Calculation of EPR parameters by WFT

Hélène Bolvin

Laboratoire de Chimie et de Physique Quantiques Toulouse

pNMR Training Course Mariapfarr Feb 22-24 2014

Université de Toulouse

<ロト <四ト <注入 <注下 <注下 <

Outline

Generalities

- EPR spectroscopy
- spin Hamiltonians
- SO-CASSCF based methods
- time reversal operator and symmetry properties

э

イロン イ団 とく ヨン イヨン

Outline

Generalities

- EPR spectroscopy
- spin Hamiltonians
- SO-CASSCF based methods
- time reversal operator and symmetry properties

Examples

- $NpCl_6^{2-}$ a fourfold degenerate ground state
- $\bullet~Ni^{2+}$ in pseudo octahedric environment : an almost threefold degenerate ground state

3

イロト イヨト イヨト イヨト

Generalities

イロト イヨト イヨト イヨト 二日

Magnetoactive components of a molecule

• magnetic moment \vec{m}_L owing to the orbital angular momentum $\vec{L} = \sum_i \vec{l}_i$

イロン イヨン イヨン イヨン 三日

- magnetic moment \vec{m}_L owing to the orbital angular momentum $\vec{L} = \sum_i \vec{l}_i$
- magnetic moment \vec{m}_S owing to the electron spin angular momentum $\vec{S} = \sum_i \vec{s}_i$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- magnetic moment \vec{m}_L owing to the orbital angular momentum $\vec{L} = \sum_i \vec{l}_i$
- magnetic moment \vec{m}_S owing to the electron spin angular momentum $\vec{S} = \sum_i \vec{s}_i$
- magnetic moments of the nuclei \vec{m}_N owing to the nuclear spin I_N

イロン イヨン イヨン イヨン 三日

- magnetic moment \vec{m}_L owing to the orbital angular momentum $\vec{L} = \sum_i \vec{l}_i$
- magnetic moment \vec{m}_S owing to the electron spin angular momentum $\vec{S} = \sum_i \vec{s}_i$
- magnetic moments of the nuclei \vec{m}_N owing to the nuclear spin I_N
- rotational magnetic moment \vec{m}_R owing to the rotational angular momentum of the molecule

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For open shell molecules

- magnetic moment \vec{m}_L owing to the orbital angular momentum $\vec{L} = \sum_i \vec{l}_i$
- magnetic moment \vec{m}_S owing to the electron spin angular momentum $\vec{S} = \sum_i \vec{s}_i$

イロト イヨト イヨト イヨト

EPR : transitions between electronic Zeeman states

interaction of a magnetic moment \vec{m} with an external magnetic field \vec{B} $H_{Ze} = -\vec{m} \cdot \vec{B}$

• for a pure spin doublet S = 1/2 with magnetic moment $\vec{m}_S = -\mu_B g_e \vec{S}$

 $hv = g_e \mu_B B_0$

イロン イヨン イヨン イヨン 三日

microwaves region

- for the X band, v = 9388 MHz
- for a spin doublet $B = hv/g_e\mu_B = 0.33$ T and hv=0.076 cm⁻¹
- for non pure spin systems, $\vec{m} \neq \mu_B g_e \vec{S}$
- the magnetic moment depends on the direction \Rightarrow anisotropy
- $\bullet\,$ for a magnetic field of $1T=10\,000$ G

$$\mu_B B = 0.46 \text{cm} - 1$$

イロト 不得 トイヨト イヨト 二日

EPR : hyperfine coupling

- coupling with the spins I of the nuclei \Rightarrow hyperfine structure
- $\vec{m}_I = \mu_N g_e \vec{l}$, since $\mu_N \ll \mu_B$, each electron Zeeman level is split into 2l + 1 lines

EPR : triplet state

 ${\scriptstyle \bullet}$ when $S \geq 1$, splitting of the M_S components in absence of magnetic field

zero-field splitting \Rightarrow fine structure

- there are two transitions $M_S = -1 \rightarrow M_S = 0$ and $M_S = 0 \rightarrow M_S = 1$
- High Field High Frequency EPR
- one can deduce the ZFS energies and the Zeeman components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

g-factors from experiment

• energy gap between Zeeman states in a magnetic field $\vec{B} = B\vec{n}$

 $\Delta E = g \mu_B B$

• the g-factor depends on the direction of the magnetic field, this anisotropy is modelled by a spin Hamiltonian

$$H_S = \mu_B \vec{B}^{\dagger} \cdot \mathbf{g} \cdot \tilde{S}$$

 $g = \pm \left[\vec{n}^{\dagger} \cdot \mathbf{g} \mathbf{g}^{\dagger} \cdot \vec{n} \right]^{1/2}$

• Experiments give access to the tensor

$$G = gg^{\dagger}$$

• One defines the principal g-factors g_i from G_i the principal values of G

$$g_i = \pm \sqrt{G_i}$$

(Toulouse)

イロト 不得 トイヨト イヨト 二日

Determination of the sign of g-factors

• by use of circularly polarized radiation, the relative intensities of a given transition using right- and left-handed senses give information about the sign of

g_×g_yg_z

• in the case of hyperfine coupling, when the sign of the hyperfine constant is known

イロト イヨト イヨト イヨト

Semiclassical approach: precession around a magnetic field

The anisotropy of the g-factors affects both the shape and the pulsation of the precession

the direction of the precession is defined by the sign of the product $g_x g_y g_z$

イロン イヨン イヨン イヨン

magnetic field \parallel to a principal axis z

Spin Hamiltonian

Model Hamiltonian

$$H_S = \vec{\tilde{S}}^{\dagger} \cdot \mathbf{D} \cdot \vec{\tilde{S}} + \mu_B \vec{B}^{\dagger} \cdot \mathbf{g} \cdot \vec{\tilde{S}}$$

- it is a phenomenological relation expressed with spin operators
- $\vec{\tilde{S}}$ is a pseudo spin operator acting in the model space.
- With spin-orbit coupling, the true spin operator \overrightarrow{S} is not a good quantum number.
- In the case of a small spin-orbit coupling, $\vec{\tilde{S}} \approx \vec{S}$ (transition metal complexes)
- otherwise, the value of \tilde{S} is chosen to suit the size of the model space
 - the size of the model space is $2\tilde{S}+1$ generated by the $\left| ilde{M}_{S}
 ight
 angle$ functions

