Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
Dernière révisionLes deux révisions suivantes
science:projets:accueil [2022/04/07 14:08] – [ANR DYCAT (2020-2023)] gilquinscience:projets:accueil [2022/04/07 14:35] – [ERC PODCAST - Predictions and Observations for Discs: Planetary Cores and dust Aggregates from non-ideal MHD Simulations with radiative Transfer (2020-2025)] gilquin
Ligne 23: Ligne 23:
  
 Coordination  : (Lauréat) Guillaume LAIBE (CRAL)\\ Coordination  : (Lauréat) Guillaume LAIBE (CRAL)\\
 +
 +==== ERC SENECA - Shape-Shifting Ultrathin 2D Colloidal NanoPlatelets (2020-2025) ====
 +
 +Mechanical instabilities of thin sheets has long been exploited in Nature to create patterns and ensure vital functions such as stimuli responsiveness. By applying forces at the surface of thin objects, it is possible to create a wide variety of chiral 3D shapes such as helices, twists and rolls. Moreover, minute changes on these forces can induce dramatic shape-shifting between different geometries. Our goal is to use this general principle to establish a new class of chiral and addressable nanostructures that current synthetic strategies can not afford. Building on our pioneering results, i will use organic ligands at the surface of two dimensional colloidal nanoplatelets to bend and twist ultrathin nanosheets into complex shapes. We first aim at establishing generic synthetic principles for colloidal 2D materials. To do so, we will develop in situ scattering methods to get atomistic insight on their formation mechanism. We will then determine the link between surface chemistry, interfacial stress and conformation in a set of model systems. Based on these insights, we will design stimuli responsive surface ligands whose conformational change upon excitation by an external stimuli will impact the nanoparticle shape. Finally, understanding the nanoscale colloidal forces and geometric frustration between these new building blocks will enable the design of nanostructured solids made by out-of-equilibrium assembly. This research program will advance our fundamental knowledge on mechanics at the nanoscale and provide a mechanistic framework for synthetic chemistry of 2D materials. The nanoparticles that we will synthesize are expected to have broad applications due to their chiroptical properties and their stimuli responsive character in fields as diverse as nano-swimmers, detection of chiral bio-coumpounds, photo-catalysis, soft-robotic or sensors/actuators..
 +
 +ERC Consolidator Grant
 +
 +Coordination  : (Lauréat) Benjamin Abécassis (LCH)\\
 ==== ERC IMPACT The Giant Impact and the Earth and Moon Formation Consolidator Grant (2016-2021) ==== ==== ERC IMPACT The Giant Impact and the Earth and Moon Formation Consolidator Grant (2016-2021) ====
  
Ligne 59: Ligne 67:
 Co-Investigator Marco Garavelli Co-Investigator Marco Garavelli
  
-==== ERC OutEFLUCOP (2010-2015)==== +===== IUF =====
- +
-  * http://www.ens-lyon.fr/PHYSIQUE/teams/non-lineaire-hydrodynamique/research-topics/out-of-equilibrium-fluctuations/fluctuations-and-noise?set_language=fr&cl=fr +
- +
-Coordination ENS de Lyon : (Lauréat)  Sergio Ciliberto+
  
 +===== IUF Elise Dumont (2019-2024) =====
 ===== Chaire industrielle IDEXLYON ENSL IFPEN ===== ===== Chaire industrielle IDEXLYON ENSL IFPEN =====
  
  
-==== Chaire industrielle Road4cat ====+==== Chaire industrielle Road4cat (2018-2022) ====
  
 Laureat Pascal Raybaud:\\ Laureat Pascal Raybaud:\\
Ligne 95: Ligne 100:
  
 ===== Collaborations Industrielles ===== ===== Collaborations Industrielles =====
 +
 +==== Collaboration ENS-Solvay-Rhodia (2018-2022) ====
 +
 +Coordination ENS de Lyon : Carine Michel
 +
 +
  
 ==== Collaboration ENS-Total ==== ==== Collaboration ENS-Total ====
Ligne 107: Ligne 118:
 Coordination ENS de Lyon : Philippe Sautet & Carine Michel Coordination ENS de Lyon : Philippe Sautet & Carine Michel
  \\  \\
- \\ + 
- \\ +
  
  
Ligne 150: Ligne 159:
 Partenaire ENS de Lyon Julien Salort:([[https://anr.fr/Projet-ANR-18-CE30-0007 | description]]) Partenaire ENS de Lyon Julien Salort:([[https://anr.fr/Projet-ANR-18-CE30-0007 | description]])
  
-==== ANR LIQUI2D (2018-2022) ==== 
  
-Partenaire ENS de Lyon Agilio Padua:([[https://anr.fr/Project-ANR-18-CE09-0018 | description]])+==== ANR LIQUID2 (2018-2023====
  
 +Partenaire ENS de Lyon Agilio Padua:([[https://anr.fr/Projet-ANR-18-CE09-0018 | description]])
  
  
-==== ANR Photochromics (2018-2022) ====+==== ANR Photochromics (2018-2023) ====
  
 Partenaire ENS de Lyon Carine Michel:([[https://anr.fr/Project-ANR-18-CE29-0012 | description]]) Partenaire ENS de Lyon Carine Michel:([[https://anr.fr/Project-ANR-18-CE29-0012 | description]])
Ligne 162: Ligne 171:
  
  
-==== ANR TeneMod (2017-2021) ====+==== ANR TeneMod (2017-2022) ====
  
 Partenaire ENS de Lyon Tangui Le Bahers:([[https://anr.fr/Project-ANR-17-CE29-0007 | description]]) Partenaire ENS de Lyon Tangui Le Bahers:([[https://anr.fr/Project-ANR-17-CE29-0007 | description]])
Ligne 252: Ligne 261:
 ===== Labex ===== ===== Labex =====
  
-==== Labex iMust Z-project (2022-2023)====  +==== Labex Z-project iMust (2022-2023)====   
 + 
 +Scientific coordination : S. Steimann :  \\ 
 + 
 +==== Labex iMust (2021-2022)====  
  
 Scientific coordination : S. Steimann :  \\ Scientific coordination : S. Steimann :  \\
science/projets/accueil.txt · Dernière modification : 2022/04/07 14:37 de gilquin