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Hilbert transform
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Definition: Hf(x) = (h∗f)(x)
F←→ −jsgn(ω) f̂(ω) = −j

ω

|ω|
f̂(ω)

Key properties

Shift invariance (LSI operator): H{f(·− x0)}(x) = Hf(x− x0)

Maps cosines into sines: H{cos(ω0·)}(x) = sin(ω0x)

Scale invariance: H{f(·/a)}(x) = H{f(·)}(x/a)

Unitary transform: ∀ϕk,ϕl ∈ L2(R), �ϕk,ϕl�L2 = �Hϕk,Hϕl�L2



AM/FM signal analysis
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f(x) Hf(x)

A(x)

Analytical signal: fana(x) = f(x) + jHf(x) = A(x)ejξ(x)

AM/FM analysis

Signal model: f(x) = A(x) cos(2πν(x)x+ξ0) (A(x), ν(x) slowly-varying)

Instantaneous modulus: |A(x)| = |fana(x)|

Instantaneous frequency: ν(x) = dξ(x)
dx

Riesz transform
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Definition: Rf(x) =




R1f(x)

...
Rdf(x)



 F←→ −j
ω

�ω� f̂(ω)

Multi-dimensional Fourier transform

f̂(ω) =
�

Rd

f(x)e−j�ω,x�dx1 · · · dxd

with ω = (ω1, . . . ,ωd) ∈ Rd

Multi-channel convolution

Rnf(x) = (hn ∗ f)(x) with hn = Rn{δ}
F←→ −j ωn

�ω�

Special case d = 1: the Hilbert transform

Hf(x) = (h ∗ f)(x) F←→ −jsgn(ω) f̂(ω) = −j
ω

|ω|
f̂(ω)



Riesz transform and derivatives
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Fractional Laplacian

(−∆)αf(x) F←→ �ω�2αf̂(ω)

“Smoothed version of gradient”

Riesz transform and partial derivatives

Rf(x) = (−1)(−∆)−
1
2 ∇f(x)

∇f(x) = −R(−∆)
1
2 f(x)

Gradient

∇f(x) =
�∂f(x)

∂x1
, . . . ,

∂f(x)
∂xd

� F←→ jω f̂(ω)

Composition rule:

(−∆)α1(−∆)α2 = (−∆)α1+α2 with (−∆)0 = Identity

Riesz transform in maths, SP and optics
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! Riesz transform in mathematics
! Fonctions conjuguées (Riesz 1920)
! Singular integral operators

(Calderon-Zygmund, 1955; Stein, 1970)

! Hilbert and Riesz transform in signal processing
! Analytical signal (Gabor, 1946; Ville 1948)
! 2D extension: Monogenic signal analysis (Felsberg, 2001)
! Phased-based feature detection (Noble-Brady et al., 2004)

! Riesz transform in optics
! Radial Hilbert transform (Davis, 2000)
! Spiral phase quadrature transform (Larkin, 2001)



Steerability and directional Hilbert transform
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Gradient-like steerable filterbank

Directional Hilbert transform

Huf(x) =
d�

n=1

unRnf(x) = �u,Rf(x)�

Implementation in 2-D

u = (cos θ, sin θ)

Hilbert-like behavior in direction u: �Hu(ω)
���
ω=ωu

= −jsgn(ω)

Unit vector: u = (u1, · · · , ud)

f(x)

cos(θ)

sin(θ)

h1

h2

2-D Riesz transform

Huf(x)

Visualization in the frequency domain
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Frequency response of directional Hilbert transform

�Hu(ω) = �u,−j
ω

�ω�
�

Huf(x) = (−1)(−∆)−
1
2 Duf(x)

“Smoothed version of directional derivative”



Properties of the Riesz transform
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Adjoint operator

R∗r(x) = R∗
1r1(x) + · · ·+R∗

drd(x) F←→ j
ωT

�ω� r̂(ω)

Shift invariance: ∀x0 ∈ Rd, R{f(·− x0)}(x) = R{f(·)}(x− x0)

Scale invariance: ∀a ∈ R+, R{f(·/a)}(x) = R{f(·)}(x/a)

