

Ondelette Hypercomplexe P. Carré Laboratoire XLIM-SIC, UMR CNRS 7252 philippe.carre@univ-poitiers.fr

Thèse R. Soulard 2012

Grenoble 11 octobre 2012

La définition d'une tranformée en ondelette pour les images

La représentation doit permettre une analyse fine de l'information 2-D

- Lien avec des notions physiques : redéfinir la notion analytique
- De nouvelles informations
- Apporter de nouvelles propriétés : invariance, directionnalité, couleur
- La reconstruction parfaite doit être assurée, représentation redondante

•Cette représentation doit être associée avec un algorithme numérique rapide et stable

2-D : une réponse géométrique par bases fixes

Transformée géométrique à fonctions d'analyse fixes

$$\cdot \left(a, b, \theta \right) = \int_{\Re^2} \psi_{a, b, \theta} \left(\mathbf{x} \right) s\left(\mathbf{x} \right) d\mathbf{x}$$

Fonction « adaptée »

Ridgelet

2-D : une réponse géométrique par bases adaptatives

Transformées adaptatives

Y

Bandelettes et extensions

Base fixe

Transformation d'un signal nD : changement de base permettant d'obtenir une autre représentation des données (démarche non structurelle)

1. Définition de fonctions (formes) constituant la base

2. Mesures de ressemblances entre les données et les fonctions de bases Transformée (produit scalaire)

But de la nouvelle représentation

Textraire d'une façon optimale l'information présente dans les données

ldée

•Définir des fonctions de bases localisées spatialement et associées à une fréquence d'oscillation précise

•Adapter la taille des fenêtres en fonction de la fréquence étudiée

Construction de bases discrètes orthogonales avec reconstruction

Un ensemble de filtres liés par des opérateurs de ré-échantillonnage

Singularitées

Décomposition séparable

C

Discontinuités 2-D

Ondelettes meilleures que Fourier mais

- •Détectent les singularités pas la structure contour
- •Directions privilégiées
- •Trois plans d'ondelettes par échelle

Exemple de décomposition à 2 canaux

Problème avec la transformée en ondelette réelle

Oscillations ; Sensibilité à la translation ; Problème de direction pour la transformée 2-D

Ondelette Complexe

Bülow : Signal Analytique Kingsbury : Shift invariant

Outils Temps-Fréquence : notion de phase, fréquence et énergie instantanée

Signal analytique : obtenu par suppression des fréquences négatives

Calcul du signal analytique $s_a:\mathbb{R} o\mathbb{C}$

$$S_a(f) = (1 + \operatorname{sign}(f))S(f)$$

Transformée de Hilbert $s_a(t) = s(t) + js_H(t) - G(f) = -j \operatorname{sign}(f)$

Fonctions de même module mais déphasées de 90°

Notion de phase

Energie locale $||s_a(t)||$ Phase locale $\phi(t) = \arg s_a(t)$ Fréquence instantanée

La phase locale permet une analyse des structures du signal Pic $\phi(t) = 0$ Trou $\phi(t) = \pi$ Pente $\phi(t) = \pm \frac{\pi}{2}$

Extension 2-D ??? : notion de fréquences négatives

Le module de Fourier n'oscille pas Le module de Fourier est invariant à la translation Les fonctions de base de Fourier 2-D sont directionnelles

Paire de Hilbert Notion de phase
$$S(f) = \int s(t) \cos(2j\pi ft) dt + j \int s(t) \sin(2j\pi ft) dt$$
Fonction réelle oscillante
$$w_{j,k} = \int s(t) \psi_{j,k}(t) dt$$

• Construction d'une paire de Hilbert

Calcul de la transformée complexe discrète 1-D ?

Solution : calcul du signal analytique avant analyse

Réponse impulsionelle infinie

Le support des fonctions analysantes devient très grand

Solution de Fernandes et al. projection dans l'espace « Softy »

Filtre passe-bas : translation fréquentielle $H^+(z) = H_0(-jz)$, Analyse $G^+(z) = G_0(-jz)$. Synthèse

Solution de Kingsbury et al. : calcul par arbre dual

2 bancs de filtres à reconstruction parfaite (et conditions «classiques »)

Contrainte : les filtres doivent être définis afin qu'ils vérifient

$$\psi(t) = \psi_h(t) + j\psi_g(t)$$

Mais aussi les autres contraintes de reconstruction parfaite, de support fini.

