

Dynamic Random Fields and Image Time Series

Analysis and Simulation from Fractional Random Field Models Analysis from Multiplicative Interaction Models

Abdourrahmane M. ATTO

LISTIC, EA 3703, , Polytech Annecy-chambéry, University Savoy Mont Blanc - FRANCE,

SIERRA (Signal et Images en Région Rhône-Alpes), Annecy, FRANCE, November 6, 2014

< < >> < <</>

• PART I. Fractional Random Field Time Series •

Abdourrahmane M. ATTO

Dynamic Random Fields and Image Time Series

2/55

Ξ.

<ロ> <同> <同> < 回> < 回>

Introduction Capturing, with few variables, and simulating a scene evolution in an image time series

<ロ> <同> <同> < 回> < 回>

PART I. Dynamic Fractional Random Fields

NonStationarity

• Wavelets and (Non)Stationarity •

• Random Field Time Series •

Videos

Abdourral	hmane	Μ.	AT	то

< A >

PART I. Dynamic Fractional Random Fields

NonStationarity

Wavelets and (Non)Stationarity

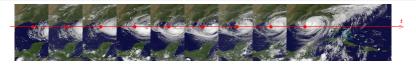
Random Field Time Series

Videos

Abdourrahmane M. ATTO

< 17 ▶

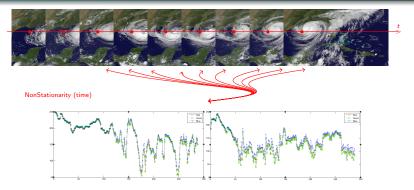
NonStationarity / Image Time Series / Spatio-Temporal Dependencies



= 990

・ロ・ ・四・ ・ヨ・ ・ ヨ・

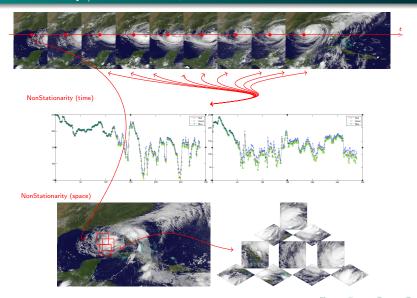
NonStationarity / Image Time Series / Spatio-Temporal Dependencies

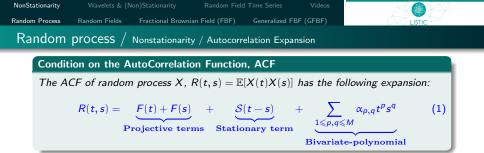


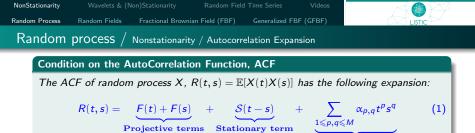
(日) (同) (三) (三)

э

NonStationarity / Image Time Series / Spatio-Temporal Dependencies





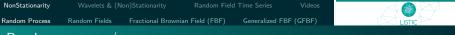


Bivariate-polynomial

Example (WSS random processes ~> No bivariate polynomial term)

For a Wide Sense Stationary (WSS) random process X(t), we have

$$R_X(t,s) = R_X(t-s,0) \equiv R_X(t-s) = \mathcal{S}(t-s)$$



Random process / Nonstationarity / Autocorrelation Expansion

Condition on the AutoCorrelation Function, ACF

The ACF of random process X, $R(t,s) = \mathbb{E}[X(t)X(s)]$ has the following expansion:

$$R(t,s) = \underbrace{F(t) + F(s)}_{\text{Projective terms}} + \underbrace{\mathcal{S}(t-s)}_{\text{Stationary term}} + \underbrace{\sum_{1 \leq p,q \leq M} \alpha_{p,q} t^{p} s^{q}}_{\text{Bivariate-polynomial}}$$
(1)

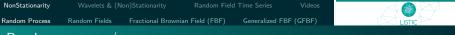
Example (WSS random processes ~> No bivariate polynomial term)

For a Wide Sense Stationary (WSS) random process X(t), we have

$$R_X(t,s) = R_X(t-s,0) \equiv R_X(t-s) = \mathcal{S}(t-s)$$

Example (Polynomial random modulation \sim No stationary term)

 $(X_k)_{k=0,1,...,M^{\#}}$ are zero-mean uncorrelated random variables and $X(t) = \sum_{k=0}^{M^{\#}} X_k t^k, \quad R_X(t,s) = \sum_{k=0}^{M^{\#}} \sigma_k^2 t^k s^k, \quad F(t) = \sigma_0^2/2, \quad \text{and} \quad S = 0.$



Random process / Nonstationarity / Autocorrelation Expansion

Condition on the AutoCorrelation Function, ACF

The ACF of random process X, $R(t,s) = \mathbb{E}[X(t)X(s)]$ has the following expansion:

$$R(t,s) = \underbrace{F(t) + F(s)}_{\text{Projective terms}} + \underbrace{\mathcal{S}(t-s)}_{\text{Stationary term}} + \underbrace{\sum_{1 \leq p,q \leq M} \alpha_{p,q} t^{p} s^{q}}_{\text{Bivariate-polynomial}}$$
(1)

Example (WSS random processes ~> No bivariate polynomial term)

For a Wide Sense Stationary (WSS) random process X(t), we have

$$R_X(t,s) = R_X(t-s,0) \equiv R_X(t-s) = \mathcal{S}(t-s)$$

Example (Polynomial random modulation \sim No stationary term)

$$\begin{split} & (X_k)_{k=0,1,\ldots,M^{\#}} \text{ are zero-mean uncorrelated random variables and} \\ & X(t) = \sum_{k=0}^{M^{\#}} X_k t^k, \qquad R_X(t,s) = \sum_{k=0}^{M^{\#}} \sigma_k^2 t^k s^k, \qquad F(t) = \sigma_0^2/2, \qquad \text{and} \qquad \mathcal{S} = 0. \end{split}$$

Example (fBm ~> No bivariate autocorrelation polynomials)

For a fractional Brownian motion with Hurst parameter H, $F(t) = S(t) = |t|^{2H}$.

Abdourrahmane M. ATTO

Random Fields

Multivariate extensions of random processes

 $\overline{\mathbf{Z}_{k,\ell}} \equiv \mathbf{X}_k \times \mathbf{Y}_\ell$

Separability and image transforms

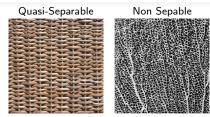
Non-Separability characterizes a large class of natural images. We will consider non-separable extensions.

lsotropy and image transforms

Non-isotropy (anisotropy) dominates istotropy when considering natural images. Anisotropic field constructions will be obtained by successive directional convolutions

Geometry and image transforms

Geometry will be obtained by concentrating field energy in certain spectral bands.



NonStationarity			Random Field		Videos	
Random Process	Random Fields	Fractional Browni	an Field (FBF)	Generalized F	BF (GFBF)	LISTIC

Random Fields

Multivariate extensions of random processes

 $\mathbf{Z}_{k,\ell} \equiv \overline{\mathbf{X}}_{\sqrt{k^2 + \ell^2}}$

Separability and image transforms

Non-Separability characterizes a large class of natural images. We will consider non-separable extensions.

Isotropy and image transforms

Non-isotropy (anisotropy) dominates isotropy when considering natural images. Anisotropic field constructions will be obtained by successive directional convolutions.

Geometry and image transforms

Geometry will be obtained by concentrating field energy in certain spectral bands.

Anisotropic

Quasi-Isotropic

Dynamic Random Fields and Image Time Series

< 17 ▶

NonStationarity					Videos	
Random Process	Random Fields	Fractional Browni	an Field (FBF)	Generalized F	BF (GFBF)	LISTIC

Random Fields

Multivariate extensions of random processes

Separability and image transforms

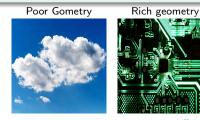
Non-Separability characterizes a large class of natural images. We will consider non-separable extensions.

lsotropy and image transforms

Non-isotropy (anisotropy) dominates istotropy when considering natural images. Anisotropic field constructions will be obtained by successive directional convolutions.

Geometry and image transforms

Geometry will be obtained by concentrating field energy in certain spectral bands.



< A >

Isotropic fractional Brownian field

Let $Z_{\mathcal{H}} = Z_{\mathcal{H}}(x, y)$ be a zero-mean real valued isotropic fractional Brownian field with Hurst parameter \mathcal{H} , $0 < \mathcal{H} < 1$. The autocorrelation function of $Z_{\mathcal{H}}$ is $R_{Z_{\mathcal{H}}}(x, y, u, v) = \mathbb{E}\left[Z_{\mathcal{H}}(x, y)Z_{\mathcal{H}}(u, v)\right]$ with

$$R_{Z_{\mathcal{H}}}(x, y, u, v) = \frac{\sigma^2}{2} \left((x^2 + y^2)^{\mathcal{H}} + (u^2 + v^2)^{\mathcal{H}} \right) \\ - \frac{\sigma^2}{2} \left[(x - u)^2 + (y - v)^2 \right]^{\mathcal{H}}.$$

Stationary (S) and Projective (P) terms :

$$S(t,s) = -\frac{\sigma^2}{2} \left[t^2 + s^2 \right]^{\mathcal{H}} = P(t,s)$$

A. Yaglom, Some classes of random fields in N-D space, related to stationary random processes, Theory Proba. Appl. (1957)
 B. Pesquet-Popescu, J. Lévy-Véhel, Stochastic fractal models for image processing, IEEE SP Magazine (2002)

(日) (同) (三) (三)

Generalized Fractional Brownian Field

Modulated Isotropic fractional Brownian field

Random field $G_{\mathcal{H}(q)}$ is the modulation of an isotropic fractional Brownian random field $Z_{\mathcal{H}(q)}$ by using a complex exponential with frequency point $(u_q, v_q) \in [0, \pi] \times [0, \pi]$.

$$G_{\mathcal{H}(q)}(t,s) = e^{iu_q t} e^{iv_q s} Z_{\mathcal{H}(q)}(t,s).$$
⁽²⁾

• Random field $G_{\mathcal{H}(q)}$ has autocorrelation function

$$R_{\mathcal{G}_{\mathcal{H}}(q)}(t,s,x,y) = \mathbb{E}\left[\mathcal{G}_{\mathcal{H}}(q)(t,s)\overline{\mathcal{G}_{\mathcal{H}}(q)(x,y)}\right] = R_{Z_{\mathcal{H}}(q)}(t,s,x,y)e^{iuq(t-x)}e^{ivq(s-y)}.$$
 (3)

Random field G_{H(q)} is non-stationary.