Self-reversibility

∀f ∈ L2(Rd), R∗Rf(x) =
d�

n=1

R∗
nRnf(x) = f(x)

Maps wavelets into gradient-like wavelets:

R
�
ψ

�
·− x0

a

��
(x) = ∇{φ}

�
·− x0

a

�
with φ = F−1

�
j
ψ̂(ω)

�ω�

�

CONTENT
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! Riesz transform and its properties !
! Gradient-like steerable wavelet transform

! Primary isotropic wavelet frame
! Self-reversible Riesz wavelet transform
! 3-D directional analysis (multi-scale structure tensor)
! Multi-scale contour detection
! Primal wavelet sketch

! Monogenic wavelet analysis
! Monogenic signal
! Demodulation of holograms

! Generalizations: higher dimensions and/or higher order



Frame = redundant extension of a basis
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Analysis/synthesis formula

∀f ∈ L2(Rd), f =
�

k∈Zd

�ψk, f�L2 ψk

Definition

A family of functions {ψk}k∈Zd is called a tight/Parseval frame of L2(Rd) iff.

∀f ∈ L2(Rd), �f�2L2
=

�

k∈Zd

|�ψk, f�L2 |
2

u1
u2

x

x1

x2

e1

e2

∀x ∈ R2, x = �x, e1�e1 + �x, e2�e2

x = �x,u1�u1 + �x,u2�u2 + �x,u3�u3

u3

Design of a primal isotropic wavelet
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Theorem: Let ψ̂(ω) = h(�ω�) = h(ω) with

Condition (1) : h(ω) = 0, ∀ω > π (Bandlimited)

Condition (2) :
�

i∈Z
|h(2iω)|2 = 1 (Self-reversibility)

Condition (3) :
dnh(ω)

dωn

����
ω=0

= 0, for n = 0, . . . , N (Vanishing moments)

Then the isotropic wavelet ψ = F−1{ψ̂} generates a tight wavelet frame of L2(Rd).

1 2 3 4

0.2

0.4

0.6

0.8

1.0

Frequency domain design of bandlimited wavelets

Simoncelli’s “log-Gabor” solution

h(ω) =

�
cos

�
π
2 log2

�
2ω
π

��
, π

4 < ||ω|| ≤ π

0, otherwise



Backbone: primal isotropic wavelet pyramid
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Radial wavelet filters

2D frequency view

Wavelet coefficients

no preferred directionPerfect isotropy

ω

2π0 1 2 4

1.

0.5

ψ(x) = ψ(�x�)

Filtering 
and sub-
sampling/

up-
sampling

Tight frame property:
�

i∈Z
|ψ̂(ω/2i)|2 = 1

Construction of tight, gradient-like wavelet frame
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Proof:

Use self-reversibility: f(x) =
d�

n=1

RnR∗
nf(x) = f(x)

with R∗
nf =

�

k∈Zd

�

i∈Z
�R∗

nf,ψi,k�ψi,k

Proposition
Let {ψi,k} be a primal tight wavelet frame of L2(Rd). Then, {Rψi,k = ∇φi,k} is a
gradient-like tight wavelet frame such that

∀f ∈ L2(Rd), f(x) =
�

i∈Z

�

k∈Zd

wT
i,k Rψi,k(x) with wi,k = �f,Rψi,k�L2

Primary tight wavelet frame of L2(Rd)

∀f ∈ L2(Rd), f(x) =
�

i∈Z

�

k∈Zd

�f,ψi,k�L2 ψi,k(x)

Wavelet property: ψi,k(x) = 2−
id
2 ψ

�
x−2ik

2i

�



Gradient-like Riesz wavelets (self-reversible)
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Wavelet coefficients

multi-scale
x-derivative

multiscale
y-derivative

Steerable Riesz wavelets
cos θ sin θ

�
R1ψ =

∂φ1

∂x1
, R2ψ =

∂φ1

∂x2

�

3-D version (iso-surface display)

Application 1: multi-scale structure analysis
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Local features

Local wavelet energy: E = trace(J) =
�d

n=1 λn

Maximum directional energy: λ1 (maximum eigenvalue of J)

Orientation: u1 (eigenvector associated with λ1)