イロン イヨン イヨン イヨン 三日

Spin Hamiltonian

spin algebra

• in the model space, algebra of spins

$$\begin{split} \tilde{S}_{z} \left| \tilde{M}_{Sz} \right\rangle &= M_{S} \left| \tilde{M}_{Sz} \right\rangle \\ \tilde{S}_{+} \left| \tilde{M}_{Sz} \right\rangle &= M_{S} \sqrt{(\tilde{S} + \tilde{M}_{S} + 1)(\tilde{S} - \tilde{M}_{S})} \right| \tilde{M}_{S} + 1z \rangle \\ \tilde{S}_{-} \left| \tilde{M}_{Sz} \right\rangle &= M_{S} \sqrt{(\tilde{S} - \tilde{M}_{S} + 1)(\tilde{S} + \tilde{M}_{S})} \right| \tilde{M}_{S} - 1z \rangle \end{split}$$

• in other directions

$$\begin{array}{lcl} \tilde{S}_{x} \big| \tilde{M}_{Sx} \big\rangle &=& M_{S} \big| \tilde{M}_{Sx} \big\rangle \\ \tilde{S}_{y} \big| \tilde{M}_{Sy} \big\rangle &=& M_{S} \big| \tilde{M}_{Sy} \big\rangle \\ \tilde{S}_{z} \big| \tilde{M}_{Sz} \big\rangle &=& M_{S} \big| \tilde{M}_{Sz} \big\rangle \end{array}$$

• rotation in the spin space \mathscr{R} : rotation $z \to x \to y \to z$ \mathscr{R}' : rotation $z \to y \to x \to z$

$$\begin{array}{lll} \mathscr{R} \big| \tilde{M}_{Sz} \big\rangle & = & \big| \tilde{M}_{Sx} \big\rangle \\ \mathscr{R}' \big| \tilde{M}_{Sz} \big\rangle & = & \big| \tilde{M}_{Sy} \big\rangle \end{array}$$

3

イロト イヨト イヨト イヨト

EPR spin Hamiltonian

$$H_S = \vec{\tilde{S}}^{\dagger} \cdot \mathbf{D} \cdot \vec{\tilde{S}} + \mu_B \vec{B}^{\dagger} \cdot \mathbf{g} \cdot \vec{\tilde{S}}$$

- D is a two-rank tensor, usually traceless : the ZFS tensor
- **g** is in general not a tensor but $\mathbf{G} = \mathbf{g}\mathbf{g}^{\dagger}$ is
- the principal axis of **D** and **G** are not the same in general

э

イロト イヨト イヨト イヨト

- the spin space is an ideal world in which the algebra is well defined : "all is for the best in the best of all possible worlds" (Candide Voltaire)
- the phenomenological parameters can be extracted from experimental data by the fitting of physical observables.
 - the model is presupposed
- quantum chemical calculations
 - validation of the model
 - 2 calculation of the parameters

イロン イ団 とく ヨン イヨン

WFT for open shell systems

- the wave function of an open shell system is multideterminantal
- for example 2 electrons in 2 orbitals a and b
 - a triplet S = 1

$$egin{array}{rcl} |1,1
angle&=&|ab|\ |1,0
angle&=&rac{1}{\sqrt{2}}\left(\left|aar{b}
ight|+|ar{a}b|
ight)\ |1,-1
angle&=&\left|ar{a}ar{b}
ight| \end{array}$$

• a singlet S = 0

$$|0,0
angle = rac{1}{\sqrt{2}}\left(\left|aar{b}\right| - \left|ar{a}b
ight|
ight)$$

• in the case of no ZFS, $|1,1\rangle |1,0\rangle$ and $|1,-1\rangle$ are degenerate, but the response to a magnetic field is different is different for the three components

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CASSCF method

• multireference

wave function of the lth state

$$\Psi_I = \sum_{\kappa \in CAS} C_I^{\kappa} \Phi_{\kappa}$$

 $\Phi_{\kappa} = |\phi_i \cdots \phi_l|$ Slater determinant

variational

• SCF procedure

optimization of the molecular orbitals at the same time as the $C_{\rm I}^{\kappa}$

イロト イヨト イヨト イヨト

3

CASSCF method

• multireference

wave function of the lth state

$$\Psi_I = \sum_{\kappa \in CAS} C_I^{\kappa} \Phi_{\kappa}$$

 $\Phi_{\kappa} = |\phi_i \cdots \phi_l|$ Slater determinant

variational

SCF procedure

optimization of the molecular orbitals at the same time as the C_l^κ

- scalar relativistic effects included
- the wave functions belong to an irrep of the simple group and have a well defined spin S $^{2S+1}\Gamma$

• active orbitals

- ▶ at the least the open shell orbitals : non dynamical correlation
- increase of the active in order to include some of the dynamical correlation variationnaly

- second order perturbation theory
 - CASPT2
 - NEVPT2
- Interaction Configuration
 - CAS-SDCI
 - DDCI

2

イロト イヨト イヨト イヨト

Spin-Orbit Coupling

• the spin-orbit matrix is written in the basis of the CASSCF $\{|\Psi_I, M_S\rangle\}$ wave functions and diagonalized

	$ \Psi_1,S_1 angle$	$ \Psi_1,S_1{-}1 angle$		$ \Psi_1,-S_1 angle$	$ \Psi_2,S_2 angle$	•••	$ \Psi_2,-S_2 angle$	$ \Psi_3,S_3 angle$	
$\langle \Psi_1, S_1 $	E_1								
$\langle \Psi_1, \mathcal{S}_1 - 1 $		E_1							
			E_1				H _{IJ} SO		
$\langle \Psi_1, -S_1 $				E_1					
$\langle \Psi_2, -S_2 $					E_2				
						E_2			
$\langle \Psi_2, -S_2 $			H_{JI}^{SO}				E_2		
$\langle \Psi_3, S_3 $								E_3	
									E3

• E_I SF energies (CASSCF, CASPT2, NEVPT2, CAS+SDCI ...) • $H_{IJ}^{SOC} = \left\langle \Psi_K, M_S \left| \hat{H}^{SO} \right| \Psi_L, M'_S \right\rangle \hat{H}^{SO}$ is the spin-orbit operator obtained from a 4c to 2 c transformation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spin-Orbit Coupling

• the spin-orbit matrix is written in the basis of the CASSCF $\{|\Psi_I,M_S\rangle\}$ wave functions and diagonalized

	$ \Psi_1,S_1 angle$	$ \Psi_1,S_1{-}1 angle$		$ \Psi_1,-S_1 angle$	$ \Psi_2,S_2 angle$	•••	$ \Psi_2,-S_2 angle$	$ \Psi_3,S_3 angle$	
$\langle \Psi_1, S_1 $	E_1								
$\langle \Psi_1, S_1 - 1 $		E_1							
			E_1				H _{IJ} SO		
$\langle \Psi_1, -S_1 $				E_1					
$\langle \Psi_2, -S_2 $					E_2				
						E_2			
$\langle \Psi_2, -S_2 $			H ^{SO}				E_2		
$\langle \Psi_3, S_3 $								E_3	
									Eз

