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NonStationarity Wavelets & (Non)Stationarity Random Field Time Series Videos
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Introduction
Capturing, with few variables, and simulating a scene evolution in an image time series
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Random Process Random Fields Fractional Brownian Field (FBF) Generalized FBF (GFBF)

NonStationarity / Image Time Series / Spatio-Temporal Dependencies
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Random Process Random Fields Fractional Brownian Field (FBF) Generalized FBF (GFBF)

Random process / Nonstationarity / Autocorrelation Expansion

Condition on the AutoCorrelation Function, ACF

The ACF of random process X , R(t, s) = E[X (t)X (s)] has the following expansion:

R(t, s) = F (t) + F (s)︸ ︷︷ ︸
Projective terms

+ S(t − s)︸ ︷︷ ︸
Stationary term

+
∑

16p,q6M

αp,qt
psq

︸ ︷︷ ︸
Bivariate-polynomial

(1)

Example (WSS random processes ; No bivariate polynomial term)

For a Wide Sense Stationary (WSS) random process X (t), we have

RX (t, s) = RX (t − s, 0) ≡ RX (t − s) = S(t − s)

Example (Polynomial random modulation ; No stationary term)

(Xk )k=0,1,...,M# are zero-mean uncorrelated random variables and

X (t) =
M#∑
k=0

Xk t
k , RX (t, s) =

M#∑
k=0

σ2
k t

k sk , F (t) = σ2
0/2, and S = 0.

Example (fBm ; No bivariate autocorrelation polynomials)

For a fractional Brownian motion with Hurst parameter H, F (t) = S(t) = |t |2H .
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Random Process Random Fields Fractional Brownian Field (FBF) Generalized FBF (GFBF)

Random Fields Multivariate extensions of random processes

Separability and image transforms Zk,` ≡ Xk ×Y`

Non-Separability characterizes a large class of natural images. We will consider
non-separable extensions.

Isotropy and image transforms Zk,` ≡ X√
k2+`2

Non-isotropy (anisotropy) dominates istotropy when considering natural images.
Anisotropic field constructions will be obtained by successive directional convolutions.

Geometry and image transforms

Geometry will be obtained by concentrating field energy in certain spectral bands.

Quasi-Separable Non Sepable
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Random Process Random Fields Fractional Brownian Field (FBF) Generalized FBF (GFBF)

NonStationarity Fractional Brownian Field

Isotropic fractional Brownian field

Let ZH = ZH(x , y) be a zero-mean real valued isotropic fractional Brownian field with
Hurst parameter H, 0 < H < 1. The autocorrelation function of ZH is
RZH (x , y , u, v) = E [ZH(x , y)ZH(u, v)] with

RZH (x , y , u, v) =
σ2

2

(
(x2 + y2)H + (u2 + v2)H

)
−
σ2

2

[
(x − u)2 + (y − v)2

]H
.

Stationary (S) and Projective (P) terms :

S(t, s) = −
σ2

2

[
t2 + s2

]H
= P(t, s)

A. Yaglom, Some classes of random fields in N-D space, related to stationary random processes, Theory Proba. Appl. (1957)

B. Pesquet-Popescu, J. Lévy-Véhel, Stochastic fractal models for image processing, IEEE SP Magazine (2002)
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Random Process Random Fields Fractional Brownian Field (FBF) Generalized FBF (GFBF)

NonStationarity Generalized Fractional Brownian Field

Modulated Isotropic fractional Brownian field

Random field GH(q) is the modulation of an isotropic fractional Brownian random field ZH(q) by
using a complex exponential with frequency point (uq, vq) ∈ [0, π]× [0, π].

GH(q)(t, s) = e iuq te ivq sZH(q)(t, s). (2)

Random field GH(q) has autocorrelation function

RGH(q)
(t, s, x, y) = E

[
GH(q)(t, s)GH(q)(x, y)

]
= RZH(q)

(t, s, x, y)e iuq(t−x)e ivq(s−y)
. (3)

Random field GH(q) is non-stationary.

Generalized Q-factor fractional Brownian field

Consider a sequence of Hurst parameters HQ = {H1,H2, . . . ,H(q)} and
Define a generalized fractional field from a convolution of Q independent and non-stationary fields
G = {GH(q), q = 1, 2, . . . , Q}:

EHQ
=

Q⊗
q=1

GH(q) (4)

The Q-factor Generalized FBF (GFBF) EHQ
is a non-stationary random field.