Coherency: 0 ≤ C =
λ1 − λmin

λ1 + λmin

Ji[k] =
�

n∈Zd

e−
�n�2

2σ2 wi[k + n]wT
i [k + n]

Gadient-like wavelet transform

wi[k] = �f,Rψi,k� = �f,∇φi,k�

Wavelet-domain structure tensor (symmetric d× d matrix)



MonogenicJ
Number of scale:4

Sigma Gaussian window of the 
Structure Tensor: 1

HSB (H: Orientation, S: Coherency, 
B: Input)

Dendrochronology image

Collagen fiber in adventitia of rabbit carotids 
ex vivo. 3D confocal microscopy. Maximum 

Intensity Projection.
Rana Rezakhaniha, LHCT, EPFL

MonogenicJ
Number of scale:4

Sigma Gaussian window of the 
Structure Tensor: 1

HSB (H: Orientation, S: Coherency, 
B: Input)



Example: Coherence analysis of Barbara
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HSB
Hue: Orientation
Saturation: Coherency
Brightness: Modulus

Orientation

Coherency

Example: directional analysis of filaments in 3-D
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17

!

"
#

!

! !

Fig. 3. Top-Left: a 3D image stack of collagen filaments. From top-right to bottom-right: color encoded (hue) monogenic

direction at scale 2 for the plans A, B, and C, after an orthogonal projection onto the xy, xz and yz planes, respectively. The

saturation indicates the value of the local coherency.

to guide a multiscale edge-detection algorithm which was found to perform well for a set of 3D medical

images.

V. IMAGE RECONSTRUCTION FROM EDGES: AN INVERSE PROBLEM APPROACH

We demonstrate now the use of the 3D Riesz-wavelet frame for inverse problems. In particular, we

investigate the reconstruction of an image from a subset of coefficients located on edges. This application

leads us to solve constrained and unconstrained optimization problems involving the Riesz-wavelet

transform of 3D images.

A. 3D Singularity Detection in the Wiesz-Wavelet Domain

We adapt the well-known Canny edge detector [33] to the 3D multiscale case by using the monogenic

signal analysis proposed above. For an input signal f ∈ V0, coefficients corresponding to singularities in

3D (surfaces, ridges, dots) are detected by exploiting the estimated directional monogenic amplitude and

pointwise local orientation. For each wavelet scale, we

1) compute the local orientation uv(x0) at each point x0;

April 25, 2012 DRAFT



Application 2: Multiscale edge detection
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smoothing
filter Gradient Non-maximum

suppression
Hysteresis
threshold

Edge map

σeq (Tlow, Thigh)

modulus

orientation

Canny’s state-of-the-art edge detector:
Edge point = strong response to smoothed image gradient ∇(φ ∗ f) = (∇φ) ∗ f

Multiscale version in 2-D or 3-D

Substitute ∇φ by gradient-like Riesz wavelet Rψ

Example: 3-D primal wavelet sketch

22
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Fig. 4. Multiscale edge detection for a 3D MRI volume. Top: transverse, sagittal, and coronal slices from the original

(144× 144× 144) data. Bottom lines: 3D edges detected for each slice in the three analyzed wavelet bands.

2) identify Bx0,uv(x0), the set of neighboring voxels of x0 in the direction uv(x0);

3) retain x0 as a singular point if A(x0) ≥ A(x), ∀x ∈ Bx0,uv(x0).

For each singular point, thresholding with hysteresis [33] is then performed on the monogenic amplitude

values. High amplitude singularities are detected using a high threshold value, and lower-amplitude

singularities (exceeding a low threshold value) are kept only if connected (using 26 connectivity in 3D)

to a high-amplitude component. This results in a set of singular points which represent in a robust

manner both high- and low-intensity 3D features. The coarsest-scale coefficients are also included in the

representation in order to preserve the brightness information of the image. We show in Figure 4 the

set of edges which are detected for a real 3D MRI image. We check that the procedure of thresholding

with hysteresis yields the identification of both strong and weak features with only few false-positive

detections.