- *E_I* SF energies (CASSCF, CASPT2, NEVPT2, CAS+SDCI ...)
- $H_{IJ}^{SOC} = \left\langle \Psi_K, M_S \left| \hat{H}^{SO} \right| \Psi_L, M'_S \right\rangle \hat{H}^{SO}$ is the spin-orbit operator obtained from a 4c to 2 c transformation
- the solutions belong to the irreps of the double group
 - wave functions are no more eigenfunctions of the spin
- one improves the quality of the calculations by increasing the number of SF roots

Response to a magnetic field

• Hamiltonian of a molecule in a permanent magnetic field \vec{B} (to 1st order)

$$H = H^{ZF} - \vec{M} \cdot \vec{B} \qquad \text{with} \qquad \vec{M} = \sum_{i=el} \mu_B \left(\vec{r}_i \wedge \vec{j}_i \right)$$

with \vec{r}_i and \vec{j}_i position and current density of electron i

イロン イヨン イヨン イヨン 三日

Response to a magnetic field

• Hamiltonian of a molecule in a permanent magnetic field \vec{B} (to 1st order)

$$H = H^{ZF} - \vec{M} \cdot \vec{B} \qquad \text{with} \qquad \vec{M} = \sum_{i=el} \mu_B \left(\vec{r}_i \wedge \vec{j}_i \right)$$

with \vec{r}_i and \vec{j}_i position and current density of electron i

• in the non-relativistic limit

$$\vec{M} = \underbrace{\sum_{i=el} -\mu_B\left(\vec{l}_i + g_e \vec{s}_i\right)}_{-\mu_B\left(\vec{\hat{L}} + g_e \vec{\hat{S}}\right)} + -\frac{1}{4}\left(\vec{r}_i \wedge \vec{A}\right)$$

э

・ロト ・四ト ・ヨト ・ヨト

Response to a magnetic field

• Hamiltonian of a molecule in a permanent magnetic field \vec{B} (to 1st order)

$$H = H^{ZF} - \vec{M} \cdot \vec{B} \qquad \text{with} \qquad \vec{M} = \sum_{i=el} \mu_B \left(\vec{r}_i \wedge \vec{j}_i \right)$$

with \vec{r}_i and \vec{j}_i position and current density of electron i

• in the non-relativistic limit

$$\vec{M} = \underbrace{\sum_{i=el} -\mu_B\left(\vec{l}_i + g_e \vec{s}_i\right)}_{-\mu_B\left(\hat{\vec{L}} + g_e \hat{\vec{S}}\right)} + -\frac{1}{4}\left(\vec{r}_i \wedge \vec{A}\right)$$

• for open shell system

$$H = H^{ZF} + \mu_B \left(\vec{L} + g_e \vec{S} \right) \cdot \vec{B}$$

イロン イヨン イヨン イヨン 三日

Magnetic moment matrix

1- Solution of the zero field (ZF) equation

$$H^{ZF} \ket{\Psi_{I}} = E_{I} \ket{\Psi_{I}}$$

2- Calculation of the magnetic moment matrix elements

$$\vec{m}_{IJ} = \mu_B \left\langle \Psi_I \left| \vec{L} + g_e \vec{S} \right| \Psi_J \right\rangle = \mu_B \left\langle \Psi_I \left| \vec{M} \right| \Psi_J \right\rangle$$

Choice of the model space

H ^{ZF}	$ \Psi_0 angle$	$ \Psi_1 angle$	$ \Psi_2\rangle$		$ \Psi_N angle$		$-\vec{M}$	$ \Psi_0 angle$	$ \Psi_1 angle$	$ \Psi_2 angle$		$ \Psi_N angle$	
$\langle \Psi_0 $	E ₀	0			0		$\langle \Psi_0 $	$-\vec{m}_{00}$	$-\vec{m}_{01}$	- <i>m</i> ₀₂		$-\vec{m}_{0N}$	_
$\langle \Psi_1 $	0	E_1			0		$\langle \Psi_1 $	$-\vec{m}_{10}$	$-\vec{m}_{11}$	$-\vec{m}_{12}$		$-\vec{m}_{1N}$	_
$\langle \Psi_2 $			<i>E</i> ₂		0	_+	$\langle \Psi_2 $	$-\vec{m}_{20}$	$-\vec{m}_{21}$	$-\vec{m}_{22}$		$-\vec{m}_{1N}$	∎₿ _
:	:			·	0		÷	:			·		_
$\langle \Psi_{\pmb{N}} $	0	0			EN		$\langle \Psi_N $	- <i>m</i> _{N0}	$-\vec{m}_{N1}$			$-\vec{m}_{NN}$	

- $E_3 E_0 \gg \vec{m}_{IJ}$. \vec{B}
- model space of size $2\tilde{S}+1$
- relationship between these matrices and the spin Hamiltonian simplified thanks to the properties of symmetry

イロン イ団 とく ヨン イヨン

Time reversal symmetry

Electric field vs magnetic field

Schrödinger equation of a particle with charge q

• in an electric field

$$i\hbar \frac{\partial \psi(r,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + q \Phi(r) \right] \psi(r,t) \tag{1}$$

 $\psi^*(r,-t)$ is a solution of (1)

• in a magnetic field

$$i\hbar \frac{\partial \psi(r,t)}{\partial t} = \frac{1}{2m} \left[-i\hbar \nabla - \frac{q}{c} A(r) \right]^2 \psi(r,t)$$
⁽²⁾

 $\psi^*(r,-t)$ is not a solution of (2) but of the equation with reversed magnetic field

<ロ> <四> <四> <四> <三</p>

$\bullet~\Theta$ is a **antilinear** and **antiunitary** operator

time reversal operator in \vec{r} representation, for systems with spatial and spin degrees of freedom

$$\Theta = K e^{-i\pi S_y/\hbar} = e^{-i\pi S_y/\hbar} K$$

where K is the conjugation operator.

