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17.1.2013
“ . . . we are sending the structure and the experimental
pcs of a cobalt(II)-protein. The idea is for you to try to
calculate the pcs from the present structure, and possibly
increase the agreement with the experimental ones
through changes in the coordination geometry of the
metal ion. Here attached please find the structure 1RMZ
(1.3 A resolution) of MMP12. The ZN ion with residue
number 264 was replaced by cobalt(II). Pcs were
measured, reported in the attached PNAS paper (in Table
S2, labeled as PCS internal, Obs). The coordination
sphere of the metal is composed of three imidazole groups
of three histidine residues and of a bidentate ligand
(hydroxamic acid). Best regards also on behalf of
Claudio, Giacomo”





Protein structure determination using ssNMR

I NOE (can be insufficient especially from ssNMR)

I Empirical angular restraints (TALOS)
I Pseudocontact shifts
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Impact of a paramagnetic center in a protein

I Enhanced relaxation (blind zones . . . )
I Contact shift due to spin-density distribution
I Pseudocontact shift due to dipolar coupling
I RDCs in solution NMR



Pseudocontact shift

“experimentalists’ view”
I A difference between chemical shift in paramagnetic and

corresponding diamagnetic compound

I . . . sufficiently far from paramagnetic center, such that:
-contact shift is negligible
-magnetic moment of the unpaired electrons can be
approximated as a point dipole
-(difference in orbital shielding is negligible)

I in present case: Zn2+ → Co2+ substitution does not have
impact on the structure
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Use of pseudocontact shifts
in study of macromolecules

I Iteratively obtain the χ tensor, utilizing also some
low-resolution structure

I Impose long-range structure restraints
I Refine position of the magnetic moment / metal ion
I Study intermolecular interactions; crystal packing

σDip = −χ ·D 1
4πr3k,s

(×106ppm) (1)

where
D = 3nk,snk,s − 1, (2)

is the dimensionless dipolar coupling tensor where nk,s = rk,s/rk,s 1

then
σPC =

Tr(σDip)

3
(3)

1k, s label nuclear and electronic magnetic dipoles



Paramagnetic shielding

σ = σorb −
µB

γkT
g · 〈SS〉0 · A (4)

2

Term name Term in σετ Number
σorb σorb 0
σcon geAcon〈SεSτ 〉0 1
σdip ge

∑
b A

dip
bτ 〈SεSb〉0 2

σcon,2 geAPC〈SεSτ 〉0 3
σdip,2 ge

∑
b A

dip,2
bτ 〈SεSb〉0 4

σac ge
∑

b A
as
bτ 〈SεSb〉0 5

σcon,3 ∆gisoAcon〈SεSτ 〉0 6
σdip,3 ∆giso

∑
b A

dip
bτ 〈SεSb〉0 7

σc,aniso Acon
∑

a ∆g̃εa〈SaSτ 〉0 8
σpc

∑
ab ∆g̃εaA

dip
bτ 〈SaSb〉0 9

Long-range terms in red
2PRL 100, 2008, Pennanen T. O. & Vaara J.



χ in the modern shielding theory

Edip = mk · T · (−χ · B0) /µ0 (5)

= }γk Ik · σDip · B0 (6)

(here σDip is a sum of three (long range) terms of the breakdown of pNMR
shielding)

−T · χ/µ0 = σDip (7)

see (Eq.1)
where T is the dipole-dipole interaction tensor for two dipoles also written like
T = D µ0

4πr3 where D = 3nksnks − 1

µ0
4πr3µ0

D · χ =
µB

γkkT
g · 〈SS〉 · Adip

D · χ =
µBµ0
kT

g · 〈SS〉 · }γsD (8)

since }γs = geµB the final expression for molecular
susceptibility/magnetizability

χ =
µ2Bµ0
kT

g · 〈SS〉ge (9)



Model of the paramagnetic center

This geometry was optimized (with alpha-Carbon atoms
fixed) using the BP86 functional, def2-SVP (H,C,N,O,S)
+ def2-TZVP (Co) basis, and COSMO of water solvent.
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Pseudocontact shifts, DFT results

PCS plotted for Cα of every observed aminoacid residue
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Authors ← Balayssac, Bertini, Bhaumik, Luchinat
calc ← (Eq.1), from X-ray structure and fitted χ from the measured PCSs

D = 4.35cm−1, E/D = 0.279 giso = 2.0657
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Pseudocontact shifts, DFT g-tensor, NEVPT2 ZFS
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D = −27.44cm−1, E/D = 0.267



Pseudocontact shifts, NEVPT2 results
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About symmetrization of the g-tensor
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Optimized vs experimental structure
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Pseudocontact shift isosurfaces of ± 1.5 ppm

DFT g-tensor NEVPT2 NEVPT2 exp. str.



