Time-frequency segmentation : statistical and local phase analysis

Florian DADOUCHI¹, Cornel IOANA¹, Julien HUILLERY², Cédric GERVAISE^{1,3}, <u>Jérôme I. MARS</u>¹

¹GIPSA-Lab, University of Grenoble ²Ampère Laboratory, Ecole Centrale de Lyon ³CHORUS chair, Foundation of Grenoble Institute of Technology

March 13, 2013

Introduction

State of the Art

(E) < E)</p>

Statistical segmentation of the time-frequency plane Example Conclusion

Sommaire

- Context
- State of the Art
- 2 Statistical segmentation of the time-frequency plane
 - Detection of time-frequency bins
 - Detection of Regions of Interest

3 Example

- Local Phase Analysis
- Application to real signals

4) Conclusion

Context State of the Art

Introduction 1

Context

- Segmentation of time-frequency plane
- Instantaneous frequency law estimation

Application to Passive Acoustics Monitoring (PAM) of marine mammals

- Impact of anthropic pressure (shipping noise, sonar, seismic exploration, etc.) on marine mammal's health
- Detection, classification, density estimation and localization of marine mammals

・ 同 ト ・ ヨ ト ・ ヨ ト

Passive tomography

Context State of the Art

(E) < E)</p>

Introduction II

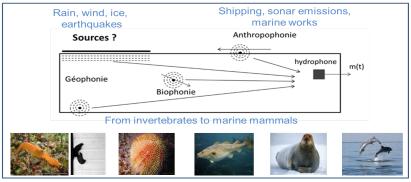
Signal processing constraints

- Colored and/or non-stationary noise
- Non linear frequency modulations
- Multi-component (unknown number), time-frequency overlapping, channel fading
- Large databases
- Single sensor (hydrophone)

Context State of the Art

Ocean Polyphony - Acoustic landscapes

Ocean is not a world of silence ("The silent world" [Cousteau & Malles 1956])

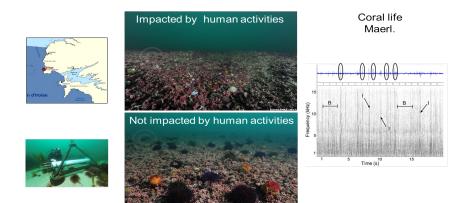


[Pijanowski2011], 'Soundscape ecology: the science of sound in the landscape', BioScience 61(3), 203--216.

・ 同 ト ・ ヨ ト ・ ヨ ト

Context State of the Art

Study of populations & Anthropic activities : Meso-acoustic scale $(10,000m^2)$



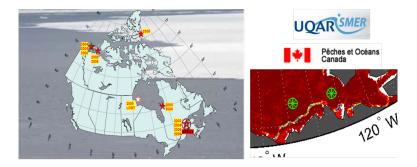
First recording session : 10/10/2012 - 10/20/2012

DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS

12 N

Context State of the Art

Arctic & Global warming : Macro-acoustic scale (10,000km²)

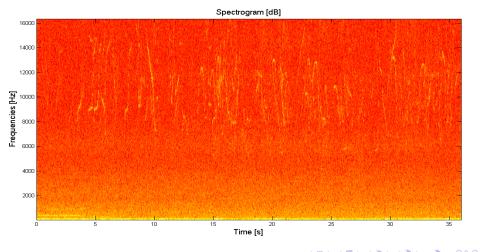


- Kinda, Simard, Gervaise, Mars & Fortier (2012), 'Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and relations with ice drift', JASA, submitted
- Simard, Gervaise, Kinda, Fortier & Mars (2012), 'Tenfold increase of arctic ocean noise from global warming alone', JASA, submitted