Generalized Q-factor fractional Brownian field

Consider a sequence of Hurst parameters $\mathcal{H}_Q = \{\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}(q)\}$ and Define a generalized fractional field from a convolution of Q independent and non-stationary fields $\mathcal{G} = \{\mathcal{G}_{\mathcal{H}(q)}, q = 1, 2, \dots, Q\}$:

$$\mathcal{E}_{\mathcal{H}_Q} = \bigotimes_{q=1}^Q \mathcal{G}_{\mathcal{H}(q)} \tag{4}$$

- The Q-factor Generalized FBF (GFBF) $\mathcal{E}_{\mathcal{H}_{Q}}$ is a non-stationary random field.
- A. M. Atto, Z. Tan, O. Alata, M. Moreaud, Non-Stationary Texture Synthesis from Random Field Modeling, IEEE ICIP (2014)

9/55

• Wavelets and (Non)Stationarity •

• Random Field Time Series •

Videos

Abdourral	nmane	Μ.	AT	то

< 10 b

• Wavelets and (Non)Stationarity •

• Random Field Time Series •

Videos

< 17 ▶

Functional space $\mathbf{W}_{j,[n_1,n_2]}$ (WP subband) spanned by orthogonal wavelet packet functions:

$$\left\{\tau_{[2^{j}k_{1},2^{j}k_{2}]}W_{j,[n_{1},n_{2}]}:(k_{1},k_{2})\in\mathbb{Z}^{2}\right\},\$$

where $W_{0,0_N} = \phi$ is a scaling function, τ is the shift operator and the wavelet packet function, $W_{j, [n_1, n_2]}$, satisfies in the Fourier domain (notation \mathcal{F}):

$$\mathcal{FW}_{j,[n_1,n_2]}(\omega_1,\omega_2) = \mathcal{FW}_{j,n_1}(\omega_1)\mathcal{FW}_{j,n_2}(\omega_2),\tag{5}$$

$$\mathcal{F}W_{j,[n_1,n_2]} = \mathbf{H}_{j,[n_1,n_2]}\mathcal{F}\Phi,\tag{6}$$

the multiscale wavelet packet filter, $\mathbf{H}_{j,\,[n_1,\,n_2]}$, satisfies

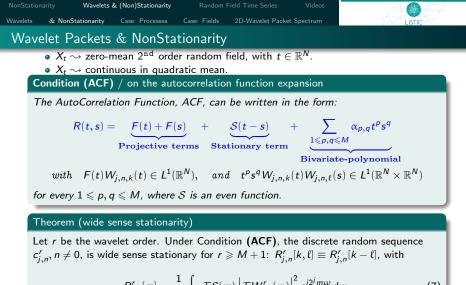
$$\mathbf{H}_{j,[n_1,n_2]}(\omega_1,\omega_2) = \prod_{i=1}^{2} \mathbf{H}_{j,n_i}(\omega_i), \quad \mathbf{H}_{j,n_i}(\omega) = 2^{j/2} \left[\prod_{\ell=1}^{j} H_{\epsilon_{\ell}^{\ell}}(2^{\ell-1}\omega) \right]$$

for $\epsilon_{\ell}^{i} \in \{0, 1\}$, where H_{0} and H_{1} are standard scaling filter (H_{0}) and wavelet filter (H_{1}) .

The subband $\mathbf{W}_{j,[n_1,n_2]}$ coefficients of Z define a random field $c_{j,[n_1,n_2]}$,

$$c_{j,[n_1,n_2]}[k_1,k_2] = \int_{\mathbb{R}^N} \sum_{(\bullet)} \tau_{2^j[k_1,k_2]} W_{j,[n_1,n_2]}(\bullet) d_{\bullet}$$

Abdourrahmane M. ATTO



$$R_{j,n}^{i}[m] = \frac{1}{2\pi} \int_{\mathbb{R}} \mathcal{FS}(\omega) \left| \mathcal{FW}_{j,n}^{i}(\omega) \right| e^{i2\pi m\omega} d\omega.$$
(7)

A. M. Atto, Y. Berthoumieu, Wavelet Transforms of Nonstationary Random Processes: Contributing Factors for Stationarity and Decorrelation, IEEE T-IT, Vol. 58, No. 1 (2012)

Abdourrahmane M. ATTO

Wavelet Packets & NonStationarity

Statistical Properties of the Wavelet Packet Coefficients of Random Processes

Asymptotic properties of the discrete random process $c_{i,n}^{[r]}$?

Theorem (Decorrelation - Independence)

Let $\mathcal{P} = \left(h_{\varepsilon_{\ell}}^{r}\right)_{\ell} = (\mathbf{U}^{r}, \{\mathbf{W}_{j, n_{\mathcal{P}}(j)}^{r}\}_{j \in \mathbb{N}})$ be a path in the wavelet packet tree. Assume that $\mathcal{P} \neq \mathcal{P}_{0}$ where \mathcal{P}_{0} is the approximation path.

 \bullet Assume \mathcal{FS} is continuous at the frequency $\omega_\mathcal{P}$ defined by

$$\omega_{\mathcal{P}} = \lim_{j \to +\infty} \frac{G(n_{\mathcal{P}}(j))\pi}{2^j},$$

where G is a separable permutation recursively defined by $G(2\ell + \varepsilon) = 3G(\ell) + \varepsilon - 2\left\lfloor \frac{G(\ell) + \varepsilon}{2} \right\rfloor.$

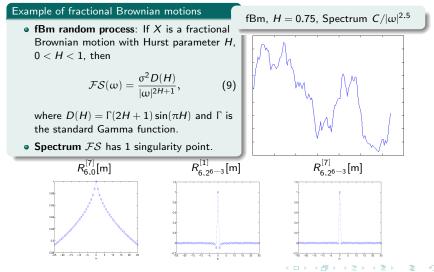
• Then, the autocorrelation $R^r_{j,n_{\mathcal{P}}(j)}$ of $c^r_{j,n_{\mathcal{P}}(j)}$ uniformly satisfies:

$$\lim_{j \to +\infty} \left(\lim_{r \to +\infty} R_{j,n_{\mathcal{P}}(j)}^{r}[k] \right) = \mathcal{FS}(\omega_{\mathcal{P}})\delta[k].$$
(8)

A. M. Atto, Y. Berthoumieu, Wavelet Transforms of Nonstationary Random Processes: Contributing Factors for Stationarity and Decorrelation, IEEE T-IT, Vol. 58, No. 1 (2012)

Wavelet Packets and the Fractional Brownian Motion

Fractional Brownian Motion: only one vanishing moment is required for stationarity of its the wavelet coefficients (the scaling coefficients remains non-stationary).



Abdourrahmane M. ATTO

Dynamic Random Fields and Image Time Series

Wavelet Packets and the (Generalized) Fractional Brownian Fields

• WP spectrum of GFBFs: spectral poles at different frequency location (\rightsquigarrow paths).

Fractional Brownian Field

$$\gamma_{Z_{\mathcal{H}}}(u,v) = \xi(\mathcal{H}) \frac{1}{(u^2 + v^2)^{\mathcal{H}+1}}, \qquad // \quad \xi(z) = \frac{2^{-(2z+1)} \pi^2 \sigma^2}{\sin(\pi z) \Gamma^2(1+z)}.$$
(10)

Fractional Brownian Field Modulation	1 spectral pole locate	d at (u_q, v_q) .
$\gamma_{\mathcal{G}_{\mathcal{H}(q)}}(u,v) = \xi(\mathcal{H}(q)) \overline{((u-u_q)^2)}$	$\frac{1}{+(v-v_q)^2)^{\mathcal{H}(q)+1}}.$	(11)

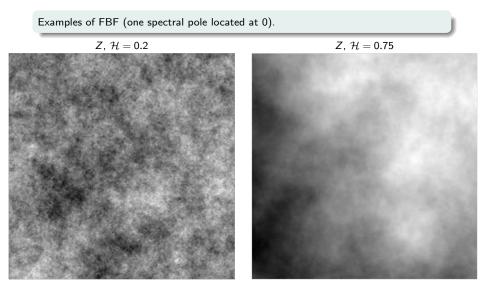
Generalized Fractional Brownian Field

Several spectral poles.