Ces contraintes peuvent être antagonistes

Selesnick

Arbre Double 2D : analyse orientée

Fonction analysante réelle et complexe

Construction des 6 différentes combinaisons

Arbre dual 2-D orienté et réel

$$\begin{split} \psi_{l}(x,y) &= \frac{1}{\sqrt{2}} (\psi_{1,l}(x,y) - \psi_{2,l}(x,y)), \quad \psi_{1,1}(x,y) = \phi_{h}(x) \psi_{h}(y), \quad \psi_{2,1}(x,y) = \phi_{g}(x) \psi_{g}(y), \\ \psi_{1,2}(x,y) &= \psi_{h}(x) \phi_{h}(y), \quad \psi_{2,2}(x,y) = \psi_{g}(x) \phi_{g}(y), \\ \psi_{l+3}(x,y) &= \frac{1}{\sqrt{2}} (\psi_{1,l}(x,y) + \psi_{2,l}(x,y)) \quad \psi_{1,3}(x,y) = \psi_{h}(x) \psi_{h}(y), \quad \psi_{2,3}(x,y) = \psi_{g}(x) \psi_{g}(y). \\ i = 1, 2, 3 \end{split}$$

Représentation complexe (« analytique ») : utilisation de la partie réelle et partie imaginaire

Utilisation du mélange de Gaussienne

Introduit par Portilla (Steerable pyramid)

Applications des Ondelettes Complexe : débruitage

Noisy image

Standard GSM denoising

Dual model GSM denoising

Introduction de

Classification de texture

Majorité des cas : estimation d'un paramètre selon le module des différentes orientations

Quelques travaux modélisant la phase (par exemple Vo étudie la différence de phase)

Distribution circulaire : Von Mises, Cauchy

Intégration de mesures sur la phase dans le descripteur

Définition d'une distance sur une mesure angulaire

 \Rightarrow Amélioration du taux de classification

Et Hilbert (Ondelette analytique 2-D)?

Ondelettes 2-D ? Interprétation par transformée de Hilbert

Hilbert 2-D : direct extension du 1-D

Insuffisant du fait de la symétrie hermitienne

 \Rightarrow Introduction d'un deuxième signal analytique

$$s_{a_2}(x,y) = [s(x,y) + HT_{xy}(s)(x,y)] + j [HT_x(s)(x,y) - HT_y(s)(x,y)]$$

Permet de couvrir le quadrant en haut à gauche

Lien entre Hahn et Arbre-double 2D complexe

 $\psi(x,y) = \psi_h(x)\psi_h(y) - \psi_g(x)\psi_g(y) + j\left[\psi_g(x)\psi_h(y) + \psi_h(x)\psi_g(y)\right]$

 $\psi(x,y) = \psi_h(x)\psi_h(y) + \psi_g(x)\psi_g(y) + j\left[\psi_g(x)\psi_h(y) - \psi_h(x)\psi_g(y)\right]$

Correspond au signal analytique selon Hahn de $\psi(x, y) = \psi_h(x)\psi_h(y)$

2 signaux analytiques donc 2 modules et 2 phases : interprétation difficile

• Ambiguïté dans la phase

$$\begin{array}{rccc} f(x,y) & \to & f(x-dx,y-dy) \\ F(u,v) & \to & F(u,v)e^{-2j\pi(udx+vdy)} \end{array}$$

« Extension » des complexes : quaternion

Solution : Ondelette Hypercomplexe

Notion de phase 2-D en lien avec la géométrie

Quaternion

Quaternions : Définition

$$\mathbb{H} = \{a + ib + jc + kd \mid a, b, c, d \in \mathbb{R}\}$$

$$ij = -ji = k \quad et \quad i^2 = j^2 = k^2 = -1$$

Partie réelle : $\Re q = a$
Partie imaginaire $\Im q = ib + jc + kd$
Conjugué : $\overline{q} = \Re q - \Im q$
Norme : $|q| = \sqrt{q\overline{q}}$

Produit non commutatif : $q_1q_2 \neq q_2q_1$ Quaternions Purs : $\mathbb{P} = \{q \in \mathbb{H} \mid q = \Im q\}$,

Unitaires : $\mathbb{S} = \{q \in \mathbb{H} \mid |q| = 1\}$

<u>Vectorielle</u>

 $\Re q$ $\Im q$

Exponentielle

 $q = S(q) + \mathbf{V}(q)$ scalaire vecteur μ quaternion pur unitaire

$$e^{\mu\phi} = \cos\phi + \mu\sin\phi$$

$$\phi = \arctan \frac{|\mathbf{V}(q)|}{S(q)}$$
$$\mu = \frac{\mathbf{V}(q)}{|\mathbf{V}(q)|}$$