A. M. Atto, Z. Tan, O. Alata, M. Moreaud, Non-Stationary Texture Synthesis from Random Field Modeling, IEEE ICIP (2014)
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packets (WP) Separable version

Functional space Wj,[n1,n2]
(WP subband) spanned by orthogonal wavelet packet functions:{
τ
[2j k1,2

j k2]
Wj,[n1,n2]

: (k1, k2) ∈ Z2
}
,

where W0,0N
= φ is a scaling function, τ is the shift operator and the wavelet packet function,

Wj,[n1,n2]
, satisfies in the Fourier domain (notation F):

FWj,[n1,n2]
(ω1,ω2) = FWj,n1

(ω1)FWj,n2
(ω2), (5)

FWj,[n1,n2]
= Hj,[n1,n2]

FΦ, (6)

the multiscale wavelet packet filter, Hj,[n1,n2]
, satisfies

Hj,[n1,n2]
(ω1,ω2) =

2∏
i=1

Hj,ni
(ωi), Hj,ni

(ω) = 2j/2

 j∏
`=1

H
εi
`
(2`−1

ω)


for εi

` ∈ {0, 1}, where H0 and H1 are standard scaling filter (H0) and wavelet filter (H1).

The subband Wj,[n1,n2]
coefficients of Z define a random field cj,[n1,n2]

,

cj,[n1,n2]
[k1, k2]=

∫
RN
Z(•)τ2j [k1,k2]

Wj,[n1,n2]
(•)d•
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packets & NonStationarity
Xt ; zero-mean 2nd order random field, with t ∈ RN .
Xt ; continuous in quadratic mean.

Condition (ACF) / on the autocorrelation function expansion

The AutoCorrelation Function, ACF, can be written in the form:

R(t, s) = F (t) + F (s)︸ ︷︷ ︸
Projective terms

+ S(t − s)︸ ︷︷ ︸
Stationary term

+
∑

16p,q6M

αp,qt
psq

︸ ︷︷ ︸
Bivariate-polynomial

with F (t)Wj,n,k (t) ∈ L1(RN ), and tpsqWj,n,k (t)Wj,n,`(s) ∈ L1(RN × RN )

for every 1 6 p, q 6 M, where S is an even function.

Theorem (wide sense stationarity)

Let r be the wavelet order. Under Condition (ACF), the discrete random sequence
c rj,n, n 6= 0, is wide sense stationary for r > M + 1: Rr

j,n[k, `] ≡ Rr
j,n[k − `], with

Rr
j,n[m] =

1

2π

∫
R
FS(ω)

∣∣∣FW r
j,n(ω)

∣∣∣2 e i2jmωdω. (7)

A. M. Atto, Y. Berthoumieu, Wavelet Transforms of Nonstationary Random Processes: Contributing Factors for Stationarity and

Decorrelation, IEEE T-IT, Vol. 58, No. 1 (2012)
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packets & NonStationarity

Statistical Properties of the Wavelet Packet Coefficients of Random Processes

Asymptotic properties of the discrete random process c
[r ]
j,n?

Theorem (Decorrelation - Independence)

Let P =
(
hrε`

)
`
= (Ur , {Wr

j,nP (j)
}j∈N) be a path in the wavelet packet tree. Assume

that P 6= P0 where P0 is the approximation path.

Assume FS is continuous at the frequency ωP defined by

ωP = lim
j→+∞ G (nP (j))π

2j
,

where G is a separable permutation recursively defined by

G (2` + ε) = 3G (`) + ε − 2
⌊
G(`)+ε

2

⌋
.

Then, the autocorrelation Rr
j,nP (j)

of c r
j,nP (j)

uniformly satisfies:

lim
j→+∞

(
lim

r→+∞Rr
j,nP (j)[k]

)
= FS(ωP )δ[k]. (8)

A. M. Atto, Y. Berthoumieu, Wavelet Transforms of Nonstationary Random Processes: Contributing Factors for Stationarity and

Decorrelation, IEEE T-IT, Vol. 58, No. 1 (2012)
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packets and the Fractional Brownian Motion
Fractional Brownian Motion: only one vanishing moment is required for stationarity of
its the wavelet coefficients (the scaling coefficients remains non-stationary).

