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* What is NMR?
+ Phenomenological Bloch equations
 Introductory example: spin-lattice relaxation

» Elements of statistics and theory of random
processes

+ Time-dependent perturbation theory
* A simple model and its predictions
* Dipole-dipole relaxation




What is NMR?

* Features:

» Splitting controlled by the
experimenter (B, field)

» Many species possible to
study (/#0, y,), most
common is 'H

» Very small energy
splitting & population
difference with the
available magnets
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+ What NMR
measures in
solution:
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* Relaxation means return to equilibrium after a perturbation




Simple NMR: magnetization vector

* The equilibrium state of an
ensemble of N (non-interacting)
spins can be described by a
magnetization vector, oriented
along B, and with the length:

_ Ny’ I(I+1)B,
’ 3k,T

+ The magnetization vector is a

classical quantity and can be
described by classical physics

» Effect of radiofrequency pulses

Figures from: Kowalewski &
Maler, "Nuclear Spin Relaxation
in Liquids”, Taylor & Francis, 2006

Simple relaxation: Bloch equations

* Phenomenological Free induction decay

description of the (FID) on resonance

magnetization vector decays exponentially

after a pulse (in rotating with T, transverse

frame): relaxation time
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M, , = Myexp(-t/T,)




Spin-lattice relaxation

» Consider a sequence of two RF-pulses: (180°-t-90°-
FID), called inversion-recovery experiment:
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Meaning of T, and T,

+ Longitudinal relaxation (T, ): energy exchange with
other degrees of freedom (the lattice)

+ Transverse relaxation (T, ): loss of phase coherence,
gives decay of FID and the line-broadening:
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Simple theory — spin-lattice relaxation 1.

» Consider a system of /I=1/2
spins

» Energy splitting proportional
to B, wy=Larmor frequency

* Populations: n, Ng

» At equilibrium, Boltzmann B
distributed: n 29, ng®

* A non-equilibrium situation
can be created by changing
the magnetic field or by RF-
pulses

Simple theory — spin-lattice relaxation 2.

» Assume simple kinetics
for changing the
populations of the two

states:
Bo
%=(nﬂ_n;q)wﬂa —(n, — W, =
=W, (n, —n —n, +n)
LW, (1, - =, )




Simple theory — spin-lattice relaxation 3.

* Instead of discussing
changes in populations,
we introduce the sum

(N) and difference (n) in
populations
dN

—=0
dt

Zl’;z—ZW,(n—neq)

Simple theory — spin-lattice relaxation 4.

The simple result shows that the dN
change in the difference in dt

population (return to equilibrium an
or relaxation) occurs through an o
exponential process.

If we assume that the difference
in population is proportional to
the longitudinal component of
the magnetization vector, M,(t),
we can identify from the Bloch
equations:

1/T,=2W,

=0

=-2W, (n - neq)




Transition probabilities

» The relaxation rate is proportional to the transition
probability

» Transitions giving rise to NMR relaxation are non-
radiative, they do not arise through emission or
absorption of radiation from radiofrequency field

» They occur as a result of weak magnetic interactions
within the sample, if those oscillate in time with
frequency components at the Larmor frequency

» Weak interaction — slow relaxation

Where do the transitions come from?

*  Weak magnetic interactions
often anisotropic

» Time-dependence through
molecular motions

* The reorientation of
molecules (or molecule-fixed
axes) can be pictured as a
random walk on a sherical
surface

* The combination of the
motion and anisotropic
interactions leads to:

* Hamiltonians varying
randomly with time:
stochastic interaction




Stochastic variables 1.

* The orientation of a

molecule-fixed axis can be z
q q laboratory-frame
deSCFIbed N termS Of coordinate system
stochastic variables, .
characterized by probability . ; molecule-fixed axis
density P s
p(x; y)dxdy = orientation

=P(x<X<x+dx;y<Y<y+dy)

* Means: the probability that
X and Y take on values in
the indicated ranges

Stochastic variables 2.