Polaire

$$q = |q|e^{i\phi}e^{k\psi}e^{j\theta} \ avec \ (\phi,\theta,\psi) \in [-\pi,\pi[\times[-\pi/2,\pi/2[\times[-\pi/4,\pi/4]$$

Un vecteur de longueur |q| et de direction (ϕ, θ, ψ)

Une couleur = un vecteur de R³ *quaternion* sur les 3 parties imaginaires f[m,n] = r[m,n] i + v[m,n] j + b[m,n] k [Sangwine]

m et n : coordonnées spatiales

Avant les ondelettes Fourier

Bülow

$$F^{l-r}(s)[f_1, f_2] = \sum_{n_2=0}^{M-1} \sum_{n_1=0}^{N-1} e^{-2\pi\mu \frac{f_2n_2}{M}} s[n_1, n_2] e^{-2\pi\nu \frac{f_1n_1}{N}}$$
$$F^q = |F^q| e^{i\theta} e^{j\phi} e^{i\psi}$$

Translation

1. $|F^q|$ est invariant à la translation 2 (θ, ϕ) sont modifiés linéairement par la translation

$$f(x,y) \to f(x - dx, y - dy) \implies (\theta, \phi, \psi) \to (\theta - udx, \phi - vdy, \psi)$$

Notion de signal analytique ?

$$\begin{split} f: \mathbb{R}^2 &\to \mathbb{H} \text{ est hermitienne au sens des quaternions (Bülow) si} \\ f(x,-y) &= \alpha(f(x,y)) \quad f(-x,-y) = \gamma(f(x,y)) \quad f(-x,y) = \beta(f(x,y)) \end{split}$$

La transformée QFT d'un signal réel est hermitienne au sens des quaternions

$$\beta(F^{q}(u,v)) \xrightarrow{\mathbf{k}_{v}} F^{q}(u,v)$$

$$\gamma(F^{q}(u,v)) \xrightarrow{\mathbf{k}_{v}} \alpha(F^{q}(u,v))$$

La transformée QFT d'un signal réel est hermitienne au sens des quaternions

 $s^q_A(x,y) = s(x,y) + \mathbf{HT}_x[s](x,y)i + \mathbf{HT}_y[s](x,y)j + \mathbf{HT}_{xy}[s](x,y)k$

Extension « complexe » réellement 2D

 $F^q = |F^q| e^{i\theta} e^{j\phi} e^{i\psi}$

Ondelettes Quaternioniques : adaptation du DT

Baraniuk et al

Signal analytique selon Hahn de $\psi(x,y)=\psi_h(x)\psi_h(y)$

$$\psi(x,y) = \psi_h(x)\psi_h(y) - \psi_g(x)\psi_g(y) + j\left[\psi_g(x)\psi_h(y) + \psi_h(x)\psi_g(y)\right]$$

$$\psi(x,y) = \psi_h(x)\psi_h(y) + \psi_g(x)\psi_g(y) + j\left[\psi_g(x)\psi_h(y) - \psi_h(x)\psi_g(y)\right]$$

Rappel Signal quaternionique analytique

$$s^q_A(x,y) = s(x,y) + \mathbf{HT}_x[s](x,y)i + \mathbf{HT}_y[s](x,y)j + \mathbf{HT}_{xy}[s](x,y)k$$

Extention « complexe » réellement 2D

Signal quaternionique analytique de $\psi(x,y) = \psi_h(x)\psi_h(y)$

 $\psi^q(x,y) = \psi_h(x)\psi_h(y) + i\psi_g(x)\psi_h(y) + j\psi_h(x)\psi_g(y) + k\psi_g(x)\psi_g(y)$

QWT : classification

	Moy	Std	Moy	Std	Moy	Std
DWT Mod.	64%	9	83%	4	56%	8
QWT Mod.	64%	9	82%	4	51%	8
QWT Phase	65%	8	79%	4	58%	6
QWT Comb.	76%	7	91%	4	63 %	6
CWT Mod.	65%	8	87%	4	62%	7

QWT : classification

Original 1425

QWT : Bilan

Vraie définition 2-D

Domaine applicatif prometteur

Algorithme de Calcul

Phase difficile à interpréter

Variance à la rotation

Approche séparable

Extension : analyse complexe (Feslberg)

Signal analytique : peut être défini comme la restriction à l'axe réel d'une fonction holomorphe