Example of fractional Brownian motions

fBm random process: If X is a fractional
Brownian motion with Hurst parameter H,
0 < H < 1, then

FS(ω) =
σ2D(H)

|ω|2H+1
, (9)

where D(H) = Γ(2H + 1) sin(πH) and Γ is
the standard Gamma function.

Spectrum FS has 1 singularity point.

fBm, H = 0.75, Spectrum C/|ω|2.5

R
[7]
6,0[m] R

[1]

6,26−3 [m] R
[7]

6,26−3 [m]

Abdourrahmane M. ATTO Dynamic Random Fields and Image Time Series 14/55



NonStationarity Wavelets & (Non)Stationarity Random Field Time Series Videos

Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packets and the (Generalized) Fractional Brownian Fields

WP spectrum of GFBFs: spectral poles at different frequency location (; paths).

Fractional Brownian Field 1 spectral pole located at 0.

γZH (u, v) = ξ(H)
1

(u2 + v2)H+1
, // ξ(z) =

2−(2z+1)π2σ2

sin(πz)Γ2(1 + z)
. (10)

Fractional Brownian Field Modulation 1 spectral pole located at (uq , vq).

γGH(q)
(u, v) = ξ(H(q))

1

((u − uq)2 + (v − vq)2)H(q)+1
. (11)

Generalized Fractional Brownian Field Several spectral poles.

γEHQ
(u, v) ∝

Q∏
q=1

ξ(H(q))

[(u − uq)2 + (v − vq)2]H(q)+1
. (12)

A. M. Atto, Z. Tan, O. Alata, M. Moreaud, Non-Stationary Texture Synthesis from Random Field Modeling, IEEE ICIP (2014)
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Examples of FBF (one spectral pole located at 0).

Z , H = 0.2 Z , H = 0.75
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Examples of GFBFs with 3 and 6 spectral poles respectively.

EH3
EH6
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Gaussian poles and uniform Hurst parameters
EH2

EH3
EH4

Uniform poles and uniform Hurst parameters
EH6

EH7
EH8

Uniform poles and constant Hurst sequence
EH6

EH6
EH6

Gamma poles and uniform Hurst parameters
EH2

EH3
EH4

EH8
EH10

EH16

EH19
EH21

EH22
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packet “Stationarization” ; Power Spectral Density estimation

2D Wavelet Packet Spectrum

Set: P =
{

0, 1, . . . , 2j − 1
}
×
{

0, 1, . . . , 2j − 1
}

of frequency indices.

Apply G−1 to P to obtain a new (reordered) grid N composed with indices (n1, n2) =
(
G−1(p1), G

−1(p2)
)

, where

the permutation G is defined by G(0) = 0 and G(2`+ ε) = 3G(`) + ε− 2

⌊
G(`) + ε

2

⌋
. (13)

Compute: binary sequences (ε1
`
)`=1,2,...,j , (ε

2
`
)`=1,2,...,j ∈ {0, 1}j associated with elements (n1, n2) of N,

from n1 =

j∑
`=1

ε
1
`2j−` // n2 =

j∑
`=1

ε
2
`2j−`

 . (14)

Compute: quaternary sequences (µ`)`=1,2,...,j ∈ {0, 1, 2, 3}j associated with elements of grid N, from

µ = 2ε1
+ ε

2
=


0 if (ε1, ε2) = (0, 0),

1 if (ε1, ε2) = (0, 1),

2 if (ε1, ε2) = (1, 0),

3 if (ε1, ε2) = (1, 1).

(15)

Compute: the set of frequency indices n ∈
{

0, 1, . . . , 4j − 1
}

associated with grid N, according to

n =

j∑
`=1

µ`4j−`. (16)

Replace, in grid N, every pair (n1, n2) by its corresponding n obtained from steps above.