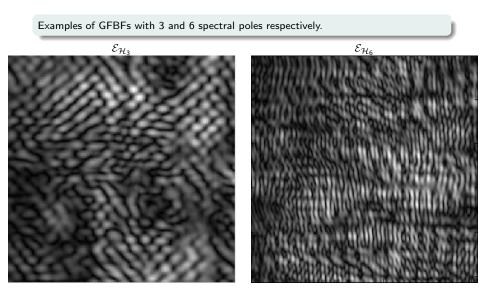
$$\gamma_{\mathcal{E}_{\mathcal{H}_Q}}(u,v) \propto \prod_{q=1}^Q \frac{\xi(\mathcal{H}(q))}{[(u-u_q)^2 + (v-v_q)^2]^{\mathcal{H}(q)+1}}.$$
 (12)

A. M. Atto, Z. Tan, O. Alata, M. Moreaud, Non-Stationary Texture Synthesis from Random Field Modeling, IEEE ICIP (2014)

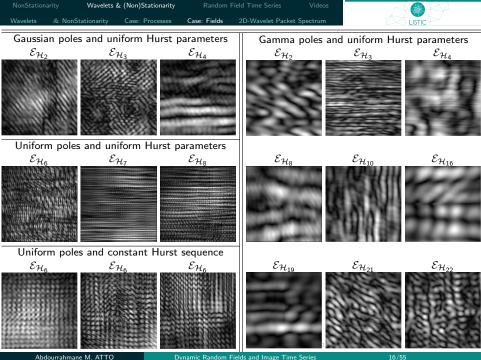
(日) (同) (三) (三)



<ロ> <同> <同> < 回> < 回>



イロト イポト イヨト イヨト



Wavelet Packet "Stationarization" ~> Power Spectral Density estimation

2D Wavelet Packet Spectrum

- Set: $P = \left\{0, 1, \ldots, 2^j 1\right\} \times \left\{0, 1, \ldots, 2^j 1\right\}$ of frequency indices.
- Apply G^{-1} to P to obtain a new (reordered) grid N composed with indices $(n_1, n_2) = (G^{-1}(p_1), G^{-1}(p_2))$, where
 - the permutation G is defined by G(0) = 0 and $G(2\ell + \epsilon) = 3G(\ell) + \epsilon 2\left\lfloor \frac{G(\ell) + \epsilon}{2} \right\rfloor$. (13)
- Compute: binary sequences $(\epsilon_{\ell}^1)_{\ell=1,2,\ldots,j}, (\epsilon_{\ell}^2)_{\ell=1,2,\ldots,j} \in \{0,1\}^j$ associated with elements (n_1, n_2) of N, from

$$\left(n_{1} = \sum_{\ell=1}^{J} \epsilon_{\ell}^{1} 2^{j-\ell} / / n_{2} = \sum_{\ell=1}^{J} \epsilon_{\ell}^{2} 2^{j-\ell}\right).$$
(14)

• Compute: quaternary sequences $(\mu_{\ell})_{\ell=1,2,\ldots,j} \in \{0, 1, 2, 3\}^j$ associated with elements of grid N, from

$$\mu = 2e^{1} + e^{2} = \begin{cases} 0 & \text{if} \quad (e^{1}, e^{2}) = (0, 0), \\ 1 & \text{if} \quad (e^{1}, e^{2}) = (0, 1), \\ 2 & \text{if} \quad (e^{1}, e^{2}) = (1, 0), \\ 3 & \text{if} \quad (e^{1}, e^{2}) = (1, 1). \end{cases}$$
(15)

• Compute: the set of frequency indices $n \in \left\{0, 1, \ldots, 4^{j} - 1
ight\}$ associated with grid N, according to

$$n = \sum_{\ell=1}^{j} \mu_{\ell} 4^{j-\ell} .$$
 (16)

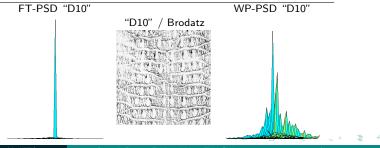
- Replace, in grid N, every pair (n1, n2) by its corresponding n obtained from steps above.
- Set: for every (p₁, p₂) ∈ P and the corresponding n ∈ N,

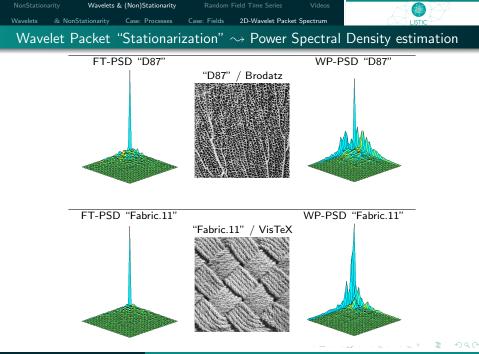
$$\widehat{\gamma}\left(\frac{p_{1}\pi}{2^{j}},\frac{p_{2}\pi}{2^{j}}\right) = \operatorname{Var}\left[c_{j,n}\right].$$
(17)

A. M. Atto, Y. Berthoumieu, P. Bolon, 2-D Wavelet Packet Spectrum for Texture Analysis, IEEE T-IP, vol. 22, no. 6 (2013)

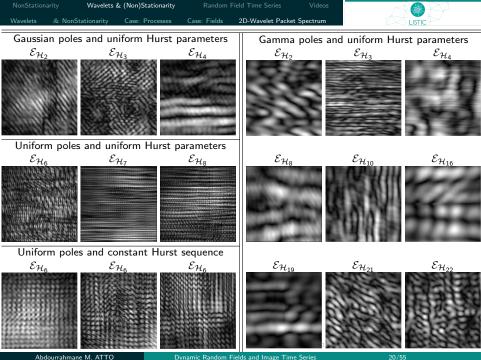
17/55

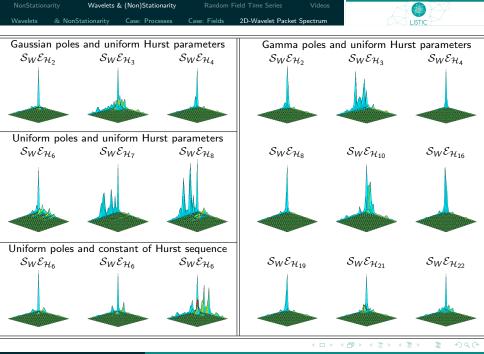
-





Abdourrahmane M. ATTO





Abdourrahmane M. ATTO

Dynamic Random Fields and Image Time Series

20/55

• Wavelets and (Non)Stationarity •

• Random Field Time Series •

Videos

Abdourral	nmane	Μ.	AT	то

< 10 b

э

Wavelets and (Non)Stationarity

• Random Field Time Series •

Videos

æ

イロト イポト イヨト イヨト

Wavelet Packet spatio-temporal spectrum warping

Simulation of Fractional Field Time Series

Let Z_{α_0} be an fBf with WP coefficients $(c_{j,[n_1,n_2]})_{j,[n_1,n_2]}$ and associated spectrum γ_0 . Let $0 < \alpha(t) < 1$. Define

$$\Theta_{j,[n_1,n_2]}(t) = \frac{\xi^{\frac{1}{2}}(\alpha(t))}{\xi^{\frac{1}{2}\frac{\alpha(t)+1}{\alpha_0+1}}(\alpha_0)} \gamma_0^{\frac{1}{2}\frac{\alpha(t)-\alpha_0}{\alpha_0+1}} \left(\frac{p_1\pi}{2^j}, \frac{p_2\pi}{2^j}\right),$$
(18)

$$d_{j,[n_1,n_2]}[k_1,k_2] = \Theta_{j,[n_1,n_2]}(t)c_{j,[n_1,n_2]}[k_1,k_2],$$
(19)

$$\Upsilon_{j,[n_1,n_2]}(x,y) = \sum_{k_1,k_2 \in \mathbb{Z}} d_{j,[n_1,n_2]}[k_1,k_2] \tau_{2^j[k_1,k_2]} W_{j,[n_1,n_2]}^{\left[-1\right]}(x,y).$$
(20)

$$\Upsilon_t(x,y) = \sum_{n_1,n_2=0}^{2^j-1} \Upsilon_{j,[n_1,n_2]}(x,y)$$
(21)

is a fractional Brownian field with Hurst parameter $\alpha(t)$ and associated WP spectrum

$$\gamma_t = \frac{\xi(\alpha(t))}{\xi^{\frac{\alpha(t)+1}{\alpha_0+1}}(\alpha_0)} \gamma_0^{\frac{\alpha(t)+1}{\alpha_0+1}}$$
(22)

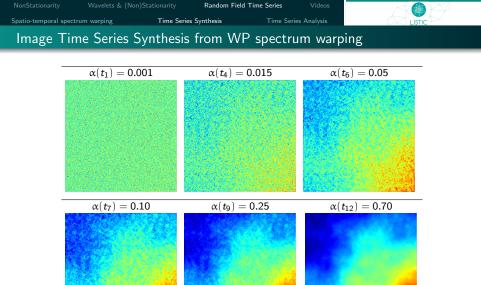
A. M. Atto and L. Fillatre and M. Antonini and I. Nikiforov, Simulation of Image Time Series from Dynamical Fractional Browniar

Fields, IEEE ICIP (2014)

Abdourrahmane M. ATTO

= nar

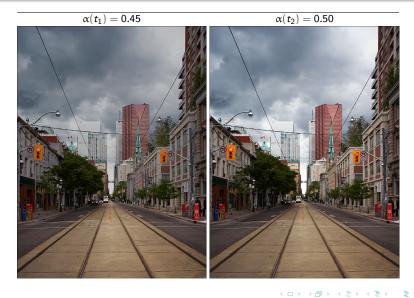
イロト イポト イヨト イヨト

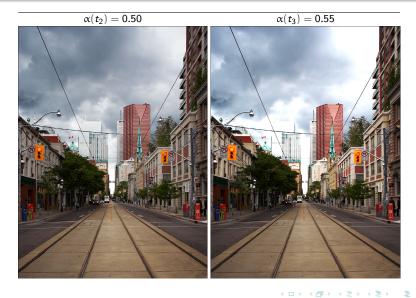


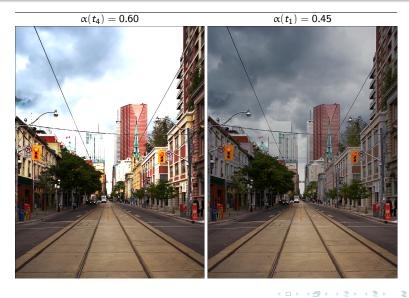
23/55

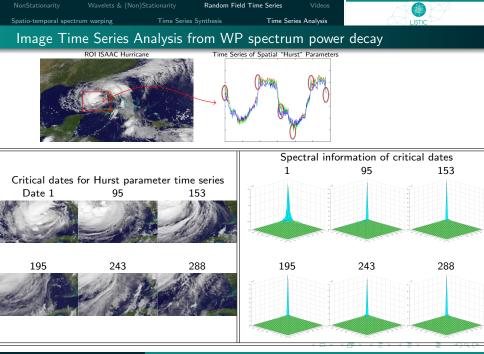
э.