< ∃> < ∃>

Context State of the Art

Example of dolphin signals

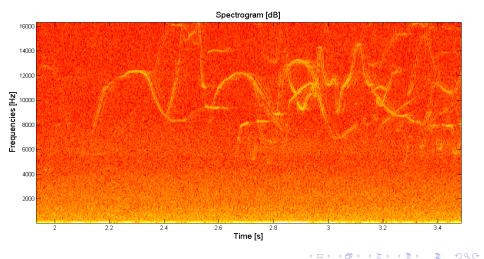


DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS Jour

Journée SIERRA - ENS Lyon

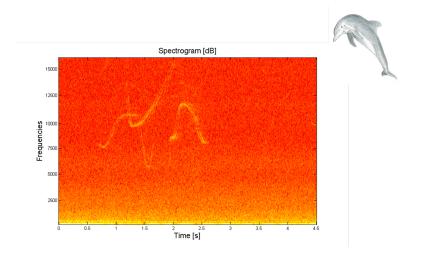
Context State of the Art

Example of dolphin signals



Context State of the Art

Example of dolphin signals



Context State of the Art

State of the Art : Segmentation / Instantaneous frequency law estimation |

Instantaneous Frequency Law Estimation (I)

- Kalman filtering / Extended Kalman filtering [Mallawaarachchi2008]
 - \rightarrow Optimal for Gaussian distributions
 - ightarrow Only Gaussian/Locally Gaussian distributions
- Particle filtering [Roch2011]
 - \rightarrow Non-Gaussian distributions, nearly optimal
 - ightarrow Initialization of the seeds, mono-component
- Bayesian models : Maximum likelihood [Urazghildiiev & Clark 2004], Approximate maximum likelihood [Michel & Clergeot 1991]
 → Sensitive to low SNR

(D) (A)

Context State of the Art

State of the Art : Segmentation / Instantaneous frequency law estimation II

Instantaneous Frequency Law Estimation (II)

- Empirical Mode Decomposition (EMD) [Huang1996], Hilbert Spectrum Analysis, Teager-Kaiser
 - \rightarrow Data-driven (no a priori model)
 - \rightarrow Low SNR, close components
- Wigner-Ville distribution
 - \rightarrow Interferences between components
- Higher-Order Ambiguity function (HAF) / Time-frequency-phase tracker [Ioana2010, Josso2009]

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

- \rightarrow Phase coherence / Time series
- \rightarrow Computational complexity

Context State of the Art

・ 同 ト ・ ヨ ト ・ ヨ ト

State of the Art : Segmentation / Instantaneous frequency law estimation III

Time-frequency plane Segmentation

- Morphological mathematics (closing) [Simard2010]
 - \rightarrow Removal of spurious peaks, efficient segmentation
 - \rightarrow Shape of the structuring element
- Edge detection [Gillespie2004]
 - ightarrow Simple method
 - ightarrow Impulsive noise, borders widening
- Hough transform [Pearson & Amblard 1996]
 - ightarrow Model
 - ightarrow Number of components, model

Context State of the Art

イロト イポト イヨト イヨト

State of the Art : Segmentation / Instantaneous frequency law estimation ||

Problems

- Methods operating on spectrogram and/or time series : sensitive to low local SNR
- Methods operating on binary spectrogram : sensitive to spurious peaks
- Computational complexity of the methods

Solutions

- Use of efficient binary spectrogram
- Denoising of time series
- Identification of the regions of interest

Detection of time-frequency bins Detection of Regions of Interest

(E) < E)</p>

э

Sommaire

- Context
- State of the Art

2 Statistical segmentation of the time-frequency plane

- Detection of time-frequency bins
- Detection of Regions of Interest

3 Example

- Local Phase Analysis
- Application to real signals

• Conclusion

Detection of time-frequency bins Detection of Regions of Interest

Global methodology

Time-frequency tracking methodology

- Time series
- Statistical segmentation of the time-frequency regions of interest (ROI)
 - 1. Detection of time-frequency <u>bins</u> exhibiting higher power than their neighbors
 - 2. Detection of the time-frequency regions of interest
- Time-frequency tracking of the structures in signals

Detection of time-frequency bins Detection of Regions of Interest

Detection of the time-frequency regions of interest |

Step 1 : Detection of time-frequency bins

Binary hypothesis test on spectrogram S_x[t,k] :

