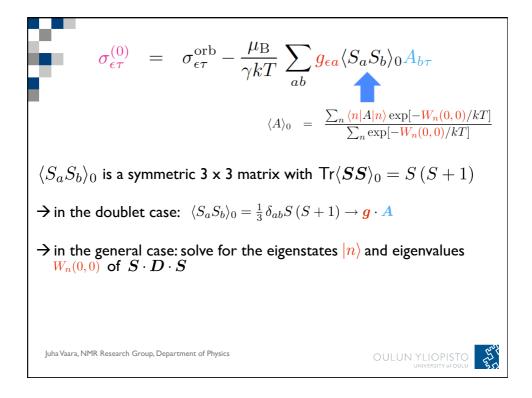
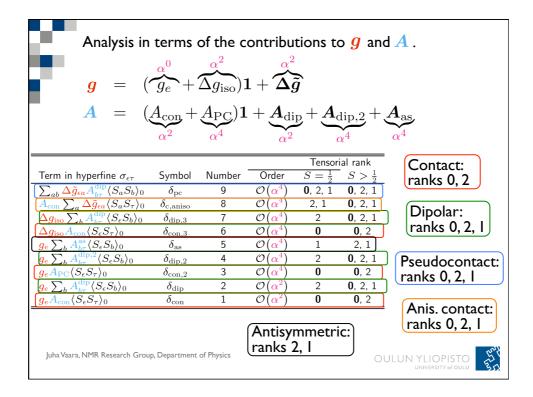
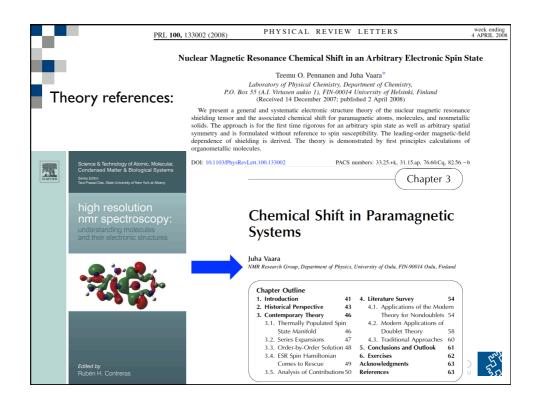
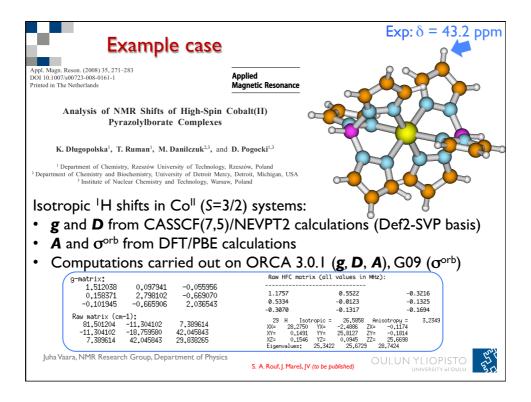
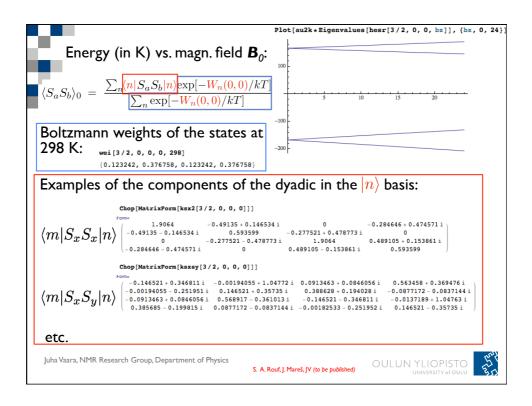

<u> </u>	Outline
Juha Vaara:	The 2008 shift theory in practice
Jiří Mareš:	Extensions of the 2008 theory and simulation of Curie relaxation
Jyrki Rantaharju:	Spin dynamics simulation of electron spin relaxation in Ni ²⁺ (<i>aq</i>)
NMR Research Group, Department of Physics	