Set: for every (p1, p2) ∈ P and the corresponding n ∈ N,

γ̂

( p1π

2j
,

p2π

2j

)
= Var[cj,n]. (17)

A. M. Atto, Y. Berthoumieu, P. Bolon, 2-D Wavelet Packet Spectrum for Texture Analysis, IEEE T-IP, vol. 22, no. 6 (2013)
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packet “Stationarization” ; Power Spectral Density estimation

FT-PSD “D3”

“D3” / Brodatz

WP-PSD “D3”

FT-PSD “D10”

“D10” / Brodatz

WP-PSD “D10”
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Wavelet Packet “Stationarization” ; Power Spectral Density estimation

FT-PSD “D87”

“D87” / Brodatz

WP-PSD “D87”

FT-PSD “Fabric.11”

“Fabric.11” / VisTeX

WP-PSD “Fabric.11”
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Gaussian poles and uniform Hurst parameters
EH2

EH3
EH4

Uniform poles and uniform Hurst parameters
EH6

EH7
EH8

Uniform poles and constant Hurst sequence
EH6

EH6
EH6

Gamma poles and uniform Hurst parameters
EH2

EH3
EH4

EH8
EH10

EH16

EH19
EH21

EH22
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Wavelets & NonStationarity Case: Processes Case: Fields 2D-Wavelet Packet Spectrum

Gaussian poles and uniform Hurst parameters
SW EH2

SW EH3
SW EH4

Uniform poles and uniform Hurst parameters
SW EH6

SW EH7
SW EH8

Uniform poles and constant of Hurst sequence
SW EH6

SW EH6
SW EH6

Gamma poles and uniform Hurst parameters
SW EH2

SW EH3
SW EH4

SW EH8
SW EH10

SW EH16

SW EH19
SW EH21

SW EH22
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Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Wavelet Packet spatio-temporal spectrum warping
Simulation of Fractional Field Time Series

Let Zα0 be an fBf with WP coefficients (cj,[n1,n2])j,[n1,n2] and associated spectrum γ0.
Let 0 < α(t) < 1. Define

Θj,[n1,n2](t) =
ξ

1
2 (α(t))

ξ
1
2
α(t)+1
α0+1 (α0)

γ0

1
2
α(t)−α0
α0+1

(p1π

2j
,
p2π

2j

)
, (18)

dj,[n1,n2][k1, k2]=Θj,[n1,n2](t)cj,[n1,n2][k1, k2], (19)

Υj,[n1,n2](x , y) =
∑

k1,k2∈Z
dj,[n1,n2][k1, k2]τ2j [k1,k2]

W

�� ��-1
j,[n1,n2]

(x , y). (20)

Υt(x , y) =
2j−1∑

n1,n2=0

Υj,[n1,n2](x , y) (21)

is a fractional Brownian field with Hurst parameter α(t) and associated WP spectrum

γt =
ξ(α(t))

ξ
α(t)+1
α0+1 (α0)

γ0

α(t)+1
α0+1 (22)

A. M. Atto and L. Fillatre and M. Antonini and I. Nikiforov, Simulation of Image Time Series from Dynamical Fractional Brownian

Fields, IEEE ICIP (2014)
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Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping

α(t1) = 0.001 α(t4) = 0.015 α(t6) = 0.05

α(t7) = 0.10 α(t9) = 0.25 α(t12) = 0.70
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Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping

α(t1) = 0.45 α(t2) = 0.50
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Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping

α(t2) = 0.50 α(t3) = 0.55
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Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping

α(t3) = 0.55 α(t4) = 0.60
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NonStationarity Wavelets & (Non)Stationarity Random Field Time Series Videos

Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Synthesis from WP spectrum warping

α(t4) = 0.60 α(t1) = 0.45

Abdourrahmane M. ATTO Dynamic Random Fields and Image Time Series 23/55



NonStationarity Wavelets & (Non)Stationarity Random Field Time Series Videos

Spatio-temporal spectrum warping Time Series Synthesis Time Series Analysis

Image Time Series Analysis from WP spectrum power decay
ROI ISAAC Hurricane Time Series of Spatial “Hurst” Parameters

Critical dates for Hurst parameter time series
Date 1 95 153

195 243 288

Spectral information of critical dates
1 95 153

195 243 288
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NonStationarity Wavelets & (Non)Stationarity Random Field Time Series Videos

Fractional Brownian Fields Interacting Generalized Fractional Fields Fractional Field Regularization
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PART II. Multiplicative Interacting Random Field Time Series

A. M. Atto, E. Trouvé, J.-M. Nicolas, Sparsity Information and Multiplicative Observation Models, Preprint (2014)
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PART II. (SAR) Random Fields in Multiplicative Environment

Sampling in time (increasingly close acquisition dates)

[TerraSAR-X (TS-X)]: 11 day acquisition cycle.