イロン 不同 とくほう イロン









NonStationarity

• Wavelets and (Non)Stationarity •

• Random Field Time Series •

Videos

Abdourral	nmane	Μ.	AT	то

< 17 >

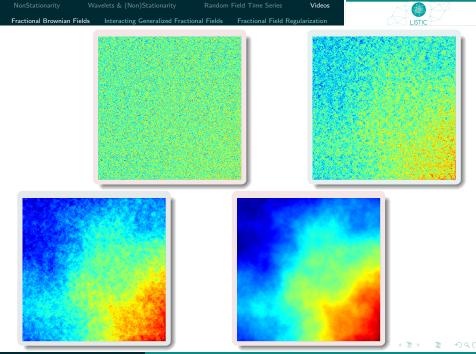
Wavelets and (Non)Stationarity

Random Field Time Series

Videos

Abdourral	nmane	Μ.	AT	то

Image: Image:



Abdourrahmane M. ATTO

Dynamic Random Fields and Image Time Series

26/55

NonStationarity

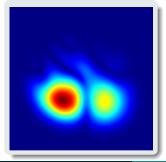
Wavelets & (Non)Stationarity

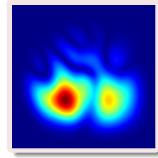
Random Field Time Series

Videos

Interacting Generalized Fractional Fields

Fractional Field Regularization





Abdourrahmane M. ATTO

Dynamic Random Fields and Image Time Series

27/55

				Videos	
Fractional Brownian Field	s Interacting Generalized Fraction	al Fields	Fractional Field Reg	ularization	

• PART II. Multiplicative Interacting Random Field Time Series •

A. M. Atto, E. Trouvé, J.-M. Nicolas, Sparsity Information and Multiplicative Observation Models, Preprint (2014)

<ロ> <同> <同> < 回> < 回>

PART II. (SAR) Random Fields in Multiplicative Environment

• Sampling in time (increasingly close acquisition dates)

[TerraSAR-X (TS-X)]: 11 day acquisition cycle.

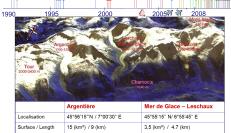
• Spatial resolution (different acquisition modalities and spectral bands).

• Stochasticity in multiplicative algebra (speckle effect).

Mean slope

Random field image time series (trend/stationary decomposition, change-image, etc.).

~14° (26%)



▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

~ 9* (17%)

PART II. (SAR) Random Fields in Multiplicative Environment

• SAR Model & Stationarity •

• Geometric Wavelets and SAR •

• SAR ITS Analysis •

Conclusion

Abdourrahmane M. ATTO

A >

PART II. (SAR) Random Fields in Multiplicative Environment

• SAR Model & Stationarity •

Geometric Wavelets and SAR

• SAR ITS Analysis •

• Conclusion •

Abdourrahmane M. ATTO

▲ ≧ ▶ 31/55

A >

SAR Model & Stationarity

Multiplicative interaction model in a sparsifying domain context

Function f is sparse in W domain, where W is a linear transform, but we observe:

$$f(k)X(k) = \begin{cases} f(k) + f(k)[X(k) - 1] & (\star) \\ \\ e^{\log f(k) + \log X(k)} & (\star\star) \end{cases}$$

where

- f and X are strictly positive function and random sequence,
- $(X(k))_k$ are unitary-mean, stationary random variables,
- X is independent with f.

Which model?

Given f and W, who is the lesser between the two blue evils present in (\star) , $(\star\star)$ for the W-domain representation of f(k)X(k)?

(日) (同) (三) (三)

SAR Model & Stationarity

Multiplicative interaction model in a sparsifying domain context

Function f is sparse in W domain, where W is a linear transform, but we observe:

$$f(k)X(k) = \begin{cases} f(k) + f(k)[X(k) - 1] & (\star) \\ \\ e^{\log f(k) + \log X(k)} & (\star\star) \end{cases}$$

where

- f and X are strictly positive function and random sequence,
- $(X(k))_k$ are unitary-mean, stationary random variables,
- X is independent with f.

Which model?

Given f and W, who is the lesser between the two blue evils present in $(\star), (\star\star)$ for the W-domain representation of f(k)X(k)?

(日) (同) (三) (三)

Conclusion

SAR Model, Wavelets & Stationarity

Model (\star) : additive noise model with signal-dependent noise

The additive 'noise' in model (\star) is a random sequence Z:

$$Y(k) = f(k)[X(k) - 1].$$

Let $W = W_{j,n}$ be a wavelet subband. We have: WY is non-stationary in general, excepted some few cases, for instance when

• f is constant, or

• *f* is polynomial with order *r* and the *W* generating functions have at least *r* vanishing moments.

Model $(\star\star)$: 'additive' noise in a multiplicative algebra

Wavelet in a multiplicative algebra [binary operations $(\oplus, \otimes) = (\times, \wedge)$] or geometric wavelet, W^G , involves geometric approximations and differencing, with:

 $\mathcal{W}^{G} f X = [\mathcal{W}^{G} f] \oplus [\mathcal{W}^{G} X].$

and $\mathcal{W}^{G}X$ inherits the *stationarity* property of X.

Abdourrahmane M. ATTO

イロト イポト イヨト イヨト

SAR Model, Wavelets & Stationarity

Model (\star): additive noise model with signal-dependent noise

The additive 'noise' in model (\star) is a random sequence Z:

$$Y(k) = f(k)[X(k) - 1].$$

Let $W = W_{j,n}$ be a wavelet subband. We have: WY is non-stationary in general, excepted some few cases, for instance when

• f is constant, or

• f is polynomial with order r and the W generating functions have at least r vanishing moments.

Model (**): 'additive' noise in a multiplicative algebra

Wavelet in a multiplicative algebra [binary operations $(\oplus, \otimes) = (\times, \wedge)$] or geometric wavelet, W^G , involves geometric approximations and differencing, with:

$$\mathcal{W}^{\mathsf{G}}fX = [\mathcal{W}^{\mathsf{G}}f] \oplus [\mathcal{W}^{\mathsf{G}}X].$$

and $\mathcal{W}^{G}X$ inherits the *stationarity* property of X.

Abdourrahmane M. ATTO

< (T) >

• Geometric Wavelets and SAR •

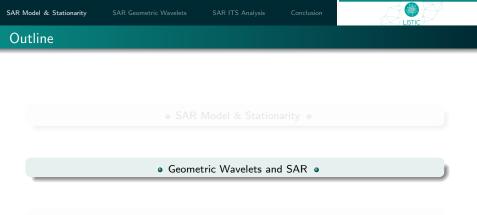
• SAR ITS Analysis •

Conclusion

Abdourra		

э.

< 6 >



SAR ITS Analysis •

Conclusion

Image: Image:

Multiplicative algebra

Consider a data sequence $\mathbf{x} = (\mathbf{x}[\ell])_{\ell \in \mathbb{Z}}$, with $\mathbf{x}[\ell] \in \mathbb{R}^+$ for every $\ell \in \mathbb{Z}$. Assume that this sequence represents a multiplicative 'process'. Then:

- "zero" or "nothing" or "no change" corresponds to identity element "1"
- $\bullet\,$ a "small" value is a value close to 1 (10^{-3} and 10^3 have the same significance in terms of *absolute proportion*,
- The support of ${\bf x}$ is $\{\ell\in\mathbb{Z}:{\bf x}[\ell]\neq 1\},$
- Consequence: a missing value must be replaced by 1.

Geometric convolution

Let $\mathbf{h} = (\mathbf{h}[\ell])_{\ell \in \mathbb{Z}}$ denotes the impulse response of a digital filter. We define the geometric convolution of \mathbf{x} and \mathbf{h} on the vectorial space $(\mathbb{R}^+, \mathbf{x}, \wedge)$ as:

$$\mathbf{y}[k] = \mathbf{x} * \mathbf{h}[k] \triangleq \prod_{\ell \in \mathbb{Z}} (\mathbf{x}[\ell])^{\mathbf{h}[k-\ell]} \\ = \prod_{\ell \in \mathbb{Z}} (\mathbf{x}[k-\ell])^{\mathbf{h}[\ell]} \triangleq \mathbf{h} * \mathbf{x}[k]$$

(日) (同) (三) (三)

Multiplicative algebra

Consider a data sequence $\mathbf{x} = (\mathbf{x}[\ell])_{\ell \in \mathbb{Z}}$, with $\mathbf{x}[\ell] \in \mathbb{R}^+$ for every $\ell \in \mathbb{Z}$. Assume that this sequence represents a multiplicative 'process'. Then:

- "zero" or "nothing" or "no change" corresponds to identity element "1"
- $\bullet\,$ a "small" value is a value close to 1 (10^{-3} and 10^3 have the same significance in terms of *absolute proportion*,
- The support of ${\bf x}$ is $\{\ell\in\mathbb{Z}:{\bf x}[\ell]\neq 1\},$
- Consequence: a missing value must be replaced by 1.