イロン イ団 とく ヨン イヨン

• Zero-field Hamiltonian

$$H = \frac{|p|^2}{2m} + V(\vec{r}) + f(r)\vec{L}\cdot\vec{S}$$

commutes with time reversal

• The angular momentum operators

$$\Theta \vec{M} \Theta^{\dagger} = -\vec{M} \qquad \vec{M} = \vec{L}, \vec{S}, \vec{J}$$

anticommutes with time reversal

э

イロト 不得 トイヨト イヨト

Kramers degeneracy

• $\Theta^2 = e^{-2\pi i S_y/\hbar}$

- total spin rotation of angle 2π about the y-axis
 - for bosons $\Theta^2 = 1$
 - for fermions $\Theta^2 = -1$

<ロ> <四> <四> <四> <三</p>

Kramers degeneracy

• $\Theta^2 = e^{-2\pi i S_y/\hbar}$

• total spin rotation of angle 2π about the y-axis

- for bosons $\Theta^2 = 1$
- for fermions $\Theta^2 = -1$
- $\bullet ~ |\Psi\rangle$ and $\Theta |\Psi\rangle$ are degenerate
- if $|\Psi\rangle$ is non degenerate

$$egin{aligned} \Theta \left| \Psi
ight
angle &= e^{ilpha} \left| \Psi
ight
angle \ \end{aligned} \ \Theta^2 \left| \Psi
ight
angle &= \Theta e^{ilpha} \left| \Psi
ight
angle &= e^{-ilpha} \Theta \left| \Psi
ight
angle &= \left| \Psi
ight
angle \end{aligned}$$

possible for bosons, not for fermions
Kramers degeneracy

• $\Theta^2 = e^{-2\pi i S_y/\hbar}$

• total spin rotation of angle 2π about the y-axis

- for bosons $\Theta^2 = 1$
- for fermions $\Theta^2 = -1$
- $\bullet ~ |\Psi\rangle$ and $\Theta |\Psi\rangle$ are degenerate
- if $|\Psi\rangle$ is non degenerate

$$\begin{split} \Theta \left| \Psi \right\rangle &= e^{i\alpha} \left| \Psi \right\rangle \\ \Theta^{2} \left| \Psi \right\rangle &= \Theta e^{i\alpha} \left| \Psi \right\rangle = e^{-i\alpha} \Theta \left| \Psi \right\rangle = \left| \Psi \right\rangle \end{split}$$

· ...

possible for bosons, not for fermions

- In time-reversal invariant systems with an odd number of fermions, the energy levels have a degeneracy that is even.
- Kramers degeneracy is lifted by any effect that breaks the time-reversal invariance, for example external magnetic fields.

イロン イボン イヨン イヨン 三日

Magnetic moment of a non-degenerate state

• if $|\Psi\rangle$ is non degenerate

$$\left\langle \Psi \left| \vec{M} \right| \Psi \right\rangle = \left\langle \Theta \Psi \left| \vec{M} \right| \Theta \Psi \right\rangle$$
$$= -\left\langle \Psi \left| \vec{M} \right| \Psi \right\rangle$$
$$= 0$$

• The magnetic moment of a non-degenerate state vanishes

イロン イヨン イヨン イヨン 三日

conclusion

• the magnetic moment operator is antisymmetrical towards time inversion

$$\Theta ec{M} \Theta^\dagger = -ec{M}$$

- the zero-field energy of a system with an odd number of fermions have a degeneracy that is even. This degeneracy is lifted by external magnetic field.
- The magnetic moment of a non-degenerate state vanishes

э

ヘロン 人間 とくほ とくほ とう

Example 1 : NpCl_6^{2-}

イロト イヨト イヨト イヨト 一日

NpCl₆²⁻ a Kramers quartet

- NpCl₆²⁻, configuration (5*f*)³ cubic symmetry
- the ground state is of symmetry $F_{3/2u}$ (Γ_8)
- The highly symmetric lattice of diamagnetic Cs₂ZrCl₆ preserves the symmetry of the F_{3/2u} state
- EPR spectrum (Bray, Bernstein, Dennis 1978)

イロト イヨト イヨト イヨト

5f orbitals in an octahedric environment

SO-CASPT2 results

- CAS(3,7) (5f³ configuration)
- SO-RASSI calculation : 35 quartets and 84 doublets
- the ground state is of F_{3/2u} symmetry (four-fold degenerate)
- the ZFS is due to the splitting of the ${}^{4}I_{9/2}$ term of the free ion by the ligands

イロト イヨト イヨト イヨト

Crystal field theory

• crystal field operator in an octahedric environment

$$\hat{V}_{CF} = \beta(J) A_4 \langle r^4 \rangle \left(\hat{O}_4^0(J) + 5 \, \hat{O}_4^4(J) \right) + \gamma(J) A_6 \langle r^6 \rangle \left(\hat{O}_6^0(J) - 21 \, \hat{O}_6^4(J) \right)$$

$$= W \left[x \, \frac{\hat{O}_4}{F(4)} + (1 - |x|) \, \frac{\hat{O}_6}{F(6)} \right]$$

in cm⁻¹

	SO-CASSCF	SO-CASPT2	exp
F _{3/2u}	0	0	0
$E_{1/2u}$	327	266	
$F_{3/2u}(2)$	1094	1115	982
$E_{5/2u}$	5738	5980	5836
x	0.70	0.73	
W	-19	-20	
$A_4 < r^4 >$	784	833	
$A_{6} < r^{6} >$	59	55	

イロン イボン イヨン イヨン 三日

a Kramers quartet

• the ground state is 4-fold degenerate $\Rightarrow \tilde{S} = \frac{3}{2}$

Spin Hamiltonian $H_{S} = \mu_{B}g\vec{B}^{\dagger}\cdot\vec{S} + \mu_{B}G\left[B_{x}\tilde{S}_{x}^{3} + B_{y}\tilde{S}_{y}^{3} + B_{z}\tilde{S}_{z}^{3}\right]$

- x y and z are equivalent : g is isotropic
- One adds cubic terms to take into account the contribution of angular momentum

(Toulouse)

model matrices

$$\begin{split} \hline & \text{basis set } \left|\frac{\tilde{3}}{2}\right\rangle \left|\frac{\tilde{1}}{2}\right\rangle \left|-\frac{\tilde{1}}{2}\right\rangle \left|-\frac{\tilde{3}}{2}\right\rangle \\ & \text{M}_{x} = \begin{pmatrix} 0 & -\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) & 0 & -\frac{3}{4}G \\ -\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) & 0 & -(g + \frac{5}{2}G) & 0 \\ 0 & -(g + \frac{5}{2}G) & 0 & -\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) \\ -\frac{3}{4}G & 0 & -\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) & 0 \end{pmatrix} \end{split}$$

$$\mathbf{M}_{y} = \begin{pmatrix} 0 & i\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) & 0 & -i\frac{3}{4}G \\ -i\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) & 0 & i(g + \frac{5}{2}G) & 0 \\ 0 & -i(g + \frac{5}{2}G) & 0 & i\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) \\ i\frac{3}{4}G & 0 & -i\sqrt{3}(\frac{1}{2}g + \frac{7}{8}G) & 0 \end{pmatrix}$$

$$\mathbf{M}_{z} = \begin{pmatrix} -\frac{3}{2}g - \frac{27}{8}G & 0 & 0 & 0\\ 0 & -\frac{1}{2}g - \frac{1}{8}G & 0 & 0\\ 0 & 0 & \frac{1}{2}g + \frac{1}{8}G & 0\\ 0 & 0 & 0 & \frac{3}{2}g + \frac{27}{8}G \end{pmatrix}$$