Spatial resolution (different acquisition modalities and spectral bands).

Satellite – [TS-X]: resolution ∼= 1m , scene with size 5-10km × 5km.
Airborne – [FSAR]: resolution ∼= 0.25 m, pixel spacing 15 cm × 17cm.

Stochasticity in multiplicative algebra (speckle effect).

Random field image time series (trend/stationary decomposition, change-image, etc.).
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PART II. (SAR) Random Fields in Multiplicative Environment
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SAR Model & Stationarity

Multiplicative interaction model in a sparsifying domain context

Function f is sparse in W domain, where W is a linear transform, but we observe:

f (k)X (k) =


f (k) + f (k)[X (k) − 1] (?)

e log f (k)+log X(k) (??)

where

f and X are strictly positive function and random sequence,

(X (k))k are unitary-mean, stationary random variables,

X is independent with f .

Which model?

Given f and W, who is the lesser between the two blue evils present in (?), (??) for
the W-domain representation of f (k)X (k)?
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SAR Model, Wavelets & Stationarity

Model (?): additive noise model with signal-dependent noise

The additive ’noise’ in model (?) is a random sequence Z :

Y (k) = f (k)[X (k) − 1].

Let W = Wj,n be a wavelet subband. We have: WY is non-stationary in general,
excepted some few cases, for instance when

f is constant, or

f is polynomial with order r and the W generating functions have at least r
vanishing moments.

Model (??): ’additive’ noise in a multiplicative algebra

Wavelet in a multiplicative algebra [binary operations (⊕,⊗) = (×,∧)] or geometric
wavelet, WG , involves geometric approximations and differencing, with:

WG fX = [WG f ]⊕ [WGX ].

and WGX inherits the stationarity property of X .
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SAR Model & Stationarity SAR Geometric Wavelets SAR ITS Analysis Conclusion

Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Geometric convolution

Multiplicative algebra

Consider a data sequence x = (x[`])`∈Z, with x[`] ∈ R+ for every ` ∈ Z. Assume that
this sequence represents a multiplicative ’process’. Then:

“zero” or “nothing” or “no change” corresponds to identity element “1”

a “small” value is a value close to 1 (10−3 and 103 have the same significance in
terms of absolute proportion,

The support of x is {` ∈ Z : x[`] 6= 1},

Consequence: a missing value must be replaced by 1.

Geometric convolution

Let h = (h[`])`∈Z denotes the impulse response of a digital filter. We define the
geometric convolution of x and h on the vectorial space (R+,×,∧) as:

y[k] = x > h[k] ,
∏
`∈Z (x[`])h[k−`]

=
∏
`∈Z (x[k − `])h[`] , h > x[k],
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Definition

Geometric wavelet decomposition

Define the geometric wavelet decomposition of x by:

c1,0[k] = x > h0[2k], (23)

c1,1[k] = x > h1[2k], (24)

and, recursively, for ε ∈ {0, 1} (geometric approximations when ε = 0 and geometric
differences/details when ε = 1):

cj+1,2n+ε[k] = cj,n > hε[2k]. (25)

Geometric wavelet reconstruction

We have:
cj,n[k] =

(
�cj+1,2n > h0[k]

)
×
(
�cj+1,2n+1 > h1[k]

)
. (26)

where

�u[2k + ε] =

{
u[k] if ε = 0,
1 if ε = 1.

(27)
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Implementation

Geometric wavelet decomposition implementation

Define a variable environment and a data type where
’0’ (of the standard type) behaves as ’1’
’+ calls’ involve × operation,
’× calls’ involve ∧ operation.

Call this environment and use your ’standard’ additive tools

OR

compute the log function of the input data,

apply ’standard’ additive wavelets to the log of data,

apply exp function to wavelet coefficients.
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

“+” wavelets - DiagDet J=1 “×” wavelets - DiagDet J=1
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

“+” wavelets - DiagDet J=3 “×” wavelets - DiagDet J=3
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

“+” wavelets - Approx J=3 “×” wavelets - Approx J=3
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

“+” wavelets - TempDet - db12 “×” wavelets - TempDet - db12
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

“+” wavelets - TempApp - db12 “×” wavelets - TempApp - db12
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Which model (for sparsity)?