Geometric convolution

Let $\mathbf{h}=(\mathbf{h}[\ell])_{\ell\in\mathbb{Z}}$ denotes the impulse response of a digital filter. We define the geometric convolution of \mathbf{x} and \mathbf{h} on the vectorial space $(\mathbb{R}^+,\times,\wedge)$ as:

$$\mathbf{y}[k] = \mathbf{x} * \mathbf{h}[k] \triangleq \prod_{\ell \in \mathbb{Z}} (\mathbf{x}[\ell])^{\mathbf{h}[\ell-\ell]} \\ = \prod_{\ell \in \mathbb{Z}} (\mathbf{x}[k-\ell])^{\mathbf{h}[\ell]} \triangleq \mathbf{h} * \mathbf{x}[k],$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SAR Model & Stationarity	SAR Geometric Wavelets			
Geometric convolution	Geometric wavelets	Sparsity	Stochasticity	LISTIC
Geometric wave	elets / Definition			

Geometric wavelet decomposition

Define the geometric wavelet decomposition of ${\bf x}$ by:

$$\mathbf{c}_{1,0}[k] = \mathbf{x} * \overline{\mathbf{h}_0}[2k], \tag{23}$$

$$\mathbf{c}_{1,1}[k] = \mathbf{x} \ast \overline{\mathbf{h}_1}[2k],\tag{24}$$

and, recursively, for $\varepsilon \in \{0,1\}$ (geometric approximations when $\varepsilon=0$ and geometric differences/details when $\varepsilon=1)$:

$$\mathbf{c}_{j+1,2n+\epsilon}[k] = \mathbf{c}_{j,n} \ast \overline{\mathbf{h}_{\epsilon}}[2k].$$
(25)

Geometric wavelet reconstruction

We have:

$$\mathbf{c}_{j,n}[k] = \left(\check{\mathbf{c}}_{j+1,2n} \ast \mathbf{h}_0[k]\right) \times \left(\check{\mathbf{c}}_{j+1,2n+1} \ast \mathbf{h}_1[k]\right).$$
(26)

where

$$\check{\mathbf{u}}[2k+\epsilon] = \begin{cases} \mathbf{u}[k] & \text{if } \epsilon = 0, \\ 1 & \text{if } \epsilon = 1. \end{cases}$$
(27)

SAR Model & Stationarity	SAR Geometric Wavelets			
Geometric convolution	Geometric wavelets	Sparsity	Stochasticity	LISTIC
Geometric wave	elets / Definition			

Geometric wavelet decomposition

Define the geometric wavelet decomposition of \mathbf{x} by:

$$\mathbf{c}_{1,0}[k] = \mathbf{x} * \overline{\mathbf{h}_0}[2k], \tag{23}$$

$$\mathbf{c}_{1,1}[k] = \mathbf{x} \ast \overline{\mathbf{h}_1}[2k],\tag{24}$$

and, recursively, for $\varepsilon\in\{0,1\}$ (geometric approximations when $\varepsilon=0$ and geometric differences/details when $\varepsilon=1)$:

$$\mathbf{c}_{j+1,2n+\epsilon}[k] = \mathbf{c}_{j,n} * \overline{\mathbf{h}_{\epsilon}}[2k].$$
(25)

Geometric wavelet reconstruction

We have:

$$\mathbf{c}_{j,n}[k] = \left(\mathbf{\check{c}}_{j+1,2n} \ast \mathbf{h}_0[k]\right) \times \left(\mathbf{\check{c}}_{j+1,2n+1} \ast \mathbf{h}_1[k]\right).$$
(26)

where

$$\check{\mathbf{u}}[2k+\epsilon] = \begin{cases} \mathbf{u}[k] & \text{if} \quad \epsilon = 0, \\ 1 & \text{if} \quad \epsilon = 1. \end{cases}$$
(27)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Geometric wavelet decomposition implementation

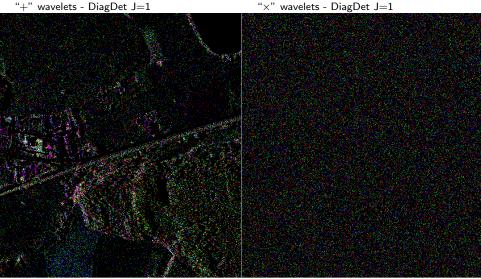
- Define a variable environment and a data type where
 - '0' (of the standard type) behaves as '1'
 - '+ calls' involve \times operation,
 - '× calls' involve \land operation.
- Call this environment and use your 'standard' additive tools

OR

- compute the log function of the input data,
- apply 'standard' additive wavelets to the log of data,
- apply exp function to wavelet coefficients.

Abdourrahmane M. ATTO

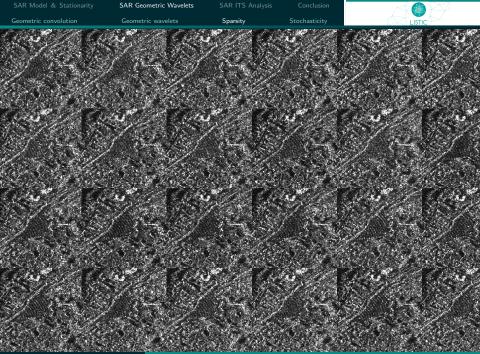
Dynamic Random Fields and Image Time Series



イロト イポト イヨト イヨト

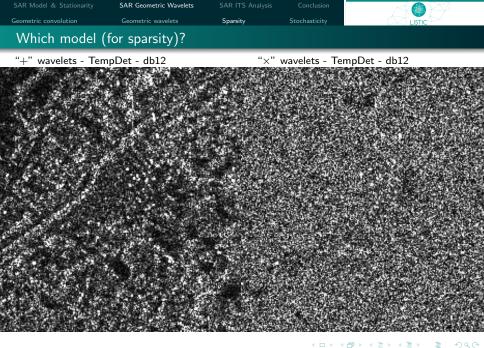
ъ

(a)



Abdourrahmane M. ATTO

Dynamic Random Fields and Image Time Series



<ロ> <同> <同> < 回> < 回>

Geometric wavelets: sparsity and noise

Sparsity in a in multiplicative noise model means:

- shrinking to 1, the data that are close to 1 ...
- provided that noise is nice (in the geometric wavelet domain)!

$\Downarrow \Downarrow$

Statistical properties of geometric wavelet coefficients of speckle (noise model $(\star\star)$)?

Autocorrelation of geometric wavelet packet coefficients

Consider N-length Haar type approximation filter \mathbf{h}_0 and detail filter \mathbf{h}_1 given by

$$h_0[k] = v$$
 for $k = 1, 2, ..., N$. (28)

$$\mathbf{h_1}[k] = (-1)^{k-1} \mathbf{v} \text{ for } k = 1, 2, \dots, N.$$
(29)

When using a sequence $\mathbf{h}_{\varepsilon_1}, \mathbf{h}_{\varepsilon_2}, \dots, \mathbf{h}_{\varepsilon_j}$ of such filters (wavelet packet subband $\mathbf{W}_{j,n}$), then the equivalent wavelet filter is

$$|\mathbf{H}_{j,n}(\omega)|^2 = 2^j \prod_{\ell=1}^j \left(\frac{\sin(2^{\ell-2}N\omega)}{\sin(2^{-1}(\omega+\epsilon_\ell\pi))}\right)^2 \tag{30}$$

and the autocorrelation $\mathbf{R}_{\mathbf{D}_{j,n}}$, where $\mathbf{D}_{j,n} = \log \mathbf{C}_{j,n}^{\times}[\mathbf{Y}]$ is:

$$\mathbf{R}_{\mathbf{D}_{j,n}}[m] = \frac{2^j}{\pi} \int_0^{\pi} \prod_{\ell=1}^j \left(\frac{\sin(2^{\ell-2}N\omega)}{\sin(2^{-1}(\omega+\epsilon_{\ell}\pi))} \right)^2 \gamma_{\mathbf{Y}}(\omega) \cos 2^j m\omega \, \mathrm{d}\omega.$$
(31)

< 🗇 >

In the usual wavelet splitting scheme, only approximation coefficients are decomposed again (the shift parameter $n \in \{0, 1\}$). This implies filtering sequences with the form

$$\left(\underbrace{\mathbf{h}_{0},\mathbf{h}_{0},\ldots,\mathbf{h}_{0}}_{j \text{ times}},\mathbf{h}_{\varepsilon_{j+1}}\right)_{\varepsilon_{j+1} \in \{0,1\}}$$

Consider a *j*-length approximation sequence $(\mathbf{h}_0^{\text{Haar}})_{\ell=1,2,...,j}$ of standard Haar type (N = 2). Then, the equivalent filter of this sequence is:

$$\left|\mathbf{H}_{j,0}^{\mathrm{H}\,\mathrm{aar}}(\omega)\right|^{2} = 2^{j} \left(\frac{\mathrm{sinc}(2^{j-1}\omega)}{\mathrm{sinc}(2^{-1}\omega)}\right)^{2}, \qquad \text{where} \quad \mathrm{sinc}\,\omega = \mathrm{sin}\,\omega/\omega. \tag{32}$$

The autocorrelation $R_{\mathbf{D}_{j,0}}^{\mathrm{Haar}}$ of the corresponding geometric wavelet coefficients is then:

$$\mathbf{R}_{\mathbf{D}_{j,0}}^{\mathrm{Haar}}[m] = \frac{2^{j}}{\pi} \int_{0}^{\pi} \left(\frac{\operatorname{sinc}(2^{j-1}\omega)}{\operatorname{sinc}(2^{-1}\omega)} \right)^{2} \gamma_{\mathbf{Y}}(\omega) \cos 2^{j} m \omega \, \mathrm{d}\omega$$
(33)

Limit Autocorrelation Function

$$\lim_{i \to +\infty} \mathbf{R}_{\mathbf{D}_{j,0}}^{\mathrm{Haar}}[m] = \gamma_{\mathbf{Y}}(0)\delta[m]$$
(34)

The Reciprocally Extended Generalized Gamma (REGG) probability density function with scale parameter $\beta > 0$ and shape parameters κ, γ as:

$$f_{\kappa,\beta,\gamma}(x) = \frac{|\gamma|}{\beta\Gamma\left(\frac{\kappa}{\gamma}\right)} \left(\frac{x}{\beta}\right)^{\kappa-1} e^{-\left(\frac{x}{\beta}\right)^{\gamma}}, \text{ with } \kappa\gamma > 0.$$
(35)

Function $f_{\kappa,\beta,\gamma}$

- is the probability density function of a Generalized Gamma random variable if $\kappa>0$ and $\gamma>0$ whereas it
- represents a Generalized Inverse Gamma random variable if $\kappa < 0$ and $\gamma < 0$.

