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� Background and Aims This work aimed to gain insight into the breeding system at the base of living angio-
sperms through both character state reconstructions and the study of sex ratios and phenotypes in the likely sister to
all other living angiosperms, Amborella trichopoda.
�Methods Sex phenotypes were mapped onto a phylogeny of basally diverging angiosperms using maximum par-
simony. In parallel, sex ratios and phenotypes were studied over two consecutive flowering seasons in an ex situ
population of A. trichopoda, while the sex ratio of an in situ population was also assessed.
� Key Results Parsimony analyses failed to resolve the breeding system present at the base of living angiosperms,
but indicated the importance of A. trichopoda for the future elucidation of this question. The ex situ A. trichopoda
population studied showed a primary sex ratio close to 1:1, though sex ratio bias was found in the in situ population
studied. Instances of sexual instability were quantified in both populations.
� Conclusions Sex ratio data support the presence of genetic sex determination in A. trichopoda, whose further elucida-
tion may guide inferences on the breeding system at the base of living angiosperms. Sexual instability in A. trichopoda
suggests the operation of epigenetic mechanisms, and the evolution of dioecy via a gynodioecious intermediate.
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INTRODUCTION

An important question of plant evolutionary biology concerns
the characteristics of the earliest angiosperms. Among the char-
acter states of interest, the breeding system present in early an-
giosperms, which may have made a vital contribution to the
rapid expansion and diversification of this group, is of particular
importance. Any attempt at ancestral reconstruction requires a re-
liable phylogenetic framework, and this is provided in the case
of early angiosperms by a consensus of recent molecular studies
which clearly indicate the orders Amborellales, Nymphaeales
and Austrobaileyales, collectively termed the ANA grade, to
have diverged at an early evolutionary stage from all remaining
angiosperms, termed euangiosperms. Within this framework,
two slightly different alternative topologies emerge from the cur-
rent literature: the majority of recent studies, summarized by
Byng et al. (2016), place Amborellales as the earliest diverging
ANA grade order, followed sequentially by Nymphaeales and
Austrobaileyales. The alternative view emerges from studies by
Qiu et al. (2001, 2010) and Xi et al. (2015), who analysed matri-
ces consisting of five genes from all three genomic compart-
ments, four mitochondrial genes and 310 nuclear genes,
respectively. These phylogenies all conclude that the earliest bi-
furcation in the living angiosperm tree divides a clade composed

of Amborellales and Nymphaeales from one composed of
Austrobaileyales and euangiosperms.

Amborellales contains the single species, Amborella tricho-
poda, a dioecious understorey shrub, endemic to New
Caledonia. Flowers of male A. trichopoda plants typically con-
tain 9–12 tepals and 12–20 stamens, whereas those of females
typically contain 7–8 tepals and five carpels, in addition to 1–2
sterile stamen-like organs termed staminodes (Endress, 2001).
These staminodes have been interpreted as possible vestiges of
a bisexual ancestor, as has a protrusion in the centre of male
flowers which may represent a degenerated gynoecium
(Endress and Doyle, 2015). No morphologically distinct sex
chromosomes have been identified in A. trichopoda, the karyo-
type being 2n ¼ 26 in both males and females (Oginuma et al.,
2000; Chamala et al., 2013).

Of the remaining early-diverging ANA-grade angiosperms,
Nymphaeales contains three families, of which the most basally
diverging, Hydatellaceae, is represented by the single genus
Trithuria. Trithuria contains approx. 12 species possessing a
mixture of dioecious, monoecious and bisexual breeding
systems (Iles et al., 2012). All remaining Nymphaeales, com-
prising six genera of Nymphaeaceae and two genera of
Cabombaceae, possess bisexual flowers (Thien et al., 2009).
Within Austrobaileyales, the most basally diverging family,
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Austrobaileyaceae, contains the single species Austrobaileya
scandens, which has bisexual flowers, while Trimeniaceae con-
tains the single genus Trimenia, containing both bisexual and
andromonoecious species (Endress and Sampson, 1983). The
remaining family of Austrobaileyales, Schisandraceae, contains
three genera, of which Illicium is fully bisexual, Schisandra
contains a mixture of monoecious and dioecious species
(Saunders, 2000), and Kadsura is predominantly monoecious,
with a tendency towards dioecy (Saunders, 1998).