イロト イヨト イヨト イヨト 二日

SO-CASPT2 matrices

basis set $|\Psi_1\rangle |\Psi_2\rangle |\Psi_3\rangle |\Psi_4\rangle$

	-0.174	-0.088 + 0.10i	0.572+0.003 <i>i</i>	-0.254 + 0.044i	۱			
$M_x = \left($	-0.088-0.101 <i>i</i>	0.174	-0.258+0.005 <i>i</i>	-0.561 + 0.114i	۱			
	0.572 – 0.003 <i>i</i>	-0.258-0.005 <i>i</i>	0.348	1.033 – 1.447 <i>i</i>				
	-0.254 - 0.044 <i>i</i>	-0.561 - 0.114i	1.033+1.447 <i>i</i>	-0.348	ļ			
eigenvalues -2.028 2.028 0.096 -0.096								

 $\mathbf{M}_{y} = \begin{pmatrix} 0.886 & 0.194 - 0.827i & 0.950 - 0.079i & 0.112 + 0.139i \\ 0.194 + 0.827i & -0.886 & 0.083 - 0.158i & -0.947i + 0.107i \\ 0.950 + 0.079i & 0.083 + 0.158i & 0.413 & 0.131 + 0.737i \\ 0.112 - 0.139i & -0.947 - 0.107i & 0.131 - 0.737i & -0.413 \end{pmatrix}$ eigenvalues -2.028 2.028 0.096 -0.096

$$\mathbf{M}_{z} = \begin{pmatrix} -0.331 & -0.986i - 1.251i & -0.430 - 0.134i & 0.236 + 0.614i \\ -0.986 + 1.251i & 0.331 & 0.11321 - 0.64851I & 0.396 - 0.215i \\ -0.430 + 0.134i & 0.113 + 0.648i & 0.369 & 0.1235 - 0.197i \\ 0.236 - 0.614i & 0.396 + 0.215i & 0.1235 + 0.197i & -0.369 \end{pmatrix}$$

eigenvalues -2.028 2.028 0.096 -0.096

SO-CASPT2 matrices in M_z eigenvectors

basis set $R |\Psi_1\rangle R |\Psi_2\rangle R |\Psi_3\rangle R |\Psi_4\rangle$

	(0.000	0.799 <i>—</i> 0.248 <i>i</i>	0.000	0.440 <i>-</i> 0.378 <i>i</i>
$M_x = $	0.799+0.248 <i>i</i>	0.000	-1.025 - 1.155i	0.000
	0.000	-1.025 + 1.155i	0.000	-0.260+0.795 <i>i</i>
	0.440+0.378 <i>i</i>	0.000	-0.260-0.795 <i>i</i>	0.000

	0.000	-0.247 - 0.799 <i>i</i>	0.000	0.378+0.440 <i>i</i>
$M_y = $	-0.247+0.799 <i>i</i>	0.000	-1.155 + 1.026i	0.000
	0.000	-1.155 - 1.026 <i>i</i>	0.000	0.795+0.261 <i>i</i>
(0.378 <i>-</i> 0.440 <i>i</i>	0.000	0.795 – 0.261 <i>i</i>	0.000

	1	2.026	0.000	0.000	0.000	
$M_z =$		0.000	-0.096	0.000	0.000	
		0.000	0.000	0.096	0.000	
	ſ	0.000	0.000	0.000	-2.026	

・ロト ・母 ト ・ヨト ・ヨー うへの

SO-CASPT2 matrices in M_z eigenvectors, M_x real

basis set $R' |\Psi_1\rangle R' |\Psi_2\rangle R' |\Psi_3\rangle R' |\Psi_4\rangle$

$$\begin{split} \mathbf{M}_{x} &= \left(\begin{array}{ccccc} 0.000 & 0.837 & 0.000 & 0.588\\ 0.837 & 0.000 & 1.556 & 0.000\\ 0.000 & 1.556 & 0.000 & 0.837\\ 0.588 & 0.000 & 0.837 & 0.000 \end{array}\right) \\ \mathbf{M}_{y} &= \left(\begin{array}{ccccc} 0.000 & -0.837i & 0.000 & 0.588i\\ 0.837i & 0.000 & -1.556i & 0.000\\ 0.000 & 1.556i & 0.000 & -0.837i\\ -0.588i & 0.000 & 0.837i & 0.000 \end{array}\right) \\ \mathbf{M}_{z} &= \left(\begin{array}{cccccccc} 2.042 & 0.000 & 0.000 & 0.000\\ 0.000 & -0.104 & 0.000 & 0.000\\ 0.000 & 0.000 & 0.104 & 0.000\\ 0.000 & 0.000 & 0.000 & -2.042 \end{array}\right) \end{split}$$

- these three matrices match the three model matrices with g=-0.406 G=0.785
- EPR experimental values g = -0.516 G = 0.882

EPR parameters

• there are two sets of parameters that math the model matrices corresponding to the transformation

$$\left\{ \Psi_{3/2} \leftrightarrow \Psi_{-1/2}; \Psi_{-3/2} \leftrightarrow \Psi_{1/2} \right\}$$

. This leads to a set of new parameters g' = (-40g - 91G)/12 and G' = (4g + 10G)/3. The existence of these two solutions was already pointed out by Bleaney.

- from the spin and orbital moment matrices one gets
 - spin contribution $g_S = 0.027 \ G_s = -0.250$
 - orbital contribution $g_L = -0.460 \ G_S = 1.285$
- the orbital and spin contributions are opposite as they are in the free ion : J = L S
- ullet the magnetic moments are very different from the free ion one $\tilde{S} \neq S$

$$\langle \Psi_{\pm 3/2} | M_z | \Psi_{\pm 3/2} \rangle = \mp 2.04 \neq \mp \frac{3}{2} g_e$$

$$\langle \Psi_{\pm 1/2} | M_z | \Psi_{\pm 1/2} \rangle = \pm 1.05 \neq \mp \frac{1}{2} g_e$$

• validation of the Spin Hamiltonian

• We have found the correspondance between the model space and the real space

$$\begin{vmatrix} \frac{3}{2} \\ \end{array} & \Leftrightarrow \quad |\Psi_{3/2}\rangle = R' |\Psi_1\rangle \\ \begin{vmatrix} \frac{1}{2} \\ \end{array} & \Leftrightarrow \quad |\Psi_{1/2}\rangle = R' |\Psi_2\rangle \\ \begin{vmatrix} -\frac{1}{2} \\ \end{array} & \Leftrightarrow \quad |\Psi_{-1/2}\rangle = R' |\Psi_3\rangle \\ \begin{vmatrix} -\frac{3}{2} \\ \end{array} & \Leftrightarrow \quad |\Psi_{-3/2}\rangle = R' |\Psi_4\rangle$$

• extraction of g and G in reasonable agreement with experimental values

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example 2 : Pseudooctahedric N(II)