Consider the random variable defined by

$$Z[k] = \prod_{\ell=0}^{N-1} \left(X[k-\ell] \right)^{\mathbf{h}[\ell]}$$

where $(X_k, X_{k-1}, \ldots, X_{k-N+1})$ are assumed to be independent and identically REGG distributed random variables with parameters (κ, β, γ) .

If $h = h_0$ is the Haar approximation filter of order *N*, then, the probability density function of *Z* is given by

$$f_{Z}(x) = \frac{|\gamma|/\nu}{\beta_{\nu}{}^{N}\Gamma^{N}\left(\frac{\kappa}{\gamma}\right)} G^{A_{\gamma},N}\left(\left(\frac{\beta_{\nu}{}^{N}}{x}\right)^{\frac{|\gamma|}{\nu}}\right| P_{\kappa,\gamma,\nu,N}\right)$$
(36)

where $\beta_{\,\nu}\,=\,\beta^{\,\nu}$, G is the Meijer function defined by

$$G^{m} \stackrel{n}{_{p}} \left(x \left| \begin{array}{cc} a_{1} & \dots & a_{p} \\ b_{1} & \dots & b_{q} \end{array} \right. \right) = \frac{1}{2i\pi} \int_{e-i\infty}^{e+i\infty} \frac{\prod_{\ell=1}^{m} \Gamma(b_{\ell}-s) \prod_{\ell=1}^{n} \Gamma(1-a_{\ell}+s)}{\prod_{\ell=n+1}^{q} \Gamma(1-b_{\ell}+s) \prod_{\ell=n+1}^{p} \Gamma(a_{\ell}-s)} x^{s} \mathrm{d}s,$$

with

$$A_{\gamma,N} = \begin{cases} \begin{pmatrix} 0 & N \\ N & 0 \\ 0 & N \end{pmatrix} & \text{if } \gamma > 0 \\ \begin{pmatrix} N & 0 \\ 0 & N \end{pmatrix} & \text{if } \gamma < 0 \end{cases}$$
$$P_{\kappa,\gamma,\nu,N} = \left(\underbrace{1 - \frac{\kappa - \nu}{\gamma}, 1 - \frac{\kappa - \nu}{\gamma}, \dots, 1 - \frac{\kappa - \nu}{\gamma}}_{N \text{ times}}\right)$$

If $\mathbf{h} = \mathbf{h_1}$ is the Haar detail filter of order N, then,

$$f_{Z}(x) = \frac{|\gamma|/\nu}{\beta_{\nu} * \Gamma^{N}\left(\frac{\kappa}{\gamma}\right)} G^{B_{\gamma,N}}\left(\left(\frac{\beta_{\nu}}{x}\right)^{\frac{|\gamma|}{\nu}} \middle| P_{\kappa,\gamma,\nu,N}\right)$$
(37)

where ${\beta_{\nu}}^{*} = {\beta^{(1-(-1)^{N})/2\nu}}$,

$$B_{\gamma,N} = \begin{cases} \left(\begin{array}{c} \lfloor \frac{N}{2} \rfloor & \lfloor \frac{N+1}{2} \rfloor \\ \lfloor \frac{N+1}{2} \rfloor & \lfloor \frac{N}{2} \rfloor \end{array} \right) & \text{if } \gamma > 0 \\ \\ \left(\begin{array}{c} \lfloor \frac{N+1}{2} \rfloor & \lfloor \frac{N}{2} \rfloor \\ \lfloor \frac{N}{2} \rfloor \rfloor & \lfloor \frac{N+1}{2} \end{array} \right) & \text{if } \gamma < 0 \end{cases}$$

$$P_{\kappa,\gamma,\nu,N} = \begin{pmatrix} \frac{\lfloor \frac{N-1}{2} \rfloor \text{ times}}{1 - \frac{\kappa - \nu}{\gamma}, 1 - \frac{\kappa - \nu}{\gamma}, \dots, 1 - \frac{\kappa - \nu}{\gamma}} \\ -\frac{\frac{\kappa + \nu}{\gamma}, -\frac{\kappa + \nu}{\gamma}, \dots, -\frac{\kappa + \nu}{\gamma}}{\lfloor \frac{N}{2} \rfloor \text{ times}} \end{pmatrix}$$

< ∃ > <

Geometric wavelet coefficients of REGG

- Highly non-Gaussian.
- Highly asymmetric.
- Heavy tails.

Geometric wavelet / Sparsity, Stochasticity and shrinkage

- Smooth shrinkage (for avoiding artifacts).
- Asymmetric shrinkage (with respect to the asymmetry of the distribution).
- Block shrinkage (for reducing the impact of the distribution tail).

- 4 同 2 4 日 2 4 日 2

Geometric wavelet coefficients of REGG

- Highly non-Gaussian.
- Highly asymmetric.
- Heavy tails.

Geometric wavelet / Sparsity, Stochasticity and shrinkage

- Smooth shrinkage (for avoiding artifacts).
- Asymmetric shrinkage (with respect to the asymmetry of the distribution).
- Block shrinkage (for reducing the impact of the distribution tail).

SAR Model & Stationarity	SAR Geometric Wavelets		Conclusion	
Geometric convolution	Geometric wavelets	Sparsity	Stochasticity	LISTIC
Outline				

• SAR Model & Stationarity •

• Geometric Wavelets and SAR •

• SAR ITS Analysis •

Conclusion

Abdourra	hmane	М.	AT	TO

A >

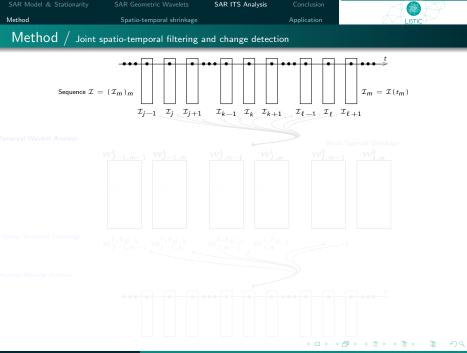
• SAR Model & Stationarity •

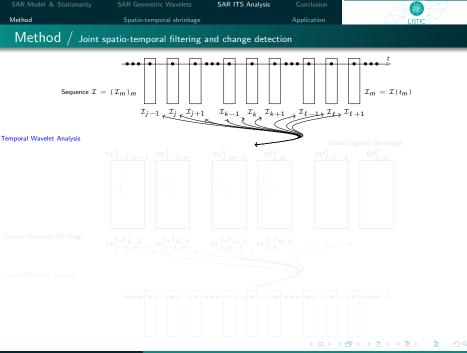
• Geometric Wavelets and SAR •

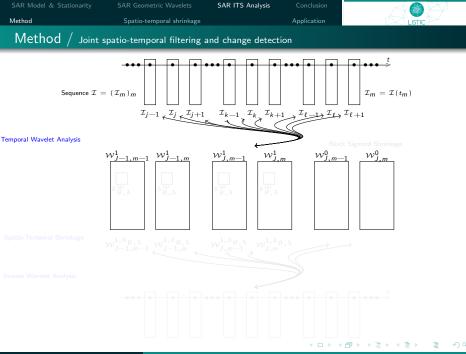
• SAR ITS Analysis •

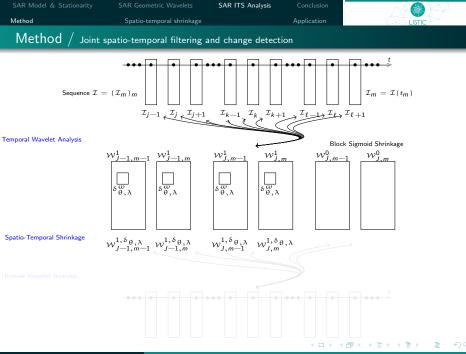
Conclusion

< 17 ▶



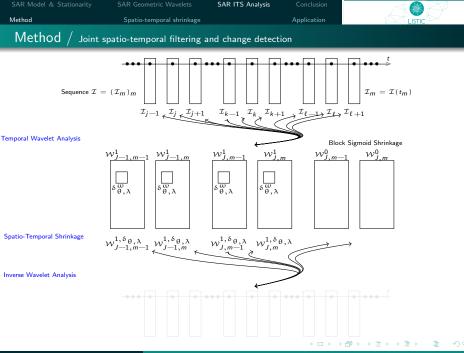


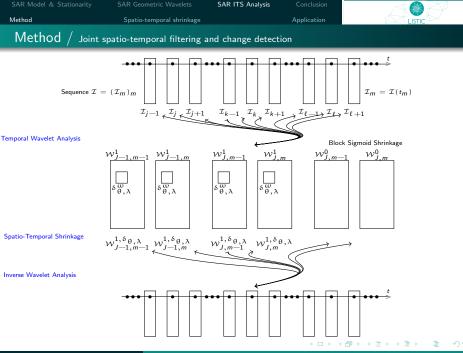




Dynamic Random Fields and Image Time Series

48/55





Dynamic Random Fields and Image Time Series

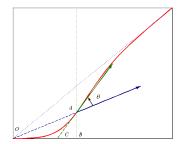
48/55

Sigmoid shrinkage

$$\delta_{\theta_1,\theta_{-1},\lambda}(x) = \frac{x}{\left(1 + e^{-\frac{10\sin\theta_x}{2\cos\theta_x - \sin\theta_x}\left(\frac{|x|}{\lambda} - 1\right)}\right)}$$

where

$$\theta_x = \frac{1}{2} \left[\theta_1 + \theta_{-1} + \operatorname{sign}(x) \left(\theta_1 - \theta_{-1} \right) \right]$$