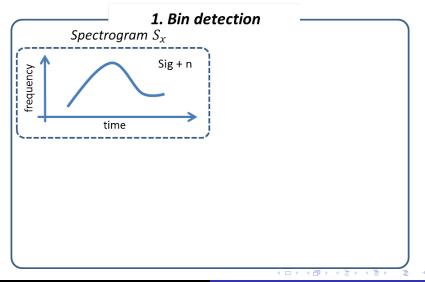
$$\begin{cases} \mathsf{H}_{0}^{bin} : \mathsf{S}_{\mathsf{x}}[\mathsf{t},\mathsf{k}] = \mathsf{S}_{n}[\mathsf{t},\mathsf{k}] ;\\ \mathsf{H}_{1}^{bin} : \mathsf{S}_{\mathsf{x}}[\mathsf{t},\mathsf{k}] = \mathsf{S}_{sig+n}[\mathsf{t},\mathsf{k}] \end{cases}$$
(1)

3 Noise model $p(S_x|H_0^{bin}) : \chi^2$ distribution with 2 degrees of freedom

- Stimation : Minimal statistics (small coefficients = noise)
- Oecision criterion : Neyman-Pearson (choice of the p_{FA})
- Output : set of detected bins

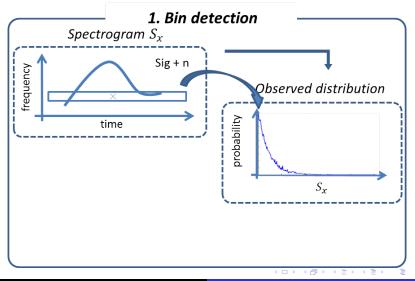
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : time-frequency bin detection



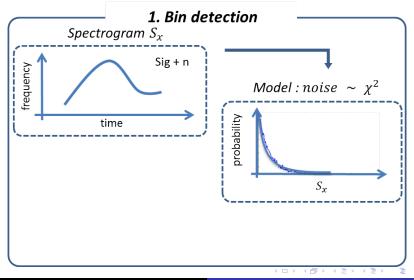
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : time-frequency bin detection



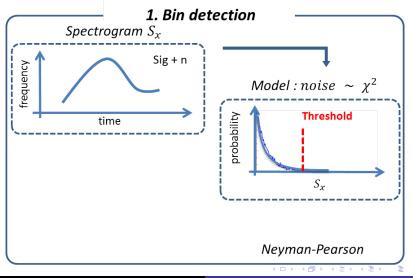
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : time-frequency bin detection



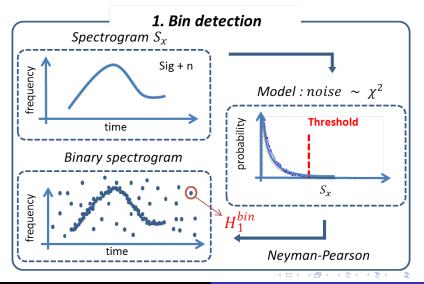
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : time-frequency bin detection



Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : time-frequency bin detection



DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS

Detection of time-frequency bins Detection of Regions of Interest

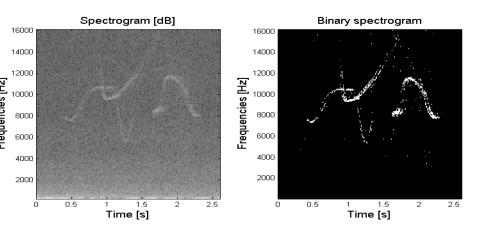


Figure : Spectrogram thresholding, $p_{FA} = 10^{-5}$

Detection of time-frequency bins Detection of Regions of Interest

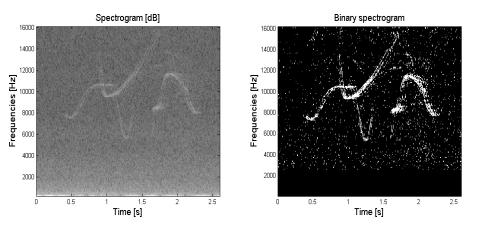


Figure : Spectrogram thresholding, $p_{FA} = 0.005$

Detection of time-frequency bins Detection of Regions of Interest

⊒ ▶

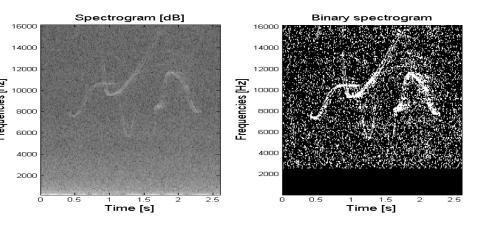
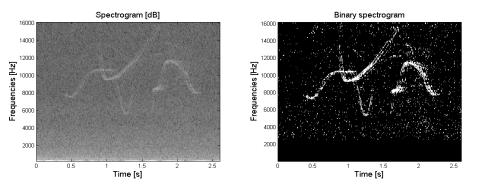


Figure : Spectrogram thresholding, $p_{FA} = 0.1$

Detection of time-frequency bins Detection of Regions of Interest



lssues

- Lack of connectedness of detected components : missed detections, channel fading, sources directivity, etc.
- False detections (noise)

Detection of the time-frequency regions of interest II

Step 2 : Detection of cells hosting signal

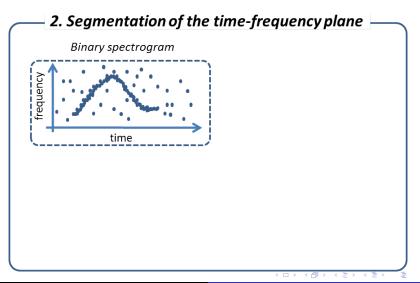
- Starting from step 1 (binary spectrogram)
- Partitioning of the binary spectrogram in cells (of fixed size A)
- Counting of the number Σ_x of detections in cells
- Hypothesis : large $\Sigma_x \rightarrow$ cell hosting signal
- Sinary hypothesis test on regions :

$$\begin{cases} \mathsf{H}_{0}^{cell} : \Sigma_{\times} = \Sigma_{FA} ; \\ \mathsf{H}_{1}^{cell} : \Sigma_{\times} = \Sigma_{sig+FA} \end{cases}$$
(2)

- ${\small \bigcirc} \ \ {\sf False \ alarm \ model}: {\sf p}(\Sigma_x|{\sf H}_0^{\mathit{cell}}) \to {\sf Binomial \ law \ } {\sf B}({\sf A},\,{\sf p}_0)$
- Estimation : p̂₀ that minimizes the Kullback-Leibler divergence between the histogram of the data p(Σ_x) and the model B(A, p̂₀)
- O Decision criterion : Neyman-Pearson

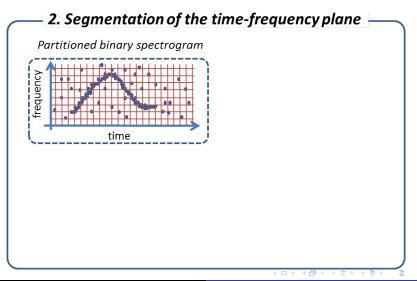
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : Cell detection



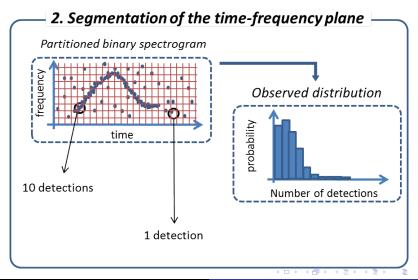
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : Cell detection



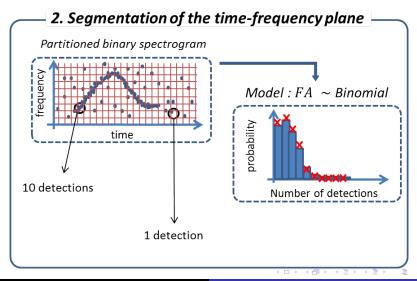
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : Cell detection



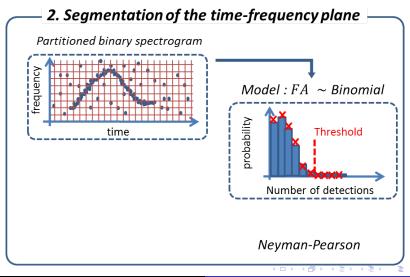
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : Cell detection