« If p(x;¥)=p(x)p(y) we say that the two variables are statistically
independent

»  We can also write: p(x;y)=p(x)p(x]y), the latter meaning the
probability that Y takes on the value y provided that X takes on
value x = conditional probability <

« Average value (mean): m=(X)= _[ xp(x)dx
» The second moment around the mean (v?riance):

Hy :<(X_m1)2>:<X2>_m12 =0’

Product of two variables: myq=(XY)
If the two variables are statistically independent: my; = (XY)=(X)(Y)




Stochastic variables 3.

* The mixed second moment:

My = <(X—m10)><(Y—m01)> = <XY>—m10m01

» Correlation coefficient:

Hyy
04Oy

» Vanishes if X and Y statistically independent

Stochastic functions of time

The time-dependence of anisotropic interactions can be
described in terms of stochastic functions of time
(stochastic processes) due to the random motions

Average value: <Y(t)> - T wp(y.t)dy

The properties of a stochastic function are in general
dependent on t.

What is the correlation between Y(¢) at two time-
points, t, and t,?




What is the correlation between Y(t) at two time-points,
t, and t,?

“ty-t, small’ “t,-t, large”

*Correlation vanishes for large time separations

*The same is true for an ensemble average over
many spins

Stationary stochastic process

If t, and t, are close (defined by the time-scale of
the random oscillation of Y(t)) a correlation is
probable

Useful formulation with the conditional probability
density for Y(f) acquiring the value y, at t, provided
that it takes on y, at ¢,:

p(y1.ti;yo,to) = p(y1.t)p(y1.t | y2.t2)
If the probability p(y,,t;) density does NOT vary with

time, the process is called stationary. In such a case:

p(y1ty | Yo.ta) = P(y10| ¥o.ta —t1) = p(y1 | yo,7)
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Time-correlation functions

The average value of a product of a stationary process,
Y(t) at two different times can be defined. Because this
quantity is only dependent on the time difference, t=t,-t,,
we can define:

(Y(t1)Y(t2)) = G(t2 —t1) = G(7)
Time-correlation function (TCF)

Autocorrelation function:

The same function correlated with itself at
different time points. Acts as a correlation coefficient
between the same stochastic variable at different points
in time.

Cross-correlation function:

Different functions at different points in time are

correlated

Properties of time-correlation
functions

The autocorrelation function of Y at t=0 becomes the
variance of Y:

GO)=(Y(O) () = IV P )= o

The average of Y(t) can often be assumed to be zero.

Reasonable to assume that correlation vanishes for long .
lim G(z)=0
T—>0
The following TCF works (and can be derived within a
simple model):  G(r)=G(0)exp(-|/7.)

The correlation time, 7., can be interpreted as a measure
of persistence of the correlation of the values Y({)
at different points in time.
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lllustration of correlations on different
time-scales

“short correlation time” “long correlation time”

Size and temperature dependence of
correlation time

One can use hydrodynamic arguments to derive the
Stokes-Einstein-Debye relationship for a sphere:

8
, Ama” _ Vn a = radius
¢ 3kgT  kgT 1 = viscosity

This relation is valid for a rank-2 spherical harmonics

*Correlation time increases with molecular size
«Correlation time increases with viscosity
*Correlation time decreases with temperature

The temperature dependence is often modeled by an
Arrhenius-type expression:

Te =1 exp(Ea /kBT)
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Spectral density functions

Spectral density functions are Fourier transforms of
the time-correlation functions.

0

J(@)=2[G(z)exp(-inr)dz
0

From the exponentially decaying time-correlation
function we get a Lorentzian spectral density

27,

2_2

J(w):G(O)Ha) T

Spectral density functions

The spectral density function as a function of
frequency calculated with different correlation

times. Corrrelation time
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Time-dependent perturbation theory
H(t)=Hy +V(t)

* Hamiltonian acting on system is composed of two parts:

* Time-independent Hamiltonian with known solutions

+ Time-dependent small perturbation, stochastic function of time
« Consider a two-level system

« The transition probability between the levels a and b:

Wb =2 Gpa(r)e ™7 dr = Jpa(@ap)
0

» Wiener- Khinchin theorem: the spectral density function is a
measure of the distribution of fluctuations in Y(f) among different
frequencies