メロト メタトメミト メミト 二日

Pseudooctahedric Ni(II) complex : $\tilde{S} = 1$

• spin-orbit : some orbital moment of the excited states \Longrightarrow anisotropic • model space $\tilde{S} = 1$

イロン イ団 とく ヨン イヨン

SO-CASPT2 calculation

- 3d⁸ configuration
- minimal active space CAS(8,5) 8 electrons in the 5 3d orbitals

pseudo octahedric symmetry

イロト イヨト イヨト イヨト

Active space

- CAS(8,10) doubled d shell active space, increased by a set of 3d' orbitals for a better description of the dynamical correlation within the d orbitals.
- CAS(12,12) augmented with the two bonding orbitals of the ligands eg-type orbitals
- SO-RASSI with 10 triplets and 15 singlets

		S	F Δ <i>E</i> (cm	ZFS Δ	ZFS $\Delta E(\text{cm}^{-1})$		
		$^{3}T_{1}$	${}^{3}T_{2}$	$^{3}T_{3}$	E_1	E_2	
	SCF	6213	8196	8558	2.26	16.46	
CA3(0,5)	PT2	7921	9099	9849	3.15	8.72	
CAS(8,10)	SCF	6675	8795.	9193.	2.18	15.24	
	PT2	7752	10088.	10504.	0.96	12.01	
CAS(12,12)	SCF	6699.	9291.	9764	2.03	17.04	
	PT2	7680	10578.	10938	2.18	16.92	
exp					0.34	10.70	

$$H_S = \vec{\tilde{S}}^{\dagger} \cdot \mathbf{D} \cdot \vec{\tilde{S}} + \mu_B \vec{B}^{\dagger} \cdot \mathbf{g} \cdot \vec{\tilde{S}}$$

• In the frame of the principal axis of the ZFS tensor ${\it D}$

$$H_{S}^{ZF} = \frac{1}{2} \left(D_x \tilde{S}_x^2 + D_y \tilde{S}_y^2 + D_z \tilde{S}_z^2 \right)$$

 \bullet basis set for the spin space $|0_x\rangle,~|0_y\rangle,~|0_z\rangle$

$$\begin{aligned} |0_{x}\rangle &= \mathscr{R}|0_{z}\rangle = \frac{1}{\sqrt{2}}(-|1_{z}\rangle + |-1_{z}\rangle) \\ |0_{y}\rangle &= \mathscr{R}'|0_{z}\rangle = \frac{i}{\sqrt{2}}(|1_{z}\rangle + |-1_{z}\rangle) \end{aligned}$$

$$H_{S}^{ZF} |0_{x}\rangle = \frac{1}{2} (D_{y} + D_{z}) = E_{x}^{0}$$

$$H_{S}^{ZF} |0_{y}\rangle = \frac{1}{2} (D_{x} + D_{z}) = E_{y}^{0}$$

$$H_{S}^{ZF} |0_{z}\rangle = \frac{1}{2} (D_{x} + D_{y}) = E_{z}^{0}$$

$H_S = ec{S}^\dagger$. D . $ec{S} + \mu_B ec{B}^\dagger$. g . $ec{S}$											
S_X	$ 0_x\rangle$	$ 0_{y}\rangle$	$ 0_z\rangle$	S_y	$ 0_x\rangle$	$ 0_{y}\rangle$	$ 0_z\rangle$	Sz	0 _x	$ 0_y\rangle$	$ 0_z\rangle$
$\langle 0_X $	0	0	0	$\langle 0_x $	0	0	i	(0,	0	— <i>i</i>	0
$\langle 0_y $	0	0	-i	$\langle 0_y $	0	0	0	(0,	i	0	0
$\langle 0_z $	0	i	0	$\langle 0_z $	- <i>i</i>	0	0	(0 _z	0	0	0

• with a magnetic field $\vec{B} = B_x \vec{e}_x + B_y \vec{e}_y + B_z \vec{e}_z$

• the states do not have any magnetic moment since they are non degenerate

イロン イボン イヨン イヨン 三日

• a magnetic field in direction x induces a coupling between $|0_y\rangle$ and $|0_z\rangle$ and induces a magnetic moment, even more that $E_z - E_y$ is small.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spin Hamiltonian energies with $E_x^0 = 0$ $E_y^0 = 2.5$ $E_z^0 = 18.0$ and g = 2.3

3

イロト イヨト イヨト イヨト

Spin Hamiltonian energies with $E_x^0 = 0$ $E_y^0 = 2.5$ $E_z^0 = 18.0$ and g = 2.3

3

イロト イヨト イヨト イヨト

Spin Hamiltonian energies with $E_x^0=0$ $E_y^0=2.5$ $E_z^0=18.0$ and g=2.3

Spin Hamiltonian energies with $E_x^0 = 0$ $E_y^0 = 2.5$ $E_z^0 = 18.0$ and g = 2.3

z is the axis of **easy magnetization**

(Toulouse)

- without spin-orbit coupling the three components $\left|{}^{3}A,1\right\rangle$ $\left|{}^{3}A,0\right\rangle$ and $\left|{}^{3}A,-1\right\rangle$ are degenerate
- with spin-orbit

$$\begin{split} |\Psi_{1}\rangle &= c_{11} |{}^{3}A, 1\rangle + c_{12} |{}^{3}A, 0\rangle + c_{13} |{}^{3}A, -1\rangle + \sum_{I,M_{S}} c_{1IMS} |{}^{3}\Gamma_{I}, M_{S}\rangle + \sum_{IJ} c_{1J} |{}^{1}\Gamma_{J}, 0\rangle \\ |\Psi_{2}\rangle &= c_{21} |{}^{3}A, 1\rangle + c_{22} |{}^{3}A, 0\rangle + c_{23} |{}^{3}A, -1\rangle + \sum_{I,M_{S}} c_{2IMS} |{}^{3}\Gamma_{I}, M_{S}\rangle + \sum_{IJ} c_{2J} |{}^{1}\Gamma_{J}, 0\rangle \\ |\Psi_{3}\rangle &= c_{31} |{}^{3}A, 1\rangle + c_{32} |{}^{3}A, 0\rangle + c_{33} |{}^{3}A, -1\rangle + \sum_{I,M_{S}} c_{2IMS} |{}^{3}\Gamma_{I}, M_{S}\rangle + \sum_{IJ} c_{3J} |{}^{1}\Gamma_{J}, 0\rangle \end{split}$$

with energies E_1 , E_2 and E_3 .