“+” wavelets - TempDet - ha12 “×” wavelets - TempDet - ha12
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Sparsity and noise

Geometric wavelets: sparsity and noise

Sparsity in a in multiplicative noise model means:

shrinking to 1, the data that are close to 1 . . .

provided that noise is nice (in the geometric wavelet domain)!

⇓ ⇓
Statistical properties of geometric wavelet coefficients of speckle (noise model (??))?
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Stochasticity / Autocorrelation

Autocorrelation of geometric wavelet packet coefficients

Consider N-length Haar type approximation filter h0 and detail filter h1 given by

h0[k] = ν for k = 1, 2, . . . ,N. (28)

h1[k] = (−1)k−1ν for k = 1, 2, . . . ,N. (29)

When using a sequence hε1 ,hε2 , . . . ,hεj of such filters (wavelet packet subband
Wj,n), then the equivalent wavelet filter is

∣∣Hj,n(ω)
∣∣2 = 2j

j∏
`=1

(
sin(2`−2Nω)

sin(2−1(ω + ε`π))

)2

(30)

and the autocorrelation RDj,n
, where Dj,n = log C×j,n[Y] is:

RDj,n
[m] =

2j

π

∫π
0

j∏
`=1

(
sin(2`−2Nω)

sin(2−1(ω + ε`π))

)2

γY(ω) cos 2jmωdω. (31)
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Stochasticity / Autocorrelation

In the usual wavelet splitting scheme, only approximation coefficients are decomposed
again (the shift parameter n ∈ {0, 1}). This implies filtering sequences with the formh0,h0, . . . ,h0︸ ︷︷ ︸

j times

,hεj+1


εj+1∈{0,1}

Consider a j-length approximation sequence
(
hHaar0

)
`=1,2,...,j

of standard Haar type

(N = 2). Then, the equivalent filter of this sequence is:∣∣∣HHaar

j,0 (ω)
∣∣∣2 = 2j

(
sinc(2j−1ω)

sinc(2−1ω)

)2

, where sincω = sinω/ω. (32)

The autocorrelation RHaar

Dj,0
of the corresponding geometric wavelet coefficients is then:

RHaar

Dj,0
[m] =

2j

π

∫π
0

(
sinc(2j−1ω)

sinc(2−1ω)

)2

γY(ω) cos 2jmωdω (33)

Limit Autocorrelation Function

lim
j→+∞RHaar

Dj,0
[m] = γY(0)δ[m] (34)

Abdourrahmane M. ATTO Dynamic Random Fields and Image Time Series 42/55



SAR Model & Stationarity SAR Geometric Wavelets SAR ITS Analysis Conclusion

Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Stochasticity / Distribution of REGG

The Reciprocally Extended Generalized Gamma (REGG) probability density function
with scale parameter β > 0 and shape parameters κ, γ as:

fκ,β,γ(x) =
|γ|

βΓ
(
κ
γ

) ( x

β

)κ−1

e
−
(

x
β

)γ
, with κγ > 0. (35)

Function fκ,β,γ

is the probability density function of a Generalized Gamma random variable if
κ > 0 and γ > 0 whereas it

represents a Generalized Inverse Gamma random variable if κ < 0 and γ < 0.

Consider the random variable defined by

Z [k] =
N−1∏
`=0

(X [k − `])h[`]

where (Xk ,Xk−1, . . . ,Xk−N+1) are assumed to be independent and identically REGG
distributed random variables with parameters (κ, β, γ).
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Stochasticity / Distribution of REGG

If h = h0 is the Haar approximation filter of order N, then, the probability density
function of Z is given by

fZ (x) =
|γ|/ν

βν
NΓN

(
κ
γ

)GAγ,N

(βνN

x

) |γ|
ν

∣∣∣∣∣∣∣Pκ,γ,ν,N
 (36)

where βν = βν, G is the Meijer function defined by

G
m n
p q

(
x

∣∣∣∣ a1 . . . ap
b1 . . . bq

)
=

1

2iπ

∫
ε+i∞
ε−i∞

∏m
`=1 Γ(b` − s)