B. Reconstruction from Edge Coefficients

Let us denote by f ∈ RN
the column vector that represents a 3D image with N pixels, and by s the

column vector of its stacked Riesz-wavelet coefficients {sn
i,k}. Then, f = Ws with W the (N ×M)

matrix corresponding to the digital Riesz-wavelet synthesis operator. As we are considering tight Riesz-

April 25, 2012 DRAFT



Reconstruction from primal wavelet sketch
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Gradient-like bandlimited Riesz wavelets

Reconstruction: f = argmin

�
�

n∈S

�
[WT f ]n −wn)

2 + λ�WT f�1

�
as λ → 0

Reconstruction from 3-D wavelet sketch

24

20

(a) 2D areas from the original MRI volume.

(b) Reconstruction by orthogonal projection of the edge coefficients: 25.81 dB.

(c) Reconstructed images by solving (13) with Algorithm 1 (50 iterations): 32.06 dB.

Fig. 5. 3D image reconstruction for the edge set shown in Figure 4. The orthogonal-projection reconstruction (b) is used as a

starting point for the proposed method (c).

increased �1 penalty term. This intuitive assumption is verified in the sequel with various reconstruction

experiments.

It is worth noting that if we take Λ = I, and if an orthonormal frame (W−1 = WH ) is used in

place of the Riesz-wavelet frame, then there exists a trivial solution to the constrained problem (13). This

solution is given by f̂ = Ws̃, with s̃k = [s0]k if k ∈ S, and s̃k = 0 otherwise. Indeed, in this particular

case we have that s̃ = WHWs̃. By contrast, because the Riesz-wavelet frame is redundant, there may

not exist f ∈ RN such that s̃ = WHf . In other words, s̃ may not correspond to the Riesz-wavelet

coefficients of an image. A naive idea to solve the reconstruction problem is to orthogonally project s̃

April 25, 2012 DRAFT



CONTENT
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! Riesz transform and its properties !
! Gradient-like steerable wavelet transform !
! Monogenic wavelet analysis

! Monogenic signal
! Local wave number
! Demodulation of holograms

! Generalizations: higher dimensions and/or higher order

Felsbergʼs monogenic signal analysis
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Local phase and wavenumber

Local phase: ξ(x) = ∠(fθ(x))

Local wavenumber: ν(x) = Dθξ(x) = �θ,∇ξ(x)� with θ = (cos θ, sin θ)

Directional Hilbert analysis: fθ(x) = f(x) + jHθf(x) = A ejξ

Three-component monogenic signal

Input signal: f(x)

Complex Riesz transform: Rf(x) = R1f(x) + jR2f(x) = r(x) ejθ(x)

Monogenic signal: fm(x) =
�
f(x), R1f(x), R2f(x)

�
= (f, r cos θ, r sin θ)

Local Orientation: θ(x) = ∠(Rf(x))

Local Amplitude: A(x) = |fθ(x)| = �fm(x)� =
�
|f(x)|2 + |Rf(x)|2



Monogenic wavelets
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Real part Imaginary part

Isotropic wavelet: ψiso(x) = (−∆)
1
2φ

↓ R (Riesz transform)

Complex Riesz wavelet: Rψiso(x) = R1ψiso(x) + jR2ψiso(x)

Wavelet-domain monogenic analysis

28(U.-Sage-Van De Ville, IEEE-IP 2009)

Three-component monogenic wavelet transform

Real wavelet coefficients: wi[k] = �f,ψi,k�

Complex Riesz wavelet coefficients: wi[k] = �f,Rψi,k� = r ejθ

Monogenic wavelet vector: wi[k] =
�
wi[k],Re(wi[k]), Im(wi[k])

�

= (A cos ξ, A sin ξ� �� �
r

cos θ, A sin ξ� �� �
r

sin θ)

Local Orientation: θi(k) = arg(wi(k))

Local Amplitude: Ai(k) = �wi(k)� =
�
|wi(k)|2 + |wi(k)|2

Local phase: ξi[k] = arctan

�
|wi(k)|
wi(k)

�
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Isotropic wavelet transform

Riesz
(x-component)

Psychedelic Lena

Riesz
(y-component)

Example: Psychedelic Lena
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Orientation

Amplitude
Coherency in saturation

Wavelet energy in brightness
Pointwise orientation tensor orientation



Robust tensor-based estimation: orientation & phase
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Orientation