Within the flowering plants as a whole, around 6 % of spe-
cies are dioecious, and between 871 and 5000 transitions from
bisexuality to dioecy have been inferred (Renner, 2014). Such
transitions have been hypothesized to pass via two main path-
ways involving intermediate gynodioecious and monoecious
states, respectively (reviewed by Barrett, 2002).

Here, we use a maximum parsimony analysis to show that the
base of living angiosperms is formally ambiguous between dioe-
cious and bisexual breeding systems. We furthermore establish
sex ratios in both ex situ and in situ populations of
A. trichopoda, the former of which provides strong support for
the presence of a genetic sex determination system. We discuss
the potential importance of this observation for future inferences
on the breeding system at the base of living angiosperms. We
also observe sex ratio bias in an in situ population of A. tricho-
poda, and instability of sex phenotypes, which provide further
clues on the mechanism and evolution of dioecy in this species.

MATERIALS AND METHODS

Character reconstruction by parsimony

Cladograms representing two alternative topologies for the base
of angiosperm phylogeny were manually created in Newick for-
mat, corresponding to the topologies given by the Angiosperm
Phylogeny Group Website (Byng et al., 2016) and by Xi et al.
(2014), respectively, with additional data from Saarela et al.
(2007), Lohne et al. (2007) and Iles et al. (2012). The internal
phylogeny of Nymphaeaceae was simplified by representing
Nymphaea, Victoria, Euryale and Ondinea as a polytomy as,
according to the phylogeny of Loehne et al. (2007), Nymphaea
is polyphyletic, one section being sister to a clade composed of
Victoria plus Euryale, while another includes Ondinea.
Character states relating to sex phenotypes (dioecy, monoecy,
andromonoecy and bisexuality) were mapped onto both cladeo-
grams in Mesquite (Maddison and Maddison, 2015) using par-
simony reconstruction. Character states were also mapped
without data from A. trichopoda to test the importance of this
species to the inferences made using the full data set.

Ex situ assessments

Mature fruits were harvested on 5 September 2012 from a
single female individual growing at an altitude of 658 m on the
eastern slopes of Mont Aoupinié, Northern Province, New
Caledonia (S21�9056�7000, E165�18053�7000). The outer fleshy
tissues were removed and seeds were dried for 7 d at room tem-
perature before scarification in concentrated sulphuric acid for
35 min, followed by rinsing with tap water (Fogliani et al.,
2017). Scarified seeds were sown in seed trays in a 1:1 (v/v)

mixture of perlite/peat compost and covered with a thin layer of
vermiculite. The trays were then placed in a greenhouse at the
IAC, Mont Dore in the Southern Province of New Caledonia
(S22�13052�5600, E166�32019�4300) at 85 6 10 % relative humid-
ity and 25 6 3 �C. Germinated seedlings were re-potted at the
3–6 leaf stage in a 1:1 (v/v) perlite/peat mixture to which a
slow-release fertilizer had been added. Plants were transferred
to larger pots when necessary and maintained in a greenhouse
under 80 % shade conditions.

Sex ratios were assessed during the first and second flower-
ing seasons in observations carried out at least once a month
from January to June (inclusive), in 2014 and 2015. The differ-
ence between observed and expected sex ratios, using the null
hypothesis of an expected 1:1 ratio of males to females, was
made using the Sign test.

In situ assessments

The sex of flowers was assessed on the 16 and 17 April
2014 in 162 individuals growing at an altitude of 515–70 m
on the slope and central ridge of Mont Aoupinié. To detect
the presence of any deviations from strict dioecy, numerous
flowers were closely inspected on each of 127 of these indi-
viduals, which were located next to a track and thus easily
accessible. The sex of flowers in the remaining 35 individ-
uals, which were located further from the track, was assessed
using binoculars. The difference between observed and ex-
pected sex ratios was analysed statistically as described for
ex situ assessments.