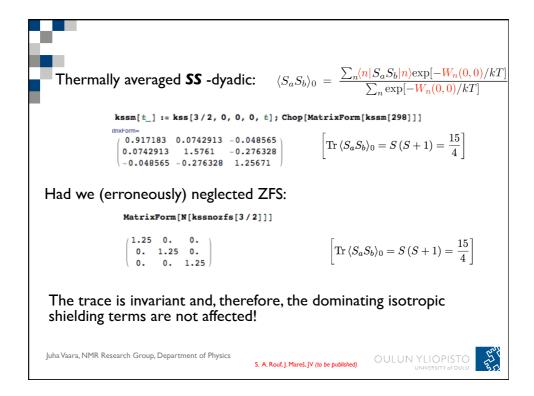


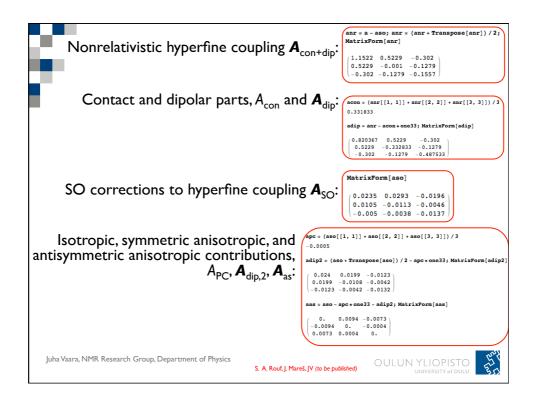












Construct $\mathbf{G} = \mathbf{g}^{T}\mathbf{g}$, diagonalise it, take the square root of eigenvalues, and convert back to the original coordinate frame \rightarrow effective \mathbf{g} :	g = gdprime; MatrixForm[g] MXForm= (1.51488 0.139603 -0.0859188 0.139603 2.79614 -0.666696 -0.0859188 -0.666696 2.03628
The Δg tensor:	dg = g - ge ★ one33; MatrixForm[dg] nxForm=
Traceless D tensor:	MatrixForm[dmat] TXForm= (50.6412 -11.3041 7.38961 -11.3041 -49.6195 42.0458 7.38961 42.0458 -1.0217)
Matrix of $H_{ZFS} = \mathbf{S} \cdot \mathbf{D} \cdot \mathbf{S}$ in the basis $ S, M_S $	S> (in a.u., eigenfunctions of S ² and S _z):
$ \begin{bmatrix} -6.9828 \times 10^{-6} & -0.0000583174 - 0.000331818 i & 0.00039 \\ -0.0000583174 + 0.000331818 i & 6.9828 \times 10^{-6} \\ 0.000395619 + 0.0000892098 i & 0. + 0.i \\ 0. & 0.000395619 + 0.0000892098 i & 0.000092098 i \\ 0.000395619 + 0.000892098 i & 0.000092098 i \\ 0.000395619 + 0.000892098 i & 0.0000892098 i \\ 0.000395619 + 0.000892098 i & 0.0000892098 i \\ 0.000395619 + 0.000892098 i & 0.000892098 i \\ 0.000395619 + 0.000892098 i & 0.00089208 i \\ 0.000395619 + 0.000892098 i & 0.00089208 i \\ 0.000395619 + 0.00089208 i & 0.00089208 i & 0.00089208 i \\ 0.000395619 + 0.00089208 i & 0.00$	0.+0.i 0.000395619 - 0.0000892098 i 6.9828×10 ⁻⁶ 0.0000583174 + 0.000331818 i
Juha Vaara, NMR Research Group, Department of Physics S. A. Rouf, J. Mare	š. JV (to be published) OULUN YLIOPISTO

Total shield $\sigma_{\epsilon\tau}^{(0)} = \sigma_{\epsilon\tau}^{\text{orb}} -$ Contact shieldin	$\frac{\mu_{\rm B}}{\gamma kT} \sum_{ab} g_{\epsilon a}$	$\langle S_a S_b angle_0 A_{b au}$	-73.274 -187.45 108.156	ant =	23.483 23.6575 35.3219	[[2, 2]] + totalshi[[3, 3]]) / 3
Term in hyperfine $\sigma_{\epsilon au}$	Symbol	Number	Order		ial rank $S > \frac{1}{2}$	MatrixForm[contact]
$\frac{g_e A_{\rm con} \langle S_e S_\tau \rangle_0}{g_e A_{\rm con} \langle S_e S_\tau \rangle_0}$	$\delta_{ m con}$	1	$\mathcal{O}(\alpha^2)$	0	0 , 2	-32.2623 -2.61322 1.70829 -2.61322 -55.44 9.71994 1.70829 9.71994 -44.2054
$g_e A_{ m PC} \langle S_\epsilon S_ au angle_0$	$\delta_{{ m con},2}$	3	${\cal O}(lpha^4)$	0	0 , 2	MatrixForm[conpc] 0.0486121 0.00393755 -0.00257402 0.00335355 0.0835359 -0.0146458 -0.00257402 -0.0146458 0.0666079
$\Delta g_{ m iso} A_{ m con} \langle S_\epsilon S_ au angle_0$	$\delta_{{ m con},3}$	6	$\mathcal{O}(\alpha^4)$	0	0 , 2	MatrixForm[gisocon] (-1.82793 -0.148061 0.0967892 -0.148061 -3.14114 0.550716 0.0967892 0.550716 -2.50461
Juha Vaara, NMR Research Gro	up, Department	of Physics	S. A. Rouf, J.	Mareš, JV (to be j	Dublished)	