∏n
`=1 Γ(1 − a` + s)∏q

`=m+1 Γ(1 − b` + s)
∏p
`=n+1 Γ(a` − s)

x s
ds,

with

Aγ,N =


(

0 N
N 0

)
if γ > 0(

N 0
0 N

)
if γ < 0

Pκ,γ,ν,N =

1 −
κ− ν

γ
, 1 −

κ− ν

γ
, . . . , 1 −

κ− ν

γ︸ ︷︷ ︸
N times
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Stochasticity / Distribution of REGG

If h = h1 is the Haar detail filter of order N, then,

fZ (x) =
|γ|/ν

βν
∗ΓN

(
κ
γ

)GBγ,N

(βν∗
x

) |γ|
ν

∣∣∣∣∣∣Pκ,γ,ν,N
 (37)

where βν
∗ = β(1−(−1)N)/2ν,

Bγ,N =



(
b N2 c b N+1

2 c
b N+1

2 c b N2 c

)
if γ > 0

(
b N+1

2 c b N2 c
b N2 cc b N+1

2

)
if γ < 0

Pκ,γ,ν,N =



b N+1
2
c times︷ ︸︸ ︷

1 −
κ− ν

γ
, 1 −

κ− ν

γ
, . . . , 1 −

κ− ν

γ

−
κ+ ν

γ
,−
κ+ ν

γ
, . . . ,−

κ+ ν

γ︸ ︷︷ ︸
b N

2
c times
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Geometric convolution Geometric wavelets Sparsity Stochasticity

Geometric wavelets / Stochasticity / Distribution of REGG

Geometric wavelet coefficients of REGG

Highly non-Gaussian.

Highly asymmetric.

Heavy tails.

Geometric wavelet / Sparsity, Stochasticity and shrinkage

Smooth shrinkage (for avoiding artifacts).

Asymmetric shrinkage (with respect to the asymmetry of the distribution).

Block shrinkage (for reducing the impact of the distribution tail).
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Method Spatio-temporal shrinkage Application

Method / Joint spatio-temporal filtering and change detection

Sequence I = (Im)m Im = I(tm)

Ij−1 Ij Ij+1 Ik−1 Ik Ik+1 I`−1 I` I`+1

>
t

••• • • • ••• • • • ••• • • • •••

Temporal Wavelet Analysis

W1
J−1,m−1

δω
θ,λ

W1
J−1,m

δω
θ,λ

W1
J,m−1

δω
θ,λ

W1
J,m

δω
θ,λ

W0
J,m−1 W0

J,m

Block Sigmoid Shrinkage

Spatio-Temporal Shrinkage
W

1,δθ,λ
J−1,m−1

W
1,δθ,λ
J−1,m

W
1,δθ,λ
J,m−1 W

1,δθ,λ
J,m

Inverse Wavelet Analysis

>
t
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Geometric wavelets / Statistical properties REGG

Sigmoid shrinkage

δθ1,θ−1,λ(x) =
x(

1 + e
− 10 sinθx

2 cosθx−sinθx

(
|x|
λ

−1
))

where

θx =
1

2
[θ1 + θ−1 + sign(x) (θ1 − θ−1)]

Spatio-temporal sigmoid shrinkage (spatial blocs on temporal differencing)

For a pixel dWIm,n(k) pertaining to a change-image, the sigmoid shrinkage:

δθ,λ(dWIm,n(k)) =
dWIm,n(k)

1 + e
− 10 sinθ

2 cosθ−sinθ

(
||VdWI

(m,n,k)||2

λ
−1 ′

) (38)

where

VdWI(m, n, k) = {dWIm,n(k),m = m − ε0, . . . ,m + ε0, n = n − ν0, . . . , n + n0}
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I(t1) || t1 = 2009 − 02 − 22
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Method / Joint spatio-temporal filtering and change detection

I(t2) || t2 = 2009 − 03 − 18
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Conclusion

Analysis at two different levels:⇒ Approximations / Temporal [Mean representatives of stable pixels/parts of the scene];⇒ Details / Spatio-Temporal [change-images representatives of the scene dynamics].

Workable for long time series of high spatial resolution + multichannel,⇒ Wavelet on the temporal axis⇒ Shrinkage with respect to spatio-temporal change information.

Easy monitoring of the temporal evolution of Alps glaciers.

Prospects

Limit distributions of REGG wavelets.

Spatio-temporal wavelet variance analysis.

Optimal parameters for sigmoid bloc shrinkage.

Identifying stationary subsequences / seasonality.

Compressive sensing in a geometric algebra.
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