RESULTS

Character mapping by parsimony fails to resolve the breeding
system present at the base of living angiosperms.

We mapped an extensive data set of floral phenotypes in
ANA-grade angiosperms, covering monoecious, dioecious,
andromonoecious and bisexual arrangements, onto two alterna-
tive topologies that emerge from the current literature for the
base of angiosperm phylogeny. In both topologies (Fig. 1A, B),
the base of extant angiosperms emerged as unresolved between
bisexual and dioecious breeding systems. Both phylogenies
suggest a transition to monoecy within Trithuria.

To test the importance of data from A. trichopoda to the re-
constructions performed, we removed these from analyses
made using both topologies considered. In both cases
(Fig. 1C, D), the base of living angiosperms resolved as bisex-
ual, confirming the importance of further studies of sex deter-
mination in A. trichopoda for the resolution of the breeding
system present at the base of extant angiosperms, as discussed
by Endress and Doyle (2009, 2015),

A large, seed-grown ex situ population of Amborella trichopoda
showed a 1:1 sex ratio over two consecutive flowering seasons.

A group of 310 A. trichopoda plants, grown under green-
house conditions, were found in their first flowering season to
show a male:female ratio of 1�01:1 (Table 1), thus failing by a
wide margin to reject the null hypothesis of a 1:1 sex ratio,
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FIG. 1. Character state mapping of breeding system data onto two alternative topologies for the base of angiosperm phylogeny. (A) A phylogenetic reconstruction
based on the consensus phylogeny of Byng et al. (2016), in which Amborellales is sister to all other angiosperms. (B) An alternative phylogeny, based on Xi et al.
(2014), in which Amborellales þ Nymphaeales is sister to all other angiosperms. In both topologies, the base of the living angiosperms emerges as ambiguous be-
tween dioecious and bisexual types. (C and D) Analyses as in (A) and (B), respectively, but excluding data from A. trichopoda, showing that, without data from this

species, the base of angiosperms resolves as bisexual. The classification of ANA-grade taxa into families and orders is shown.
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characteristic of genetic sex determination. Almost all plants
flowered during the period of observation. With the exception
of five plants that died in the latter half of the first year of ob-
servations, all of which had been male, the same group of plants
was reassessed in its second flowering season. The overall mor-
phology of typical male and female plants during the second
flowering season is shown in Supplementary Data Fig. S1, to-
gether with a timeline of cultivation procedures and observa-
tions. Again, almost all plants flowered, and only three
complete sex change events were noted (one from male to fe-
male and two from female to male) between the two seasons.
Sex ratio data therefore support a primary sex ratio in A.
trichopoda of 1:1, with high stability of sex phenotypes
(approx. 99 %) between successive flowering seasons.
Interestingly, male plants were observed to flower, on average,
earlier than females in both 2014 and 2015 (Supplementary
Data Fig. S2).

An in situ Amborella trichopoda population shows a male-biased
sex ratio

A sample of 162 plants from an in situ population showed a
male:female ratio of 1�42:1, indicting a statistically significant
deviation from the primary sex ratio of 1:1 observed in an ex
situ population (Table 1). These data appear to reveal the phe-
nomenon of a sex ratio bias, in favour of males, in a natural
population of A. trichopoda.

A proportion of male Amborella trichopoda plants produce some
bisexual flowers

A small number of male plants in the ex situ population stud-
ied produced some bisexual flowers in one or both flowering
seasons (Table 2). This partial bisexuality varied from the pres-
ence of a single carpel (in addition to multiple stamens) in a
few flowers, to the production of up to 50 % of fully bisexual
flowers, together with male flowers (Fig. 2C–G). The carpels in
bisexual flowers appeared to replace stamens. However, male
and partially bisexual male phenotypes of A. trichopoda ap-
peared readily interconvertible between flowering
seasons (Table 2). Fruits were observed on partially bisexual
males (Fig. 2F, H) and these were able to grow to maturity
(Fig. 2I). Two male plants in the in situ sample of 162 plants
were observed to produce a small proportion of bisexual flow-
ers (Fig. 2J–L), and fruits were also seen on one of these
(Fig. 2M).