Fonction complexe $F(\chi) = u(x,y) + jv(x,y)$

Holomorphe : dérivable en tout point du domaine

Fonction réelle harmonique

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \Delta u = 0$$

u : une fonction réelle harmonique

Il existe une fonction réelle harmonique v telle

 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ et $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

$$F(\chi) = u(x,y) + jv(x,y)$$
 est holomorphe

Cauchy

$$v(x_{0}, y_{0}) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(x - x_{0})u(x)dx}{(x - x_{0})^{2} + y_{0}^{2}} \qquad \longrightarrow \qquad v(x_{0}) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{u(x)dx}{x_{0} - x}$$

Noyau de Poisson

Définition

$$\mathbf{TR}[s](\mathbf{x}) = \begin{pmatrix} TR_1[s](\mathbf{x}) \\ TR_2[s](\mathbf{x}) \end{pmatrix} = \begin{pmatrix} h_x * s(\mathbf{x}) \\ h_y * s(\mathbf{x}) \end{pmatrix}$$

avec
$$H_x(\mathbf{f}) = -j \frac{f_1}{\sqrt{f_1^2 + f_2^2}} \text{ et } H_y(\mathbf{f}) = -j \frac{f_2}{\sqrt{f_1^2 + f_2^2}}$$

Déphasage pur isotropique

Riesz 1-D : Hilbert

$$H_x(f) = -j \frac{f}{|f|} = -j \mathrm{sign}(f) \quad \mathrm{D\acute{e}phasage} \ \mathrm{1-D}$$

Notion de Steerability

$$h_{\mathbf{TR}}(R_{\theta}\mathbf{x}) = e^{-j\theta}h_{\mathbf{TR}}(\mathbf{x})$$

$$Rotation \qquad \text{Invariance par rotation}$$

$$R_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

Ecriture complexe de Riesz

$$s_M(\mathbf{x}) = \begin{pmatrix} f(\mathbf{x}) \\ \mathbf{TR}_1[s](\mathbf{x}) \\ \mathbf{TR}_2[s](\mathbf{x}) \end{pmatrix}$$

Nouveau signal analytique 2-D signal Monogène

Signal Monogène : coordonnées sphériques

Interprétation : Caractérisation de structures locales

Gradient
$$\nabla s(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial s(\boldsymbol{x})}{\partial x_1} & \frac{\partial s(\boldsymbol{x})}{\partial x_2} \end{bmatrix}^{\mathsf{T}}$$

$$\mathcal{N}_{
abla} = \|
abla s\|$$
 $heta_{
abla} = rg\Big\{rac{\partial s(x)}{\partial x_1} + jrac{\partial s(x)}{\partial x_2}\Big\}$

Recherche de la direction dominante de *s* selon les moindres carrés. Introduction d'un lissage local

$$T(s) = \begin{bmatrix} h * s_x^2 & h * s_x s_y \\ h * s_x s_y & h * s_y^2 \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ T_{12} & T_{22} \end{bmatrix}$$

Orientation
$$\theta_+ = \frac{1}{2} \arg\{T_{11} - T_{22} + j2T_{12}\}$$
$$\mathbf{u}_1 = (\cos \theta, \sin \theta)$$

Direction selon laquelle la transformée de Hilbert directionnelle donne sur le voisinage une énergie maximale

 $\begin{array}{ll} \mbox{Cohérence} & \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} & \mbox{Le degré de directonnalité du signal sur le voisinage (=1, la structure est 1-D).} \end{array}$

$$|\mathcal{R}s| = \mathcal{N}_{\mathcal{R}} \equiv \mathcal{N}_{\nabla} \qquad \arg\{\mathcal{R}s\} = \theta_{\mathcal{R}} \equiv \theta_{\nabla}$$

Ondelettes Monogéniques

$$\psi_A^M(x,y) = \begin{pmatrix} \psi(x,y) & \mathbf{TR}_1[\psi] & \mathbf{TR}_2[\psi] \end{pmatrix}$$

1) Des solutions continues (Olhede et al)

2) Une solution numérique (Unser et al)

Une fonction d'échelle de lissage isotropique approximant la fonction Gaussienne

 $\mathbf{TR}_1[\psi]$

Opérateur Laplacien

Monogénique : généralisation 2-D satisfaisante

Interprétation des coefficients ?

Couleur ?

Schéma numérique ?