Spatio-temporal sigmoid shrinkage (spatial blocs on temporal differencing)

For a pixel $d_{\mathcal{W}}\mathcal{I}_{m,n}(k)$ pertaining to a change-image, the sigmoid shrinkage:

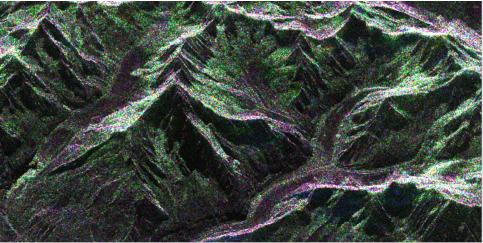
$$\delta_{\theta,\lambda}(\mathbf{d}_{\mathcal{W}}\mathcal{I}_{m,n}(k)) = \frac{\mathbf{d}_{\mathcal{W}}\mathcal{I}_{m,n}(k)}{1 + e^{-\frac{10\sin\theta}{2\cos\theta - \sin\theta}\left(\frac{||\mathbf{V}_{\mathbf{d}_{\mathcal{W}}\mathcal{I}}(m,n,k)||_{2}}{\lambda} - 1'\right)}}$$
(38)

where

$$\mathcal{I}_{\mathrm{d}_{\mathcal{W}}\mathcal{I}}(m,n,k) = \{\mathrm{d}_{\mathcal{W}}\mathcal{I}_{m,n}(k), m = m - \epsilon_0, \dots, m + \epsilon_0, n = n - \nu_0, \dots, n + n_0\}$$

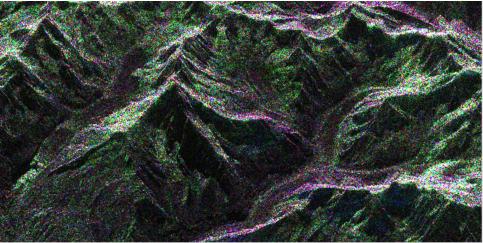
SAR Model & Station	narity SAR Geometric Wavelets SAR ITS A	Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method /	Joint spatio-temporal filtering and change	e detection	

 $\mathcal{I}(t_1) \hspace{1em} \parallel \hspace{1em} t_1 = 2009 - 02 - 22$



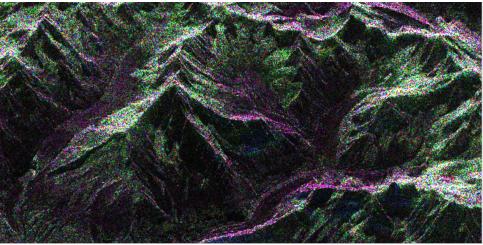
SAR Model & Stati	onarity SAR Geometric Wavelets SAR ITS	Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method /	Joint spatio-temporal filtering and chan	ge detection	

 $\mathcal{I}(t_2) \hspace{1em} \parallel \hspace{1em} t_2 = 2009 - 03 - 18$



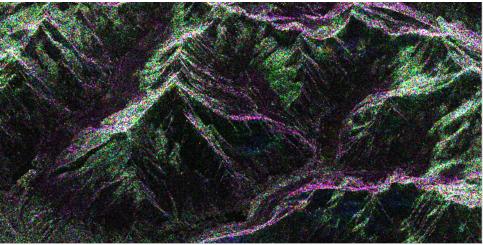
SAR Model & Stat	ionarity SAR Geometric Wavelets SAR ITS A	Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method	/ Joint spatio-temporal filtering and chang	e detection	

 $\mathcal{I}(t_3) \quad \parallel \quad t_3 = 2009 - 04 - 11$



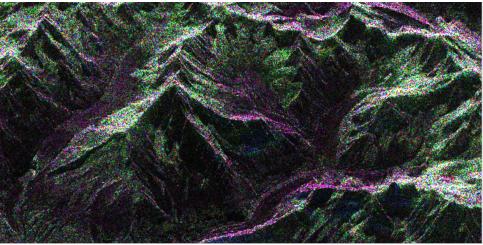
SAR Model & Stati	onarity SAR Geometric Wavelets SAR ITS A	nalysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method /	, Joint spatio-temporal filtering and change	detection	

 $\mathcal{I}(t_4) \parallel t_4 = 2009 - 05 - 05$



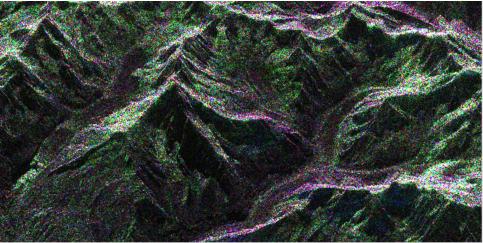
SAR Model & Stat	ionarity SAR Geometric Wavelets SAR ITS A	Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method	/ Joint spatio-temporal filtering and chang	e detection	

 $\mathcal{I}(t_3) \quad \parallel \quad t_3 = 2009 - 04 - 11$



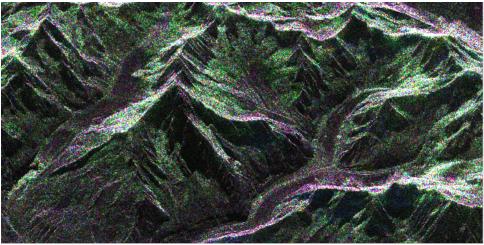
SAR Model & Stati	onarity SAR Geometric Wavelets SAR ITS	Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method /	Joint spatio-temporal filtering and chan	ge detection	

 $\mathcal{I}(t_2) \hspace{1em} \parallel \hspace{1em} t_2 = 2009 - 03 - 18$



SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint	spatio-temporal filtering a	nd change detect	ion	

 $\mathcal{I}(t_1) \hspace{1em} \parallel \hspace{1em} t_1 = 2009 - 02 - 22$



$D_1[\mathcal{I}](1)$

SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Join	t spatio-temporal filtering a	nd change detect	ion	

 $\mathcal{SD}_1[\mathcal{I}](1),$ Shrinkage λ_1

э

(日) (同) (三) (三)

SAR Model & Stationa	rity SAR Geometric Wavelets SAR ITS	Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method / .	Joint spatio-temporal filtering and chang	e detection	

 $\mathcal{SD}_1[\mathcal{I}](1),$ Shrinkage λ_2

- E - N

$D_1[\mathcal{I}](2)$

SAR Model & Stati	ionarity SAR Geometric Wavelets SA	AR ITS Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method /	Joint spatio-temporal filtering and	change detection	

 $\mathcal{SD}_1[\mathcal{I}](2)$, Shrinkage λ_1

・ロン ・四 と ・ ヨ と ・ ヨ と …

SAR Model & Stationa	rity SAR Geometric Wavelets SAR ITS	S Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method / J	oint spatio-temporal filtering and chan	ge detection	

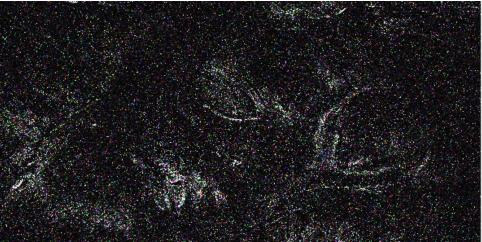
 $\mathcal{SD}_1[\mathcal{I}](2),$ Shrinkage λ_2

・ロト ・回ト ・ヨト ・ヨト

$D_2[\mathcal{I}](1)$

SAR Model & Stat	ionarity SAR Geometric Wavelets SA	AR ITS Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method /	/ Joint spatio-temporal filtering and	change detection	

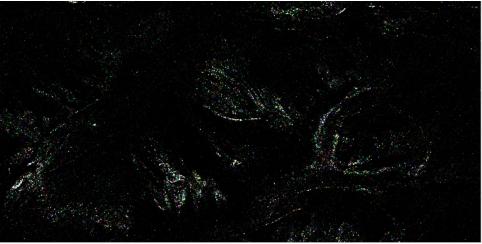
 $\mathcal{SD}_2[\mathcal{I}](1),$ Shrinkage λ_1



・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

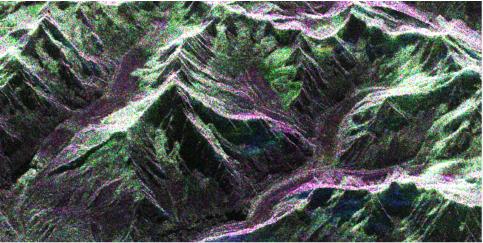
SAR Model & Stational	rity SAR Geometric Wavelets S	SAR ITS Analysis Conclusion	
Method	Spatio-temporal shrinkage	Application	LISTIC
Method / J	oint spatio-temporal filtering and	change detection	