PCS optimized vs crystal structure model
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NEVPT2 optimized str NEVPT2 exp. str. experimental PCS



g and ZFS in optimized/ nonoptimized structure

G tensor ZFS tensor
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How can computational NMR contribute to structure
determination of proteins with paramagnetic center?

I Knowing PCSs
I (Capable to accurately calculate χ)
I Not knowing structure:

1. Of/near the paramagnetic center
2. More distant from the paramagnetic center:
3. Intermediate (blind zone of H)

Simple case of point 1. shown in this work.



More difficult case . . .

PDB: 2K9C 3

3PNAS 105, 2008, Balayssac, Bertini, Bhaumik, Luchinat



More distant from the paramagnetic center
Can we help with ?

Common case of protein structure elucidation, have to optimize:
I axiality, rhombicity and orientation of χ
I position of protein atoms (with a help of other information

such as NOE)
or

I Know paramagnetic center center (spin-label, porphyrin,
FeS?), or able to model the center well.

I Can reduce number of optimized parameters when doing the
structure optimization. (axiality, rhombicity of χ are known) Is
it significant?



Conclussions 1

1. PCSs (of distant regions of a protein ) calculated using QC
methods on the model of the paramagnetic center are in
qualitative agreement with the measured PCSs.

2. → serve for indirect proof that the geometry optimization of
the paramagnetic center has improved the model

3. χ expressed consistently with the paramagnetic nuclear
shielding theory of Pennanen and Vaara 2008

4. remaining questions
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Part 2
Curie-type paramagnetic NMR relaxation in
the aqueous solution of Ni(II)

Magnetic field of the Curie spin manifests itself as both the pNMR
shielding tensor and Curie relaxation, in analogy with CSA relaxation
theory.4

4Mareš, Hanni, Lantto, Lounila, Vaara PCCP 2014, in press.



Calculation flow

1. Molecular dynamics
2. Snapshot calculations (ZFS, g, HFC)→ pNMR
3. Correlation functions, spectral density functions of the pNMR

shielding
4. Redfield theory (CSA) → R1,R2 relaxation rates due to Curie

relaxation



ZFS, g, HFC

calc (experim)
ZFS ∆5 (cm−1) 3.5 ( 2.6, 3.0)
g, iso 2.10 ( 2.25)
HFC, Adip,33, (MHz) 8.22 ( ?)



pNMR shielding
σ2,0

Term name FSS/1H SSS/1H FSS/17O SSS/17O
σorb

d - - - -
σcon

e 1.50 0.0364 131 1.78
σdip 304 63.3 2673 93.2
σcon,2 0.0182 0.000959 1.08 0.00694
σdip,2 14.1 3.00 109 3.14
σac 0.0153 0.00176 0.139 0.00628
σcon,3 0.0765 0.001835 6.68 0.0904
σdip,3 15.1 3.15 133 4.65
σc,aniso 0.369 0.00908 33.2 0.441
σpc 0.518 0.100 4.89 0.146

FSS : First Solvation Shell
SSS : Second Solvation Shell



Simulated time correlation function of the spherical σ2,0
component of the shielding tensor
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The spectral density functions
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Relaxation rates of Curie relaxation
11.7 T

R1 =
1
2
ω2

0J(ω0)

R2 =
1
12
ω2

0[4J(0) + 3J(ω0)]

Shielding term 1H (FSS) 1H (bulk, 0.12M) 1H (1 M total)
σdip 13; 17 0.30; 0.41 1.7; 2.3
σdip,2 0.032; 0.042 3.2×10−4; 3.9×10−4 3.8×10−3; 5.0×10−3

σdip,3 0.032; 0.041 7.6×10−4; 1.0×10−3 4.3×10−3; 5.5×10−3

σtot 16; 20 0.45; 0.52 2.2; 2.7



Conclussions 2

1. For Ni(II) (aqua), the Curie relaxation mechanism is a very
minor one, available only computationally.

2. Using the theory of pNMR shielding, Curie relaxation can be
reliably calculated using the analogy with CSA relaxation in
diamagnetic systems



People

Juha Vaara, Ladislav Benda, Giacomo Parigi, Martin Kaupp, Matti
Hanni, Perttu Lantto, Juhani Lounila