 $\mathbf{TR}[s](\mathbf{x}) = \mathbf{Ra^{-1}} \left[\mathbf{TH}[\mathbf{Ra}(.,\theta)[s]]n_{\theta} \right]$

Analyse complexe : une piste pour l'extension couleur

Signal analytique 1D, Signal monogène 2D, Défini dans \mathbb{C} ou dans G_2 $\begin{cases} \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 & \text{if } y > 0 \\ e_2 \frac{\partial u}{\partial y} = f(x) & \text{if } y = 0 \end{cases} \begin{cases} \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 & \text{si } z > 0 \\ e_3 \frac{\partial u}{\partial z} = f(x, y) & \text{si } z = 0 \end{cases}$ Pour résoudre le système est scindé en 3 $\begin{cases} \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0 \\ e_3 \frac{\partial u}{\partial z} = f(x, y) & \text{si } z = 0 \end{cases}$ $\begin{cases} \frac{\partial^2 u}{\partial x^2_1} + \frac{\partial^2 u}{\partial x^2_2} + \frac{\partial^2 u}{\partial x^2_1} + \frac{\partial^2 u}{\partial x^2_2} + \frac{\partial^2 u}{\partial x^2_2} + \frac{\partial^2 u}{\partial x^2_2} + \frac{\partial^2 u}{\partial x^2_2} = 0 \\ e_3 \frac{\partial u}{\partial x_3} + e_4 \frac{\partial u}{\partial x_4} + e_5 \frac{\partial u}{\partial x_5} = f(x_1, x_2) \\ e_1 \frac{\partial u}{\partial x_i} = f_i(x_1, x_2)e_i & \text{si } x_i = 0 \end{cases}$ Signal monogène 2D couleur (G₅) Défini dans G_3 [Demarcq 2009]

Transformée en ondelettes Monogènes Couleur

 $(c_R,c_G,c_B,c_{r1},c_{r2})$

$$c_{r2} = \frac{y}{2\pi ||\mathbf{x}||^3} * (c_R + c_G + c_B)$$

$$c_{r1} = \frac{x}{2\pi ||\mathbf{x}||^3} * (c_R + c_G + c_B)$$

- Non-marginal (pas strictement...)
- Redondance 20:9 (~2.2)
- Analyse directionelle

Original image

 c_R

 c_B

Riesz part

Transformée en ondelettes Monogènes Couleur

Transformée en ondelettes Monogènes Couleur

Schéma numérique ?

$\mathbf{TR}[s](\mathbf{x}) = \mathbf{Ra^{-1}} \left[\mathbf{TH}[\mathbf{Ra}(.,\theta)[s]]n_{\theta} \right]$

Théorème de projection de Radon

classique

Décomposition de Radon discrète : Slant Stack

Inversion : utilisation du théorème de projection

Stratégie de calcul de Radon analytique 2D :

Extraction des coefficients de Fourier

[Carré&Andres2002]

Transformation de Radon analytique discrète

Stratégie de Fourier pour la transformation de Radon

Definition 1 Soit L(q,p,c,w) la droite discrète 2-D de Réveilles définie par

$$0 \le qx_1 + px_2 + c < w$$

 $\begin{array}{ll} avec\\ -(q,p)\in Z \ le \ coefficient \ de \ la \ droite \end{array} \begin{array}{ll} -c\in Z \ le \ coefficent \ de \ translation\\ -w\in Z^{*+} \ l'épaisseur \ arithmétique \end{array}$

Droites supercouvertures (4-connexes)

Droites pythagoriciennes fermées (8-connexes)

Définition numérique d'un signal monogène

$$egin{aligned} & heta(\mathbf{x})) = \left(rac{\mathbf{TR}_2[s](\mathbf{x})}{\mathbf{TR}_1[s](\mathbf{x})}
ight) & \mathsf{Disc}(\mathbf{x}) \ & \mathbf{TR}[s](\mathbf{x}) = (-1)(-\Delta)^{-rac{1}{2}} \mathbf{\nabla}[s](\mathbf{x}) \end{aligned}$$

