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Outline

• What is NMR?

• Phenomenological Bloch equations

• Introductory example: spin-lattice relaxation

• Elements of statistics and theory of random 
processes

• Time-dependent perturbation theory

• A simple model and its predictions

• Dipole-dipole relaxation
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What is NMR?

• Features: 
 Splitting controlled by the 

experimenter (B0 field)

 Many species possible to 
study (I≠0, γI), most 
common is 1H

 Very small energy 
splitting & population 
difference with the 
available magnets

Atkins et al. ”Quanta, Matter 
and Change”

1H NMR of ethanol

• What NMR  
measures in 
solution:

 Line positions 
(chemical shifts)

 Splittings (J-
couplings)

 Integrals

 Relaxation  

• Relaxation means return to equilibrium after a perturbation
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Simple NMR: magnetization vector

• The equilibrium state of an 
ensemble of N (non-interacting) 
spins can be described by a 
magnetization vector, oriented 
along B0 and with the length:

• The magnetization vector is a 
classical quantity and can be 
described by classical physics

• Effect of radiofrequency pulses
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Figures from: Kowalewski &
Mäler, ”Nuclear Spin Relaxation
in Liquids”, Taylor & Francis, 2006

Simple relaxation: Bloch equations

• Phenomenological 
description of the 
magnetization vector 
after a pulse (in rotating 
frame):

• Free induction decay 
(FID) on resonance 
decays exponentially 
with T2, transverse 
relaxation time
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Spin-lattice relaxation

• Consider a sequence of two RF-pulses: (180º-t-90º-
FID), called inversion-recovery experiment:

Mz(t)  M0(12exp(t /T1))

Meaning of T1 and T2

• Longitudinal relaxation (T1 ): energy exchange with 
other degrees of freedom (the lattice)

• Transverse relaxation (T2 ): loss of phase coherence, 
gives decay of FID and the line-broadening:
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Simple theory – spin-lattice relaxation 1.

• Consider a system of I=1/2 
spins

• Energy splitting proportional 
to B0,ω0=Larmor frequency

• Populations: nα, nβ
• At equilibrium, Boltzmann 

distributed: nαeq, nβeq

• A non-equilibrium situation 
can be created by changing 
the magnetic field or by RF-
pulses

Simple theory – spin-lattice relaxation 2.

• Assume simple kinetics 
for changing the 
populations of the two 
states:
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Simple theory – spin-lattice relaxation 3.

• Instead of discussing 
changes in populations, 
we introduce the sum 
(N) and difference (n) in 
populations

 eq
I nnW

dt
dn
dt
dN
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Simple theory – spin-lattice relaxation 4.
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The simple result shows that the 
change in the difference in 
population (return to equilibrium 
or relaxation) occurs through an 
exponential process.

If we assume that the difference 
in population is proportional to 
the longitudinal component of 
the magnetization vector, Mz(t), 
we can identify from the Bloch 
equations:

1/T1=2WI
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Transition probabilities

• The relaxation rate is proportional to the transition 
probability

• Transitions giving rise to NMR relaxation are non-
radiative, they do not arise  through emission or 
absorption of radiation from radiofrequency field

• They occur as a result of weak magnetic interactions 
within the sample, if those oscillate in time with 
frequency components at the Larmor frequency

• Weak interaction → slow relaxation

Where do the transitions come from?

• Weak magnetic interactions 
often anisotropic

• Time-dependence through 
molecular motions 

• The reorientation of 
molecules (or molecule-fixed 
axes) can be pictured as a 
random walk on a sherical 
surface

• The combination of the 
motion and anisotropic 
interactions leads to:

• Hamiltonians varying 
randomly with time: 
stochastic interaction
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Stochastic variables 1.

• The orientation of a 
molecule-fixed axis can be 
described in terms  of 
stochastic variables, 
characterized by probability 
density

• Means: the probability that 
X and Y take on values in 
the indicated ranges
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p x y dxdy

P x X x dx y Y y dy
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orientation

Stochastic variables 2.

• If p(x;y)=p(x)p(y) we say that the two variables are statistically 
independent

• We can also write: p(x;y)=p(x)p(x|y), the latter meaning the 
probability that Y takes on the value y provided that X takes on 
value x conditional probability

• Average value (mean):

• The second moment around the mean (variance):

1 ( )m X xp x dx




  

2 2 2 2
2 1 1( )X m X m     

If the two variables are statistically independent: 

XYm 11Product of two variables:

YXXYm 11
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Stochastic variables 3.

• The mixed second moment:

• Correlation coefficient:

• Vanishes if X and Y statistically independent

11 10 01 10 01( ) ( )X m Y m XY m m     
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Stochastic functions of time

The time-dependence of anisotropic interactions can be 
described in terms of stochastic functions of time 
(stochastic processes) due to the random motions

   ,Y t yp y t dy




 Average value:

The properties of a stochastic function are in general 
dependent on t.

What is the correlation between Y(t) at two time-
points, t1 and t2?
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What is the correlation between Y(t) at two time-points, 
t1 and t2?