DISCUSSION

Sex ratio data support the presence of genetic sex determination
in A. trichopoda, with male-biased sex ratios in
natural populations.

In this study, the sex ratio of a sizeable seed-grown ex situ pop-
ulation of A. trichopoda, in which almost all plants flowered,
proved very close to 1:1 when plants bearing male and some bi-
sexual flowers were considered as male. No transitions between
partially bisexual male and completely female phenotypes were
observed, supporting this classification. The sex of A. tricho-
poda individuals was very stable (approx. 99 %) between two
consecutive flowering seasons. Both the 1:1 primary sex ratio
and the high stability of sex phenotypes clearly support the
presence in A. trichopoda of genetic sex determination.

In contrast, a male:female ratio of 1�42:1 was observed in a
natural population of A. trichopoda, representing a statisti-
cally significant deviation from the expected 1:1 ratio.
Interestingly, Thien et al. (2003) performed a similar survey,
and found an even greater male bias of approx. 1�8:1. Work
by Field et al. (2013b) indicates that sex ratio bias is com-
monly encountered in dioecious species, with male bias being
more common than female bias. These authors find instances
of male bias to correlate with the long-lived growth habit, fle-
shy fruits and biotic seed distribution. Both the long-lived
growth habit and fleshy fruits are present in A. trichopoda,
while biotic seed distribution may be present in this species
(Endress and Igersheim, 2000), or may have been present re-
cently in its evolutionary past (Fourcade et al., 2015).
Observed sex ratios may also be biased through sampling ef-
fort (Field et al., 2013a). The tendency for male A. tricho-
poda plants to flower earlier than females (Fig. S2), coupled
to the limited time scale over which in situ observations were
carried out in the present work, may also therefore have con-
tributed to the male bias observed.

Bioinformatics analyses of Amborella trichopoda may help to
elucidate the breeding system present at the base of
living angiosperms

Maximum parsimony analyses performed in this study
(Fig. 1A, B) failed to resolve the breeding system at the base of
living angiosperms between bisexual and dioecious types.
However, the exclusion of data from A. trichopoda led to the
resolution of the basal node in this phylogeny as bisexual
(Fig. 1C, D). Clearly, a date for the origin of dioecy in A. tri-
chopoda could help to elucidate this question further: if that ori-
gin were more recent than the initial radiation of living
angiosperms, we could conclude that the most recent common

TABLE 1. Sex ratios for ex situ and in situ populations of Amborella trichopoda

Ex situ population, 2014 Ex situ population, 2015 In situ population, 2014

Plants surveyed 310 305 162
Males (including partially bisexual males) 155 (33) 150 (11) 95 (2)
Females 153 154 67
Not in flower 2 1 Not determined
M:F ratio 1�01:1 0�98:1 1�42:1
Sign test two-tailed P-value for divergence from expected 1:1 ratio 0�95 0�86 0�034
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FIG. 2. Sex phenotypes in Amborella trichopoda. (A–I) Plants from an ex situ population. (A) Completely male flowers. (B) Female flowers. (C–E) Increasing levels
of sexual ambiguity among male flowers. (F) Inflorescences borne on the same branch harbouring both male (solid line) and ambiguous (dashed line) flowers at early
fruit set. (G) Ambiguous male flowers after (left) and before (right) anther dehiscence. (H) Late fruit set and male flower observed on the same axis. (I) Maturing fruit
among degenerating stamens. (J–M) Plants from an in situ population growing on Mount Aoupinié. (J and K). An ambiguous male flower with two carpels. (L) An
ambiguous male flower with three carpels (left) next to a completely male flower (right). (M) Male flowers and mature fruits on the same axis. Stamens, blue arrows;