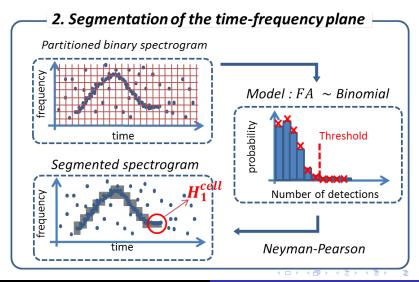
Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : Cell detection



Detection of time-frequency bins Detection of Regions of Interest

Scheme of the methodology : Cell detection



DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS

Detection of time-frequency bins Detection of Regions of Interest

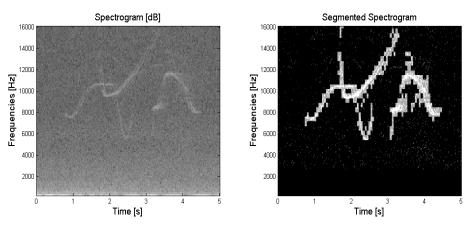


Figure : Spectrogram thresholding, $p_{FA}^{cell} = 0.001$, minimum duration of connected cells = 20 ms

Detection of time-frequency bins Detection of Regions of Interest

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

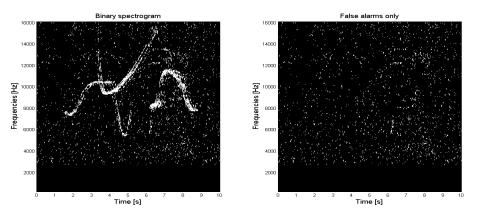


Figure : Spectrogram thresholding, $p_{FA}^{cell} = 0.001$, minimum duration of connected cells = 20 ms

Detection of time-frequency bins Detection of Regions of Interest

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

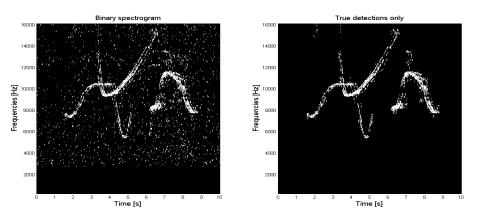


Figure : Spectrogram thresholding, $p_{FA}^{cell} = 0.001$, minimum duration of connected cells = 20 ms

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

3

Input parameters of the method

- 1. Neighborhood for noise estimation
- 2. Probability of false alarm for bin detection p_{FA}^{bin}
- 3. Partitioning of the binary spectrogram (size of cells A)
- 4. False alarm probability for cell detection p_{FA}^{cell}
- 5. Minimum duration of components (physical considerations)

3

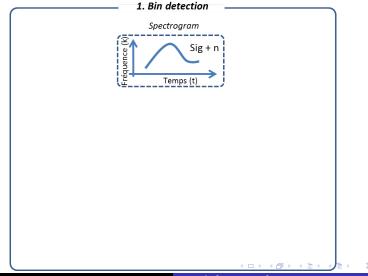
lssue

- Final segmentation heavily influenced by the choice of p_{FA}^{bin} for bin detection
- Optimal p^{bin}?

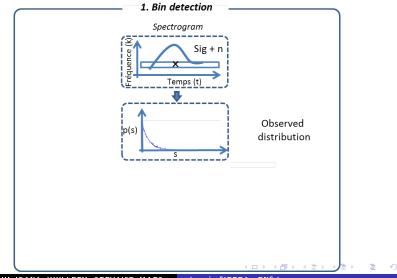
Adopted solution

- Try multiple p^{bin}FA
- Keep the one maximizing the detection probability of (connected) regions

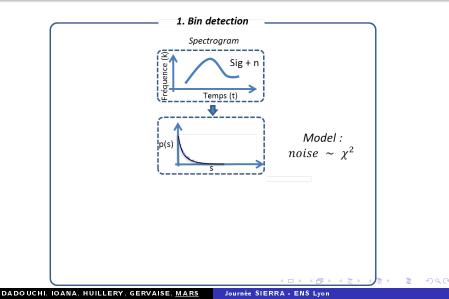
Detection of time-frequency bins Detection of Regions of Interest