Direction : paramètre sensible

 \Box Utilisation de la notion de tenseur

$$\begin{bmatrix} T_{11} & T_{12} \\ T_{12} & T_{22} \end{bmatrix}$$

$$\theta_{+} = \frac{1}{2} \arg\{T_{11} - T_{22} + j 2T_{12}\}$$

Algorithme à trous

Intégration de la couleur

Structure locale couleur

Thèse R. Soulard

Une norme et une orientation basées sur un modèle vectoriel

Combinaison des expressions marginales

$$T_{11} = \left(\frac{\partial s^{\mathsf{R}}}{\partial x_{1}}\right)^{2} + \left(\frac{\partial s^{\mathsf{G}}}{\partial x_{1}}\right)^{2} + \left(\frac{\partial s^{\mathsf{B}}}{\partial x_{1}}\right)^{2}$$
$$T_{12} = \frac{\partial s^{\mathsf{R}}}{\partial x_{1}}\frac{\partial s^{\mathsf{R}}}{\partial x_{2}} + \frac{\partial s^{\mathsf{G}}}{\partial x_{1}}\frac{\partial s^{\mathsf{G}}}{\partial x_{2}} + \frac{\partial s^{\mathsf{B}}}{\partial x_{1}}\frac{\partial s^{\mathsf{B}}}{\partial x_{2}}$$
$$T_{22} = \left(\frac{\partial s^{\mathsf{R}}}{\partial x_{2}}\right)^{2} + \left(\frac{\partial s^{\mathsf{G}}}{\partial x_{2}}\right)^{2} + \left(\frac{\partial s^{\mathsf{B}}}{\partial x_{2}}\right)^{2}$$

$$\mathcal{N}_{\nabla} = \sqrt{\lambda_{+} + \lambda_{-}} = \sqrt{T_{11} + T_{22}} \qquad \qquad \theta_{\nabla} = \frac{1}{2} \arg\{T_{11} - T_{22} + j2T_{12}\}$$

Extension par l'approche « Tenseur de structure »

Caractéristique de Riesz couleur

Signal monogénique : notion de phase en couleur ?

Phase
$$\varphi(\mathbf{x}) = \left(\frac{\sqrt{\mathbf{TR}_1[s]^2(\mathbf{x}) + \mathbf{TR}_2[s]^2(\mathbf{x})}}{s(\mathbf{x})}\right)$$

En couleur ? Utilisation de normes

$$\varphi_2(x) = \arg\{\|s(x)\| + j\|\mathcal{H}s(x)\|\}$$

En scalaire, introduction de la valeur absolue

sign / φ_2	0	$\frac{\pi}{2}$
+		+
-	$\uparrow \frown \frown $	+

$$s = \underbrace{\sqrt{s^2 + \mathcal{N}^2}}_{A} \cos\left(\underbrace{\arg\{s + j\mathcal{N}\}}_{\varphi \in [0;\pi[}\right)\right)$$
$$= \underbrace{\sqrt{|s|^2 + \mathcal{N}^2}}_{A} \cos\left(\underbrace{\arg\{|s| + j\mathcal{N}\}}_{\varphi_2 \in [0;\frac{\pi}{2}[}\right) \underbrace{s/|s}_{\text{"sign}}\right)$$

Signal monogénique : notion de phase en couleur ?

$$s = \underbrace{\sqrt{\|s\|^2 + \mathcal{N}^2}}_{A} \cos\left(\underbrace{\arg\{\|s\| + j\mathcal{N}\}}_{\varphi_2}\right) \underbrace{\vec{u}}_{\text{(axis)}}$$

$$\begin{split} s_{M}^{\text{color}} &= \begin{bmatrix} s^{\text{R}} & s^{\text{G}} & s^{\text{B}} & \mathcal{N}_{\mathcal{R}} \end{bmatrix}^{\text{T}} \\ \text{Amplitude} : & A &= \sqrt{\|s\|^{2} + \mathcal{N}_{\mathcal{R}}^{2}} \in [0; +\infty[\\ \text{Phase} : & \varphi_{2} &= \arg\{\|s\| + j\mathcal{N}_{\mathcal{R}}\} \in [0; \frac{\pi}{2}[\\ \text{Axe couleur} : & \begin{cases} \alpha &= \arg\{s^{\text{R}} + j\sqrt{(s^{\text{G}})^{2} + (s^{\text{B}})^{2}}\} \in [0; \pi[\\ \beta &= \arg\{s^{\text{G}} + js^{\text{B}}\} \in [-\pi; \pi[\\ \end{bmatrix} \end{split}$$

Extension par l'approche « Tenseur de structure »

Descripteur couleur Multiéchelle Invariant

Test par reconstruction partielle

Test par reconstruction partielle

Correct (6, 2, 3, 4)

Poor amplitude

Poor phase

Poor color axis

Représentation monogénique : analyse locale avec l'information de phase

Importance de la transformée de Radon

Extension aux images « multibandes » à travers le lien avec les tenseurs de structures

Schéma numérique et information couleur