Simple two-level system
2T
1/T =2W =2G(0)——=—
1 ( )1+a)ozrf
®, = Larmor frequency, (resonance frequency).
20
15 |

10 -

1T, (s7)

o~
10° 10?2 10* 10° 10° 10" 107
o, (rad s)
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Relaxation interactions in real systems

Dipole-dipole interaction
Chemical shift anisotropy
Quadrupolar interaction (121)
Spin-rotation

Scalar

Paramagnetic

The dipole-dipole (DD) interaction

Every nuclear spin (/>0)
acts as a magnetic
dipole, generating a
local magnetic field

This magnetic field

interacts with the
magnetic moments of
other nuclei nearby

15



The dipole-dipole interaction 2

 The DD interaction
energy:

H,,(Q) e ri(3cos® 6—1)1.S.
Q (solid angle) stands for (6, ¢)

* The reorientation of the
IS-axis — by molecular
motion — affects the DD
interaction

z

laboratory-frame
coordinate system

IS spin vector

How to derive the exponential tcf?

+ Consider a stationary process: y.
+ Thetcfis: G,(r)=(Y,,(t)Y,,(t+7)) =

o= W(S cos’ O(t) 1)

= [ [ 120(Q)E(@PQ) PQ, | Q,7)dQ,dQ

+ Isotropic liquid: P(Q)= P(Q,)=1/41r

+ Conditional probability P(Q), |Q,7) from Fick’s law for rotational

e 5 ~
dlﬁusmn.gﬂg,r) =D,A,f(Q,7)

« Boundary condition: P(€2,[€,0)=6(Q2-Q,)

+ Leads to: G,(7)=7=exp[—6D,7]

« Identical to the "guessed” exponential function with: 7, =1/6D,

16



The dipole-dipole relaxation

BBs

* To understand the DD
relaxation, we need to
consider transition
probabilities in a four-
level system

» Transition probabilities
originate from molecular

motion by stochastic W, W,
variation of the DD |
interaction, T

ulus
w,~J(w,)

Spin-lattice relaxation: Solomon equations

d(I ) A
%: =+ 20, + (1) = 1) = (7, = (3. )= 520
d<dfz> ==, =W(L.) = 1) = W, + 27, +Wz)(<5z>—S§")

LI

el K

al(s)) o alis)s

dt

pr =Wy +2W, +W, . ; .
spin-lattice relaxation rates

Ps =Wy +2W s +W,

o =W,-W, cross-relaxation rate
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Single exponential relaxation

* ... (well-defined T,) occurs only in some limiting

cases:

v' | and S are identical (e.g. protons in water)

v One of the spins (say S) has another, faster
relaxation mechanism (e.g. unpaired electron spin)

v One of the spins (say 1) is saturated by rf irradiation
(e.g. 8C-{"H} experiment)
» Otherwise, bi-exponential relaxation

13C relaxation under proton decoupling

Spin-tattice
relaxation rate (T,)
depends on the
molecular size (t,)
and the magnetic
field

For rapidly-moving
systems (small
molecules, extreme
narrowing) T, =T,

Relaxation rate (s”)
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The nuclear Overhauser effect

* Continuous

irradiation of the
I-spin creates
non-equilibrium
populations for
the S-spin

This multiplies
the S-spin signal
intensity by a
factor 1+n (the

NOE factor),
n= YiOis
VsPs

o Bds
b

The Nuclear Overhauser effect 2.

The transition
probabilities W,
and W, have
different
correlation time
dependences
Example: | & S

are both protons,
Bp=21T
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10 1 ;1-" 164 1'04"
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b
1n.l5 1‘0-11 Eh-ﬂ?
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Summary

Relaxation rates are related to transition probabilities

Relaxation (transitions) occur through a combination
of anisotropic interactions and random walk motion

Fundamental quantities: time-correlation functions
and spectral densities for the stochastic processes

The relationship between transition probabilities and
the random motions can be derived through time-
dependent perturbation theory

Important source of relaxation: the dipole-dipole
interaction
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