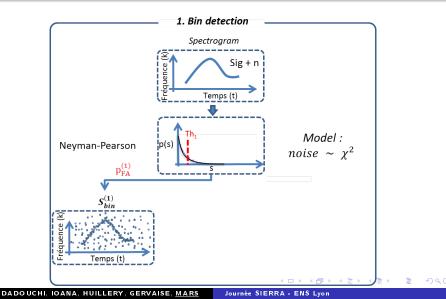
Detection of time-frequency bins Detection of Regions of Interest



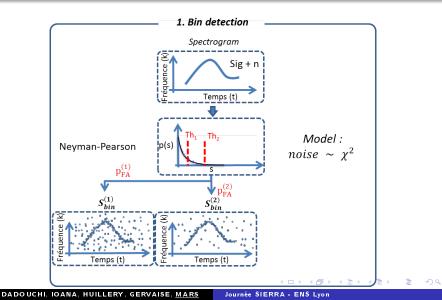
Detection of time-frequency bins Detection of Regions of Interest



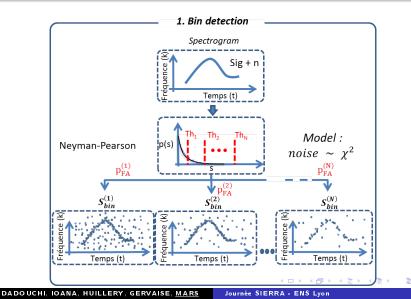
Detection of time-frequency bins Detection of Regions of Interest



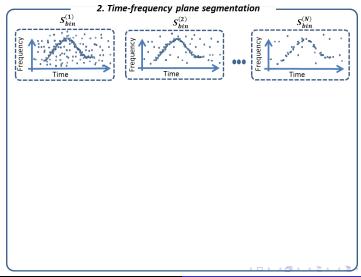
Detection of time-frequency bins Detection of Regions of Interest



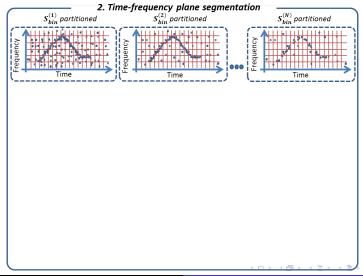
Detection of time-frequency bins Detection of Regions of Interest



