of REGG

o Highly non-Gaussian.
o Highly asymmetric.

o Heavy tails.

Geometric wavelet / Sparsity, Stochasticity and shrinkage

@ Smooth shrinkage (for avoiding artifacts).

o Asymmetric shrinkage (with respect to the asymmetry of the distribution).

o Block shrinkage (for reducing the impact of the distribution tail).
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SAR ITS Analysis

Method s Application

and change detecti
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SAR ITS Analysis

Geo ic wavelets / Statistical properties REGG

Sigmoid shrinkage
X
001,01, (x) = 10sin 0 IxI
(1 o 672cos Oy —sin Ox (T71)>

where o N

1
Ox = > [01 +6_1 +sign(x) (61 —0_1)] o

Spatio-temporal sigmoid shrinkage (spatial blocs on temporal differencing)

For a pixel dyyZm,n(k) pertaining to a change-image, the sigmoid shrinkage:

dWIm,n(k)

_ylosing__ (HVdWI()\"’s"vk)Hgil,)
1+e cos U —sin

30, A (AwZm,n(k)) = (38)

where

Vay,z(myn, k) ={dwZ,, ,(k),m =m —e€o,...,m+ €o,n = n—vq,...,n+ no}
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SAR ITS Analysis

Method Spatio-temporal shrinkage Application

Method / Joint spatio-temporal filtering and change detection
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SAR ITS Analysis ’7
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LISTIC

Conclusio

@ Analysis at two different levels:

= Approximations / Temporal [Mean representatives of stable pixels/parts of the scene];
= Details / Spatio-Temporal [change-images representatives of the scene dynamics].

@ Workable for long time series of high spatial resolution + multichannel,

= Wavelet on the temporal axis
= Shrinkage with respect to spatio-temporal change information.

@ Easy monitoring of the temporal evolution of Alps glaciers.
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Conclusion

Conclusion

@ Analysis at two different levels:

= Approximations / Temporal [Mean representatives of stable pixels/parts of the scene];
= Details / Spatio-Temporal [change-images representatives of the scene dynamics].

@ Workable for long time series of high spatial resolution + multichannel,

= Wavelet on the temporal axis
= Shrinkage with respect to spatio-temporal change information.

@ Easy monitoring of the temporal evolution of Alps glaciers.

Limit distributions of REGG wavelets.

Spatio-temporal wavelet variance analysis.
Optimal parameters for sigmoid bloc shrinkage.

Identifying stationary subsequences / seasonality.

Compressive sensing in a geometric algebra.
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