Predicting the NMR spectra of paramagnetic molecules by DFT. From organic free radicals to spin crossover

Università degli Studi di Padova

Alessandro Bagno Dept. Chemistry, University of Padova www.chimica.unipd.it/nmrlab

NMR spectra of paramagnetic molecules

NMR spectra of paramagnetic molecules

Understanding the NMR spectra of paramagnetic molecules

Two major approaches:

- **1.Determine the relevant parameters empirically from experimental data (Bertini & Firenze school)**
- 2.Compute the relevant parameters from first principles

Relevant parameters:

g factor Hyperfine couplings A Magnetic susceptibility χ

$$\delta_{PC} = \frac{1}{4\pi r^3} \left[\left(\chi_{zz} - \overline{\chi} \right) \frac{2z^2 - x^2 - y^2}{2r^2} + \left(\chi_{xx} - \chi_{yy} \right) \frac{x^2 - y^2}{2r^2} + \chi_{xy} \frac{2xy}{r^2} + \chi_{xz} \frac{2xz}{r^2} + \chi_{yz} \frac{2yz}{r^2} \right]$$

$$\chi_{kk} = \mu_0 \mu_B^2 g_{kk}^2 \frac{S(S+1)}{3kT}$$

Spectra in solution (only isotropic terms) ZFS neglected Only contact term is calculated by DFT: requires g, S, A

Hrobárik, Reviakine, Arbuznikov, Malkina, Malkin, Köhler, Kaupp, J. Chem. Phys. 2007, 126, 024107 Rastrelli, Bagno, Chem. Eur. J. 2009, 15, 7990

Geometrical (r) and electronic (g, S, A) parameters can be predicted by DFT Useful for qualitative predictions (relative line widths)

Rastrelli, Bagno, Chem. Eur. J. 2009, 15, 7990

Predicting line widths: nitroxides, S = 1/2

Very slow el. relaxation $\tau_{s} = 10^{-7} s$

¹H: mostly dipolar

g = 2 is assumed

¹³C: mostly contact

Acetylacetonates: Cr^{III}, Mn^{III}, Fe^{III}, Cu^{II}

Predicting Line Widths

Predicting Line Widths: Cu(II), $S = \frac{1}{2}$

Slow el. relaxation $\tau_{\rm S} = 10^{-9} \, {\rm s}$ NMR is difficult

¹H: dipolar + contact

g = 2 is assumed

¹³C: mostly contact

Ru^{III} complexes, S = 1/2

Many important catalysts and anticancer drugs (NAMI) Very fast electronic relaxation: $\tau_S = 5 \times 10^{-12} \text{ s} \rightarrow \text{NMR}$ relatively easy Often, very complex equilibria in solution \rightarrow spectra difficult to interpret

Predicting line widths: Ru(III), *S* = 1/2

¹H Line width in Ru(III) complexes. S = 1/2, τ_{s} = 5 ps, τ_{r} = 50 ps

Very fast el. relaxation $\tau_s = 5 \times 10^{-12} s$

¹H: dipolar + contact

g = 2 is assumed

¹³C: mostly contact

Conclusions

DFT calculations allow for prediction and assignment of NMR spectra of paramagnetics, including spin-crossover complexes and reactive intermediates

Lower accuracy than for diamagnetics (also of experimental data)

Acknowledgments

Andrea Borgogno

Federico Rastrelli