Detection of time-frequency bins Detection of Regions of Interest

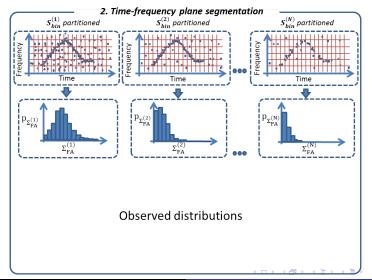


Detection of time-frequency bins Detection of Regions of Interest



Detection of time-frequency bins Detection of Regions of Interest

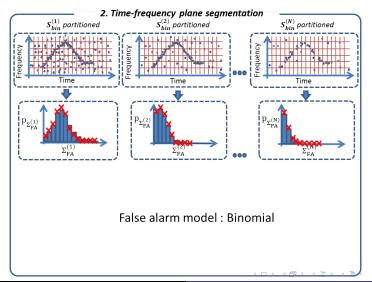
Multi-threshold methodology



DADO UCHI, IOANA, HUILLERY, GERVAISE, MARS Journée SIERRA - ENS Lyon

Detection of time-frequency bins Detection of Regions of Interest

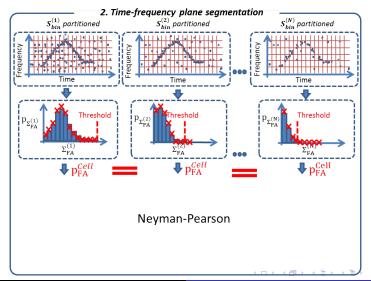
Multi-threshold methodology



DADO UCHI, IOANA, HUILLERY, GERVAISE, MARS Journée SIERRA - ENS Lyon

Detection of time-frequency bins Detection of Regions of Interest

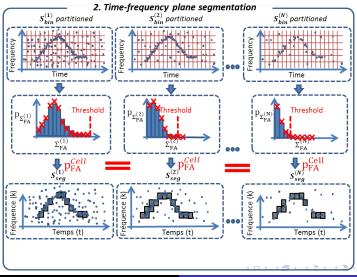
Multi-threshold methodology



DADO UCHI, IOANA, HUILLERY, GERVAISE, MARS Journée SIERRA - ENS Lyon

Detection of time-frequency bins Detection of Regions of Interest

Multi-threshold methodology

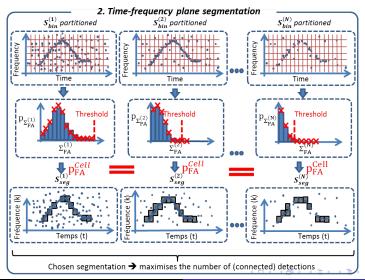


DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS

Journée SIERRA - ENS Lyon

Detection of time-frequency bins Detection of Regions of Interest

Multi-threshold methodology

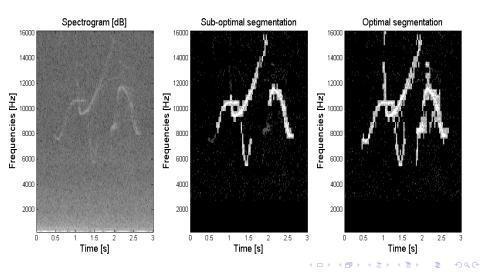


DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS

∃ _ _ _ のへで

Detection of time-frequency bins Detection of Regions of Interest

Example on real signals



DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS

Journée SIERRA - ENS Lyon

4 B N 4 B N

- Output of last step :
 - \rightarrow Set of time-frequency regions of interest
- Possible uses :
 - \rightarrow Tracking on efficient binary spectrogram
 - \rightarrow Denoising of time series : design of time-varying filters
 - \rightarrow Sparse communication : sensor transmits 'useful' information only
- Example in this presentation :

 \rightarrow Denoising to guide a time-frequency-phase tracker operating on time series

Local Phase Analysis Application to real signals

글 > - < 글 >

э

Sommaire

- Context
- State of the Art
- 2 Statistical segmentation of the time-frequency plane
 - Detection of time-frequency bins
 - Detection of Regions of Interest

3 Example

- Local Phase Analysis
- Application to real signals

Conclusion

Local Phase Analysis Application to real signals

イロト イポト イヨト イヨト

Time-frequency-phase tracking methodology

Principle of the Local Phase Analysis

- Local polynomial modeling of the phase
- Extraction of the waveform

Methodology [loana2010, Josso2009]

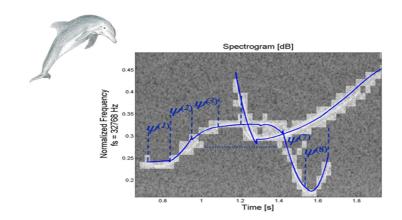
• 3rd Order polynomial modeling of the phase

$$s(t) = A \exp(j \sum_{k=0}^{k=3} a_k t^k)$$

- Multiple Estimation of the phase *via* Product High Order Ambiguity Function (PHAF)
- Design of time-frequency filters around the phase estimates and filtering
- Fusion of the local waveforms via maximization of the correlation

Local Phase Analysis Application to real signals

Results of the methodology applied to real signals



Sommaire

- Context
- State of the Art

2 Statistical segmentation of the time-frequency plane

- Detection of time-frequency bins
- Detection of Regions of Interest

3 Example

- Local Phase Analysis
- Application to real signals

4 Conclusion

(E) < E)</p>

э

Results

- Efficient Statistical segmentation
- Few input parameters
- Handles large databases (fast)

Perspectives

- Choice of A?
- Shape of the partitioning grid?

(E) < E)</p>

3

Thank you, any questions?

・ 同 ト・ く ヨ ト・ く ヨ ト

æ

DADOUCHI, IOANA, HUILLERY, GERVAISE, MARS Journée SIERRA - ENS Lyon