“t1-t2 small” “t1-t2 large”

•Correlation vanishes for large time separations

•The same is true for an ensemble average over 
many spins

Stationary stochastic process 

),|,(),(),;,( 2211112211 tytyptyptytyp 

If the probability p(y1,t1) density does NOT vary with 
time, the process is called stationary. In such a case:

 ,|),|0,(),|,( 2112212211 yypttyyptytyp 

If t1 and t2 are close (defined by the time-scale of 
the random oscillation of Y(t)) a correlation is 
probable 

Useful formulation with the conditional probability 
density for Y(t) acquiring the value y2 at t2 provided 
that it takes on y1 at t1:
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Time-correlation functions
The average value of a product of a stationary process, 
Y(t) at two different times can be defined. Because this 
quantity is only dependent on the time difference, t=t2-t1, 
we can define:

)()()()( 1221 GttGtYtY 

Time-correlation function (TCF)

Autocorrelation function: 
The same function correlated with itself at 

different time points. Acts as a correlation coefficient 
between the same stochastic variable at different points 
in time.
Cross-correlation function:

Different functions at different points in time are 
correlated

Properties of time-correlation 
functions

The autocorrelation function of Y at t=0 becomes the 
variance of Y:

22|)(|)(*)()0(  tYtYtYG

  0lim 





G
Reasonable to assume that correlation vanishes for long . 

The following TCF works (and can be derived within a 
simple model):      cGG  /exp0 

The average of Y(t) can often be assumed to be zero.

The correlation time, τc, can be interpreted as a measure
of persistence of the correlation of the values Y(t) 
at different points in time.
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Illustration of correlations on different 
time-scales

“short correlation time” “long correlation time”

Correlation function Correlation function

Size and temperature dependence of  
correlation time 

One can use hydrodynamic arguments to derive the 
Stokes-Einstein-Debye relationship for a sphere:

Tk
V

Tk
a

BB
c

 
3
4 3

a = radius
= viscosity

•Correlation time increases with molecular size
•Correlation time increases with viscosity
•Correlation time decreases with temperature

This relation is valid for a rank-2 spherical harmonics

The temperature dependence is often modeled by an 
Arrhenius-type expression:

 TkE Bac /exp0 
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Spectral density functions

Spectral density functions are Fourier transforms of 
the time-correlation functions.

       diGJ  


exp2
0

From the exponentially decaying time-correlation 
function we get a Lorentzian spectral density 
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Spectral density functions
The spectral density function as a function of 
frequency calculated with different correlation 
times.
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Time-dependent perturbation theory

• Hamiltonian acting on system is composed of two parts:

• Time-independent Hamiltonian with known solutions

• Time-dependent small perturbation, stochastic function of time

• Consider a two-level system

• The transition probability between the levels a and b:

• Wiener- Khinchin theorem: the spectral density function is a 
measure of the distribution of fluctuations in Y(t) among different 
frequencies

)(ˆˆ)(ˆ
0 tVHtH 

)()(2
0

abba
i

baab JdeGW ab    




Simple two-level system
 1 2 2

0

2
1/ 2 2 0

1
c

c

T W G

 

 


0 = Larmor frequency, (resonance frequency).
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Relaxation interactions in real systems

• Dipole-dipole interaction

• Chemical shift anisotropy

• Quadrupolar interaction (I≥1)

• Spin-rotation

• Scalar

• Paramagnetic

The dipole-dipole (DD) interaction

• Every nuclear spin (I>0) 
acts as a magnetic 
dipole, generating a 
local magnetic field

• This magnetic field 
interacts with the 
magnetic moments of 
other nuclei nearby
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The dipole-dipole interaction 2

• The DD interaction 
energy:

• The reorientation of the 
IS-axis – by molecular 
motion – affects the DD 
interaction

3 2 ˆˆ( ) (3cos 1)

 (solid angle) stands for ( , )
DD IS z zH r I S

 

  


How to derive the exponential tcf?

• Consider a stationary process:

• The tcf is: 

• Isotropic liquid: P(Ω)= P(Ω0)=1/4π

• Conditional probability                      from Fick’s law for rotational 
diffusion:

• Boundary condition:

• Leads to:

• Identical to the ”guessed” exponential function with:   
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4 exp[6DR]

1/ 6c RD 
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The dipole-dipole relaxation 

• To understand the DD 
relaxation, we need to 
consider transition 
probabilities in a four-
level system 

• Transition probabilities 
originate from molecular 
motion by stochastic 
variation of the DD 
interaction, 

( )ab abW J 

( )ab abW J 

Spin-lattice relaxation: Solomon equations 
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Single exponential relaxation

• ... (well-defined T1) occurs only in some limiting 
cases:

 I and S are identical (e.g. protons in water)

 One of the spins (say S) has another, faster 
relaxation mechanism (e.g. unpaired electron spin)

 One of the spins (say I) is saturated by rf irradiation 
(e.g. 13C-{1H} experiment)

• Otherwise, bi-exponential relaxation

13C relaxation under proton decoupling

• Spin-tattice 
relaxation rate (T1

-1) 
depends on the 
molecular size (τc) 
and the magnetic 
field

• For rapidly-moving 
systems (small 
molecules, extreme 
narrowing) T1

-1=T2
-1

9.4T

18.8T

13C-1H
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The nuclear Overhauser effect

• Continuous 
irradiation of the 
I-spin creates 
non-equilibrium 
populations for 
the S-spin

• This multiplies 
the S-spin signal 
intensity by a 
factor 1+η (the 
NOE factor),

SS

ISI


 

The Nuclear Overhauser effect 2.

• The transition 
probabilities W0

and W2 have 
different 
correlation time 
dependences

• Example: I & S 
are both protons, 
B0=21 T
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Summary

• Relaxation rates are related to transition probabilities

• Relaxation (transitions) occur through a combination 
of anisotropic interactions and random walk motion 

• Fundamental quantities: time-correlation functions 
and spectral densities for the stochastic processes 

• The relationship between transition probabilities and 
the random motions can be derived through time-
dependent perturbation theory

• Important source of relaxation: the dipole-dipole 
interaction