carpels, red arrows; staminodes, white arrows.
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ancestor (MRCA) of living angiosperms was probably bisexual.
In contrast, an origin of dioecy in A. trichopoda that pre-dated
the radiation of living angiosperms would support the presence
of dioecy in the MRCA of that group. It should be emphasized
that, whatever the breeding system in the MRCA of living an-
giosperms, other breeding systems may have been present in
contemporaneous early angiosperms (whose lineages later be-
came extinct).

It can be expected that genes physically linked to the (hypoth-
esized) sex-determining chromosomal region in A. trichopoda
will have ceased to recombine. As no morphologically distinct
sex chromosomes have been observed in cytological examina-
tions (Oginuma et al., 2000; Chamala et al., 2013), this sex-
determining region is likely to be of limited size, though might
still cover some tens of mega-bases. Non-recombining poly-
morphic genes within this region could be detected from
RNA sequencing data of families or populations using a number
of recently developed bioinformatics methods (Bergero and
Charlesworth, 2011; Chibalina and Filatov, 2011; Muyle et al.,
2012). Such genes could then be localized within the (male) ref-
erence genome of A. trichopoda and the several available re-
sequenced genomes of both sexes (Amborella Genome Project,
2013), potentially providing an efficient means to characterize
the entire sex-determining region. Molecular sequence diver-
gence within this region could then be used (Charlesworth, 2008)
to date the initial arrest of sex chromosome recombination in the
A. trichopoda lineage, thereby informing further efforts to recon-
struct the breeding system at the base of living angiosperms.

Sexual instability provides clues on the mechanism and evolution
of dioecy in Amborella trichopoda

In the present work, we identified two types of sexual insta-
bility in A. trichopoda. First, we noted a small proportion
(approx. 1 %) of complete sex change events in a population of
young plants grown from seed. These findings confirm observa-
tions by Buzgo et al. (2004), who noted similar sex changes in
A. trichopoda grown from cuttings. Secondly, we found a vari-
able proportion of bisexual flowers on some predominantly
male individuals in both ex situ and in situ populations. Sexual
instability is a common phenomenon in dioecious plant species,
and many exogenous, environmental and demographic factors

are known to affect sex ratios, including plant hormones
(Durand and Durand, 1991; Papadopoulou and Grumet, 2005),
non-methylable nucleotide analogues (Janousek et al., 1996),
temperature (Manzano et al., 2014), pathogens (Scutt et al.,
1997), timing of seed set (Freeman et al., 1994) and population
structure (Stehlik et al., 2008). Some of these factors strongly
suggest the involvement of epigenetic mechanisms operating in
sex determination, and sexual instability in A. trichopoda may
therefore involve such factors, operating either at, or down-
stream of, sex-determining loci.

Partially bisexual males have previously been observed in
multiple species in which dioecy is thought to have evolved
through the gynodioecious pathway (Charlesworth and
Charlesworth, 1978, Lloyd, 1980), which suggests that dioecy
in A. trichopoda may also have evolved via this route. Such ‘in-
constant males’ are predicted by mathematical modelling to be
stably maintained in populations, causing a tendency to sub-
dioecy (Ehlers and Bataillon, 2007). The presence of partially
bisexual males is not, therefore, necessarily informative on the
timing of the origin of dioecy in A. trichopoda. Fruits generated
from bisexual flowers on otherwise male A. trichopoda plants
have been observed to grow to maturity (Fig. 2). However, we
have not yet tested the viability of the seed generated within
these, or the sex ratio and fertility of the following generation.
It is, therefore, not yet certain that the carpels that develop in a
proportion of otherwise male A. trichopoda flowers represent a
functional deviation from complete dioecy.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Figure S1: 32-
month-old A. trichopoda plants in May 2015. Figure S2:
flowering time in ex situ male and female plants.
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