• Since the spin-orbit is a small perturbation, $c_{i1}^2 + c_{i2}^2 + c_{i3}^2$ close to 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

effective Hamiltonian technique

• effective Hamiltonian matrix in the $\left|{}^{3}A,1\right\rangle$ $\left|{}^{3}A,0\right\rangle$ $\left|{}^{3}A,-1\right\rangle$ target space ${\cal H}^{eff}={\bf C}^{-1}{\bf E}{\bf C}$

 $C_{ij} = c_{ij} i, j = 1, 3$ $E_{ij} = E_i \delta_{ij}$

properties of effective Hamiltonian

 $P=\sum_{M_S}\left|{}^{3}A,M_S\right>\left<{}^{3}A,M_S\right|$ projector on the target space

basis set
$$|{}^{3}A,1
angle|{}^{3}A,0
angle$$
 $|{}^{3}A,-1
angle$

$$\mathbf{H}^{eff} = \begin{pmatrix} 0.155 & -0.373 + 0.453i & 3.211 + 1.293i \\ -0.373 - 0.453i & 3.048 & 0.373 - 0.453i \\ 3.211 - 1.293i & 0.373 + 0.453i & 0.155 \end{pmatrix}$$

basis set
$$|{}^{3}A,1
angle|{}^{3}A,0
angle$$
 $|{}^{3}A,-1
angle$

$$\begin{split} \mathbf{H}^{eff} = \begin{pmatrix} 0.155 & -0.373 + 0.453i & 3.211 + 1.293i \\ -0.373 - 0.453i & 3.048 & 0.373 - 0.453i \\ 3.211 - 1.293i & 0.373 + 0.453i & 0.155 \end{pmatrix} \\ \hline \\ \textbf{basis set } |\tilde{1}\rangle \big| \tilde{0}\rangle \ \big| - \tilde{1} \rangle \end{split}$$

$$\mathbf{H}_{S} = \begin{pmatrix} \frac{1}{2} (D_{xx} + D_{yy} + 4D_{zz}) & \frac{1}{\sqrt{2}} (D_{zx} - iD_{zy}) & \frac{1}{2} (D_{xx} - D_{yy} - 2iD_{xy}) \\ \frac{1}{\sqrt{2}} (D_{zx} + iD_{zy}) & D_{xx} + D_{yy} & \frac{1}{\sqrt{2}} (-D_{zx} + iD_{zy}) \\ \frac{1}{2} (D_{xx} - D_{yy} + 2iD_{xy}) & \frac{1}{\sqrt{2}} (-D_{zx} - iD_{zy}) & \frac{1}{2} (D_{xx} + D_{yy} + 4D_{zz}) \end{pmatrix}$$

54 / 68

イロト イヨト イヨト イヨト 二日

basis set
$$|{}^{3}A,1
angle|{}^{3}A,0
angle$$
 $|{}^{3}A,-1
angle$

$$\begin{split} \mathbf{H}^{e\!f\!f} = \begin{pmatrix} 0.155 & -0.373 + 0.453i & 3.211 + 1.293i \\ -0.373 - 0.453i & 3.048 & 0.373 - 0.453i \\ 3.211 - 1.293i & 0.373 + 0.453i & 0.155 \end{pmatrix} \\ \hline \\ \textbf{basis set } \left| \tilde{1} \right\rangle \left| \tilde{0} \right\rangle \left| - \tilde{1} \right\rangle \end{split}$$

$$\mathbf{H}_{S} = \begin{pmatrix} \frac{1}{2} (D_{xx} + D_{yy} + 4D_{zz}) & \frac{1}{\sqrt{2}} (D_{zx} - iD_{zy}) & \frac{1}{2} (D_{xx} - D_{yy} - 2iD_{xy}) \\ \frac{1}{\sqrt{2}} (D_{zx} + iD_{zy}) & D_{xx} + D_{yy} & \frac{1}{\sqrt{2}} (-D_{zx} + iD_{zy}) \\ \frac{1}{2} (D_{xx} - D_{yy} + 2iD_{xy}) & \frac{1}{\sqrt{2}} (-D_{zx} - iD_{zy}) & \frac{1}{2} (D_{xx} + D_{yy} + 4D_{zz}) \end{pmatrix}$$

 $\bullet\,$ comparison of the two matrices $\rightarrow\,$ all the elements of the $D\,$ tensor

$$\mathbf{D} = \left(\begin{array}{rrrr} 3.055 & 1.293 & 0.527 \\ 1.293 & -3.367 & -0.640 \\ 0.527 & -0.640 & 0.311 \end{array}\right)$$

イロト イヨト イヨト イヨト 二日

• the diagonalization of **D** leads to the magnetic axis

2

イロト イヨト イヨト イヨト

• the diagonalization of **D** leads to the magnetic axis

• this method needs a description by a two-step method for which the spin-orbit coupling is introduced a posteriori

Maurice, R et al JCTC 11 (2009) 2977.

イロン イ団 とく ヨン イヨン

Calculation of the g factors

model matrices

basis set $|0_x\rangle |0_y\rangle |0_z\rangle$

$$\mathbf{M}_{X} = \begin{pmatrix} 0 & -ig_{XZ} & ig_{XY} \\ ig_{XZ} & 0 & -ig_{XX} \\ -ig_{XY} & ig_{XX} & 0 \end{pmatrix}$$

$$\mathbf{M}_{y} = \begin{pmatrix} 0 & -ig_{yz} & ig_{yy} \\ ig_{yz} & 0 & -ig_{yx} \\ -ig_{yy} & ig_{yx} & 0 \end{pmatrix}$$

$$\mathbf{M}_{z} = \begin{pmatrix} 0 & -ig_{zz} & ig_{zy} \\ ig_{zz} & 0 & -ig_{zx} \\ -ig_{zy} & ig_{zx} & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

calculated matrices

basis set $|\Psi_1\rangle |\Psi_2\rangle |\Psi_3\rangle$

$$\mathbf{M}_{x} = \begin{pmatrix} 0 & 0.002 & -0.001 \\ 0.002 & 0 & 0.636 - 2.106i \\ -0.001 & 0.636 + 2.106i & 0 \end{pmatrix}$$

$$\mathbf{M}_{y} = \begin{pmatrix} 0 & 2.234 + 0.247i & -0.003 - 0.001i \\ 2.234 - 0.247i & 0 & -0.002i \\ -0.003 + 0.001i & 0.002i & 0 \end{pmatrix}$$

$$\mathbf{M}_{z} = \begin{pmatrix} 0 & -0.004 & 2.032 + 0.868i \\ -0.004 & 0 & 0.001i \\ 2.032 - 0.868i & -0.001i & 0 \end{pmatrix}$$