AmplitudeWavelet-domain orientation map

Wavelet-domain Hilbert analysis

wi(x) = (ψi ∗ f)(x)

wi,θ(x) = wi(x) + jHθwi(x) = Aejξ

Local phase: ξi(x) = arctan

�
Hθwi(x)

wi(x)

�

Local wavenumber: νi(x) = D(cos θ,sin θ)ξi(x)

Example: Zoneplate

32

wavenumberOrientation (tensor)

Synthetic zoneplate



Example: Modulated Cameraman
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Orientation

tensor orientationamplitude

Example: Digital holography microscopy

34

DHM image

Amplitude WavenumberOrientation (tensor)

Data courtesy of Prof. Depeursinge, EPFL



Wavenumber

Example: Digital holography microscopy
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Original DHM image

Amplitude Orientation (tensor)

Data courtesy of Prof. Depeursinge, EPFL

Directional wavelet analysis: Fingerprint
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Wavenumber Orientation
Modulus

Amplitude OrientationOrientation (tensor)

Wavelet-domain monogenic and structure analysis



MonogenicJ: a plugin for ImageJ (JAVA)
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http://bigwww.epfl.ch/demo/monogenic/

Author: Daniel Sage

CONTENT
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! Riesz transform and its properties !
! Gradient-like steerable wavelet transform !
! Monogenic wavelet analysis !
! Generalizations: higher dimensions and/or higher order



Higher dimensional monogenic analysis
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Directional Hilbert transform

Huf(x) =
d�

n=1

unRnf(x) = �u,Rf(x)�

Unit vector: u = (u1, · · · , ud)

Local Orientation: u =
Rf(x)

�Rf(x)�

Directional Hilbert analysis: fu(x) = f(x) + jHuf(x) = Aejξ

Local phase and wavenumber

Local phase: ξ(x) = ∠(fu(x))

Local wavenumber: ν(x) = Duξ(x) = �u,∇ξ(x)�

Local Amplitude: A(x) = |fu(x)| = �fm(x)� =
�

|f(x)|2 + �Rf(x)�2

Generalization: Nth-order Riesz wavelets
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�f,ψn(·− x)� ∝ ∂N

∂xn1
1 · · · ∂xnd

d

(f ∗ φN )(x)

Frequency-domain wavelet formula:

�ψn(ω) =

�
N !

n!

(− jω)n

�ω�N ψ̂(ω) ∝ (jω1)
n1 · · · (jωd)

nd
ψ̂(ω)

�ω�N

Isotropic smoothing kernel: φN (x) = (−∆)−
N
2 ψ(x) = F−1

�
ψ̂(ω)
�ω�N

�

Space-domain wavelet formula:

ψn(x) = Rnψ(x) ∝ ∂N

∂xn1
1 · · · ∂xnd

d

φN (x),

For all multi-indices n = (n1, · · · , nd) such that n1 + · · ·+ nd = N



Hessian-like Riesz wavelet transform
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Steerability

�
ψ(2,0) =

∂2φ2

∂x2
1

, ψ(1,1) =
√

2
∂2φ2

∂x1∂x2
, ψ(0,2) =

∂2φ2

∂x2
2

�

n = (2, 0) n = (1, 1) n = (0, 2)

Second-order Riesz wavelets

cos2 θ

sin2 θ

√
2 cos θ sin θ

Generalized Riesz-Wavelet Toolbox for Matlab

42http://bigwww.epfl.ch/demo/steerable-wavelets/ [Unser et al., IEEE TIP 2011]Nicolas Chenouard



CONCLUSION
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! Riesz transform
! Invariance properties: shift, scale, rotation, energy conservation

! Riesz-based construction of steerable wavelet transforms
! Tight frame property (self-reversibility)
! Multi-scale gradients
! Rotation-invariant processing
! Fast filterbank algorithm

! Monogenic wavelet transform/analysis
! Local orientation, phase (shift) and wavenumber
! Directional analysis/feature extraction

! Potential applications
! Image reconstruction from wavelet sketch
! Analysis/processing of fringe patterns (holography, interferometry)
! Texture, fingerprints
! Regularization of inverse problems
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