$\mathcal{SD}_2[\mathcal{I}](1),$ Shrinkage λ_2



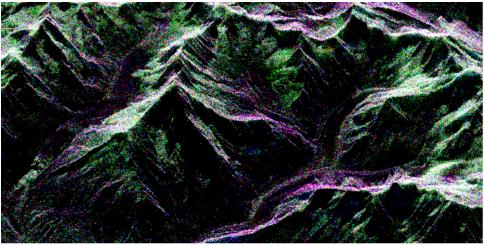
SAR Model & Stationarity		SAR ITS Analysis		
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint	spatio-temporal filtering a	nd change detect	ion	

$A_2[\mathcal{I}](1)$



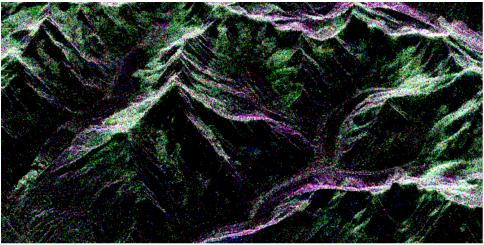
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detect	ion / Shrinkage	λ_1

 $\Upsilon(t_1) \parallel t_1 = 2009 - 02 - 22$



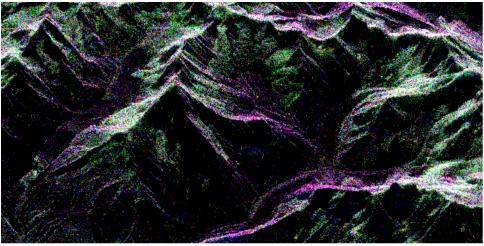
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_1

 $\Upsilon(t_2) \parallel t_2 = 2009 - 03 - 18$



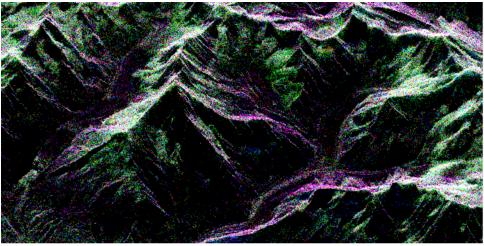
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_1

 $\Upsilon(t_3) \parallel t_3 = 2009 - 04 - 11$



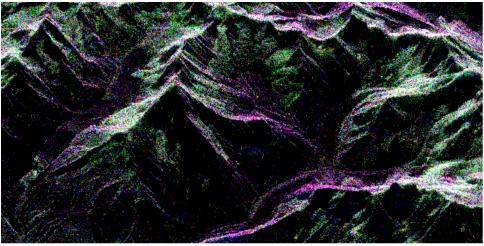
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_1

 $\Upsilon(t_4) \parallel t_4 = 2009 - 05 - 05$



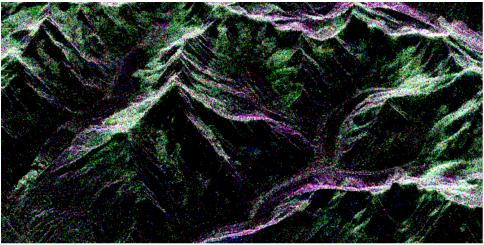
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_1

 $\Upsilon(t_3) \parallel t_3 = 2009 - 04 - 11$



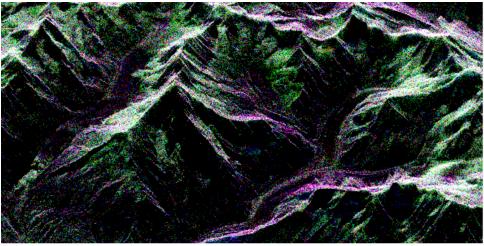
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
$-$ Method $/$ Joint spatio-temporal filtering and change detection / Shrinkage λ				λ_1

 $\Upsilon(t_2) \parallel t_2 = 2009 - 03 - 18$



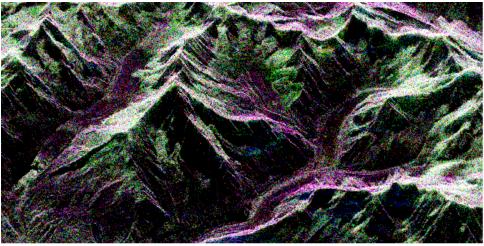
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_1

 $\Upsilon(t_1) \parallel t_1 = 2009 - 02 - 22$



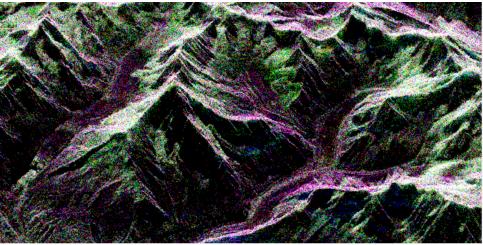
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	on / Shrinkage	λ_2

 $\Upsilon(t_1) \parallel t_1 = 2009 - 02 - 22$



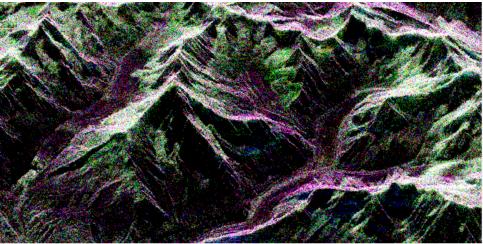
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	on / Shrinkage	λ_2

 $\Upsilon(t_2) \parallel t_2 = 2009 - 03 - 18$



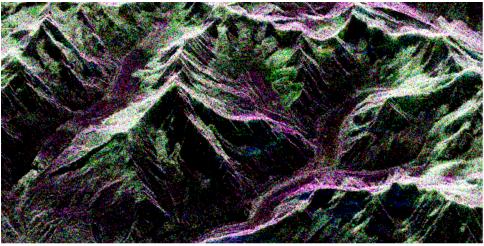
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_2

 $\Upsilon(t_3) \parallel t_3 = 2009 - 04 - 11$



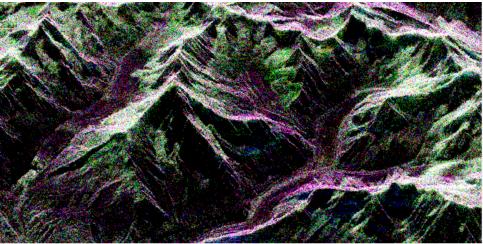
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	on / Shrinkage	λ_2

 $\Upsilon(t_4) \parallel t_4 = 2009 - 05 - 05$



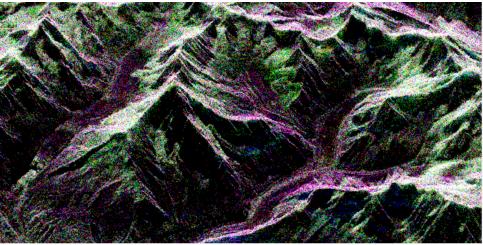
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	ion / Shrinkage	λ_2

 $\Upsilon(t_3) \parallel t_3 = 2009 - 04 - 11$



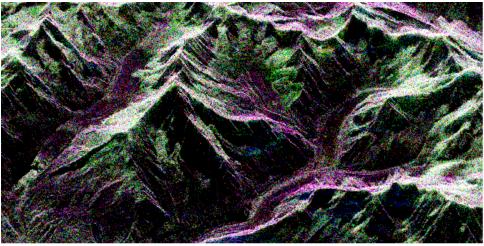
SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	on / Shrinkage	λ_2

 $\Upsilon(t_2) \parallel t_2 = 2009 - 03 - 18$



SAR Model & Stationarity		SAR ITS Analysis	Conclusion	
Method	Spatio-temporal shrinkage		Application	LISTIC
Method / Joint s	patio-temporal filtering a	nd change detecti	on / Shrinkage	λ_2

$\Upsilon(t_1) \parallel t_1 = 2009 - 02 - 22$



SAR Model & Stationarity		SAR ITS Analysis		
Method	Spatio-temporal shrinkage		Application	LISTIC
Outline				

• SAR Model & Stationarity •

• Geometric Wavelets and SAR •

• SAR ITS Analysis •

Conclusion

Abdourra	hmane	М.	AT	то

3 N 3

• Geometric Wavelets and SAR •

• SAR ITS Analysis •

Conclusion

Abdourra	hmane l	М.	AT	то

< 17 ▶

Conclusion

- Analysis at two different levels:
 - ⇒ Approximations / Temporal [Mean representatives of stable pixels/parts of the scene];
 - \Rightarrow Details / Spatio-Temporal [change-images representatives of the scene dynamics].
- Workable for long time series of high spatial resolution + multichannel,
 - ⇒ Wavelet on the temporal axis
 - \Rightarrow Shrinkage with respect to spatio-temporal change information.
- Easy monitoring of the temporal evolution of Alps glaciers.

Prospects

- Limit distributions of REGG wavelets.
- Spatio-temporal wavelet variance analysis.
- Optimal parameters for sigmoid bloc shrinkage.
- Identifying stationary subsequences / seasonality.
- Compressive sensing in a geometric algebra.

Conclusion

- Analysis at two different levels:
 - \Rightarrow Approximations / Temporal [Mean representatives of stable pixels/parts of the scene];
 - \Rightarrow Details / Spatio-Temporal [change-images representatives of the scene dynamics].
- Workable for long time series of high spatial resolution + multichannel,
 - ⇒ Wavelet on the temporal axis
 - \Rightarrow Shrinkage with respect to spatio-temporal change information.
- Easy monitoring of the temporal evolution of Alps glaciers.

Prospects

- Limit distributions of REGG wavelets.
- Spatio-temporal wavelet variance analysis.
- Optimal parameters for sigmoid bloc shrinkage.
- Identifying stationary subsequences / seasonality.
- Compressive sensing in a geometric algebra.