ε.						
Dipolar shielding	terms					
				Tensor	ial rank	=
Term in hyperfine $\sigma_{\epsilon au}$	Symbol	Number	Order	$S = \frac{1}{2}$	$S > \frac{1}{2}$	MatrixForm[dipolar]
$g_e \sum_b A_{b au}^{ ext{dip}} \langle S_\epsilon S_b angle_0$	$\delta_{ m dip}$	2	$\mathcal{O}\left(lpha^2 ight)$	2	0 , 2, 1	- 85.4322 -48.8759 27.8591 -102.668 47.7428 9.46613 59.771 9.98098 59.646
$g_e \sum_b A_{b au}^{ ext{dip},2} \langle S_\epsilon S_b angle_0$	$\delta_{ m dip,2}$	4	$\mathcal{O}\left(\alpha^4\right)$	2	0 , 2, 1	MatrixForm[dipolar2] (-2.55342 -1.87133 1.16098 -3.87402 1.52464 0.411916 2.34501 0.345603 1.5721
$\Delta g_{ m iso} \sum_{b} A^{ m dip}_{b au} \langle S_{\epsilon} S_{b} angle_{0}$	$\delta_{ m dip,3}$	7	$\mathcal{O}(\alpha^4)$	2	0 , 2, 1	MatrixForm[gisodip] (-4.84045 -2.76923 1.57845 -5.81703 2.70503 0.536336 3.38653 0.565506 3.37945
Juha Vaara, NMR Research Group	o, Department	of Physics	S. A. Rouf, J. I	Mareš, JV (to be	published)	ULUN YLIOPISTO

Antisymmetric anisotropic cor pseudocontact	ntact, ai					
					ial rank	=
Term in hyperfine $\sigma_{\epsilon au}$	Symbol	Number	Order	$S = \frac{1}{2}$	$S > \frac{1}{2}$	MatrixForm[antisvmm]
$g_e \sum_b A^{ m as}_{b_{ au}} \langle S_\epsilon S_b angle_0$	$\delta_{ m as}$	5	$\mathcal{O}\left(\alpha^{4}\right)$	1	2, 1	0 111607 -0 911849 0 712887
$A_{ m con}\sum_a\Delta ilde{g}_{\epsilon a}\langle S_aS_{ au} angle_0$	$\delta_{ m c,aniso}$	8	$\mathcal{O}\left(lpha^4 ight)$	2, 1	0 , 2, 1	MatrixForm[anisocon] (9.42627 -3.49818 2.06187 -3.7061 -22.2568 18.1406 (2.18665 18.1857 -1.55477)
						MatrixForm[pseudocon]
$\sum_{ab}\Delta \tilde{g}_{\epsilon a}A^{ m dip}_{b au}\langle S_aS_b angle_0$	$\delta_{ m pc}$	9	$\mathcal{O}\left(\alpha^{4}\right)$	0 , 2, 1	0 , 2, 1	$ \left(\begin{array}{cccc} 15.9149 & 17.5678 & -10.2598 \\ -60.7441 & 9.49179 & -14.701 \\ 35.4777 & -14.1955 & -6.71517 \end{array} \right) $
Juha Vaara, NMR Research Group	o, Department	of Physics	S. A. Rouf, J.	Mareš, JV (to be j	Dublished)	OULUN YLIOPISTO

			Tensorial rank			
Term in hyperfine $\sigma_{\epsilon au}$	Symbol	Number	Order	$S = \frac{1}{2}$	$S > \frac{1}{2}$	
$\sum_{ab}\Delta ilde{g}_{\epsilon a}A^{ m dip}_{b au}\langle S_aS_b angle_0$	$\delta_{ m pc}$	9	$\mathcal{O}\left(\alpha^{4}\right)$	0 , 2, 1	0 , 2, 1	6.23
$A_{ m con}\sum_{a}\Delta ilde{g}_{\epsilon a} \langle S_{a}S_{ au} angle_{0}$	$\delta_{ m c,aniso}$	8	$\mathcal{O}\left(\alpha^{4}\right)$		0 , 2, 1	-4.80
$\Delta g_{ m iso} \sum_{b} A^{ m dip}_{b au} \langle S_\epsilon S_b angle_0$	$\delta_{ m dip,3}$	7	$\mathcal{O}(\alpha^4)$		0 , 2, 1	
$\Delta g_{ m iso} A_{ m con} \langle S_\epsilon S_ au angle_0$	$\delta_{ m con,3}$	6	$\mathcal{O}(\alpha^4)$		0 , 2	-2.49
$g_e \sum_b A_{b au}^{\mathrm{as}} \langle S_e S_b angle_0$	$\delta_{ m as}$	5	$\mathcal{O}(\alpha^4)$		2, 1	0.00
	$\delta_{ m dip,2}$	4	$\mathcal{O}(\alpha^4)$		0 , 2, 1	
$g_e A_{ m PC} \langle S_\epsilon S_\tau \rangle_0$	$\delta_{ m con,2}$	3	$\mathcal{O}(\alpha^4)$		0 , 2	0.07
$g_e \sum_b A_{b au}^{\mathrm{dip}} \langle S_\epsilon S_b angle_0$	$\delta_{ m dip}$	2	$\mathcal{O}(\alpha^2)$		0 , 2, 1	7.32
$g_e A_{ m con} \langle S_\epsilon S_\tau angle_0$	$\delta_{ m con}$	1	$\mathcal{O}(\alpha^2)$	0	0 , 2	-43.97
Orbital part:						
					Total:	-10.29
emical shift wrt.TN	1S:					
$\delta = \sigma_{ m ref} - \sigma = 31$.50 - (-10.29) = 41.	79 ppr	n	
periment:	riment: 43.2 ppm					