イロト イロト イヨト イヨト 二日

calculated matrices after rotation

$$\begin{array}{l} \text{basis set } |\Psi_1\rangle \; e^{i\alpha} \; |\Psi_2\rangle \; e^{i\beta} \; |\Psi_3\rangle \\ \hline \mathbf{M}_x = \begin{pmatrix} 0 & 0.002i & 0.002i \\ -0.002i & 0 & 2.200i \\ -0.002i & -2.200i & 0 \end{pmatrix} \\ \mathbf{M}_y = \begin{pmatrix} 0 & -0.004i & 2.210i \\ 0.004i & 0 & -0.002i \\ 2.210i & 0.002i & 0 \end{pmatrix} \\ \mathbf{M}_y^S = \begin{pmatrix} 0 & -ig_{xz} & ig_{xy} \\ ig_{xz} & 0 & -ig_{xx} \\ -ig_{xy} & ig_{xx} & 0 \end{pmatrix} \end{array}$$

$$\mathbf{M}_{z} = \begin{pmatrix} 0 & 2.248i & 0.004i \\ -2.248i & 0 & 0.002i \\ -0.004i & -0.002i & 0 \end{pmatrix} \qquad \mathbf{M}_{z}^{S} = \begin{pmatrix} 0 & -ig_{zz} & ig_{zy} \\ ig_{zz} & 0 & -ig_{zx} \\ -ig_{zy} & ig_{zx} & 0 \end{pmatrix}$$

イロト イロト イヨト イヨト 二日
- one builds g
- \bullet one deduces ${\bm G} = {\bm g} {\bm g}^\dagger$
- one gets the principal axis of **g** and the g factors
- $g_1 = 2.200 \ g_2 = 2.248 \ g_3 = 2.210$
- principal axis of G close to those of D

э

イロト イヨト イヨト イヨト

 $\tilde{S} = 1$

Spin Hamiltonian versus ab initio

・ロット 4回ット 4回ット 日、 20~

60 / 68

Pseudooctahedric Ni(II) complexes

the series

			1	2	3	4	5
			Ni(bipy) ₃	$Ni(bipy)_2(NCS)_2$	Ni(bipy)20x	$Ni(bipy)_2NO_3$	NiL ₂ NO ₃
_	exp	X-Ni-X	79	91	80	60	60
		$D~({ m cm}^{-1)})$	-1.18	-1.74	-1.44	-5.82	-10.00
		E/D	0.17	0.24	0.04	0.04	0.07
	SO-CASPT2	D (cm ⁻¹⁾)	-2.807	-3.55	-3.59	-5.62	-11.52
		E/D	0.18	0.48	0.27	∍ → ∢0.26∢ ≣ →	≣0.04 < ભ
(Toulouse)						61 / 68	

Crystal field : \mathcal{O}_h symmetry

$$\frac{T_2 | {}^{3}A_2(t_{2g}^6 e_g^2) {}^{3}T_2(t_{2g}^5 e_g^3)}{0 \sqrt{2\lambda}} \\
 \frac{0 \sqrt{2\lambda}}{\sqrt{2\lambda} \Delta}$$

$$|{}^{3}T_{2}; T_{2}; xy\rangle = \frac{1}{\sqrt{2}} \left(-|T_{2}; xz\rangle \otimes |0\rangle_{x} + |T_{2}; yz\rangle \otimes |0\rangle_{y}\right)$$
$$|{}^{3}T_{2}; T_{2}; yz\rangle = \frac{1}{\sqrt{2}} \left(-|T_{2}; xy\rangle \otimes |0\rangle_{y} + |T_{2}; xz\rangle \otimes |0\rangle_{z}\right)$$
$$|{}^{3}T_{2}; T_{2}; xz\rangle = \frac{1}{\sqrt{2}} \left(|T_{2}; xy\rangle \otimes |0\rangle_{x} - |T_{2}; yz\rangle \otimes |0\rangle_{z}\right)$$

$$E_{xy}^{SO} = \frac{1}{2} \left(E_{xz}^{SF} + E_{yz}^{SF} \right) = \Delta$$

$$E_{yz}^{SO} = \frac{1}{2} \left(E_{xy}^{SF} + E_{xz}^{SF} \right) = \Delta$$

$$E_{xz}^{SO} = \frac{1}{2} \left(E_{xy}^{SF} + E_{yz}^{SF} \right) = \Delta$$

Crystal field : $\mathscr{C}_{2\nu}$ symmetry

orbitals

SF states

SO states sym T₂

イロン イヨン イヨン イヨン 三日

spin	-free	spin-orbit			
$^{3}A_{2}$	2Δ	$T_2; XZ, YZ, XY$	2Δ		
$^{3}T_{2}, XZ$	$3\Delta - \frac{1}{2}\delta$	$T_2; XZ$	$3\Delta + \frac{1}{4}\delta$		
$^{3}T_{2}, YZ$ $^{3}T_{2}, XY$	$3\Delta + \frac{1}{4}\delta$	T ₂ ; YZ T ₂ ; XY	$3\Delta - \frac{1}{8}\delta$		

 $D < 0 \Longrightarrow \delta > 0 \Longrightarrow A$ is a better σ donnor as B

Crystal field : $\mathscr{C}_{2\nu}$ symmetry

spectrochemical series bipy>NCS⁻>ox >NO3⁻

energies in cm^{-1}

		$Ni(bipy)_3$	$Ni(bipy)_2(NCS)_2$	Ni(bipy) ₂ ox	$Ni(bipy)_2NO_3$	NiL_2NO_3
	X-Ni-X	79	91	80	60	60
exp	D	-1.18	-1.74	-1.44	-5.82	-10.00
	D	-2.807	-3.55	-3.59	-5.62	-11.52
+h	Δ	9426	8318	8171	8581	7725
un	δ	329	658	87	2194	2326
	δ/Δ	0.034	0.079	0.010	0.255	0.301

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- for transition metal complexes with a quenched orbital momentum and S=1
- the anisotropic magnetic properties are due to the zero field splitting since the Zeeman interaction is almost isotropic
- the anisotropy is larger with a scheme $E_x \simeq E_y \ll E_z$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

summary

• 🙂

- the symmetry of the wave function is well defined
- the wave functions of all the components of degenerate states are known
- use of the single symmetry to describe dynamical correlation : cheaper and usual machinery
- 😳
- a lot of SF excited states needs to be calculated for the correct description of the ground state
- not systematic improvement of the calculation
- for lanthanide and actinide, crystal field is a perturbation of the SOC

イロト イヨト イヨト イヨト

- from the matrices of magnetic moments, one gets all information about the response to an external magnetic field.
- ullet restriction to a model space \Longrightarrow spin Hamiltonian parameters
- for the calculation of the ZFS tensor, needs a two-step method
- the results are satisfactory but numerical accuracy not reached

イロト イヨト イヨト イヨト

- Liviu Chibotaru, Liviu Ungur (Leuven)
- Nathalie Guihéry, Jean-Paul Malrieu (Toulouse), Rémi Maurice (Nantes)
- Elena Malkin (Tromsø), Dayán Páez Hernández (Santiago)

э

イロン イ団 とく ヨン イヨン