

Contact shift : contribution to the chemical shift due to the unpaired electron spin density on the resonating nucleus

The coupling constant between nucleus and $e^{-}I_{1}...e^{-}$ is called A \Rightarrow the interaction is expressed by

$$H = A\mathbf{I} \cdot \mathbf{S}$$

A: contact hyperfine coupling proportional to the spin density of the resonating nucleus

Pseudocontact shifts
- proportional to r^{-3} $\delta^{\text{pes}} = \frac{1}{12\pi^3} \left[4\chi_{as} (3\cos^2\vartheta - 1) + \frac{3}{2} 4\chi_{rh} \sin^2\vartheta \cos 2\varphi \right]$
⇒ the effect is propagated to atoms far from the paramagnetic center $(R_1 \text{ propagates as } r^{-6})$
- depend on angular parameters
\Rightarrow provide information on the spatial position of the atom with respect to the metal ion
Problems:
*strong covariance between θ , ϕ and <i>r</i>
*angular dependence provided by quadratic trigonometric functions:
⇒ they are difficult to be used efficiently as retraints in torsion angle dynamics programs like DYANA/CYANA or Xplor-NIH

Residual dipolar couplings

$$rdc(Hz) = -\frac{1}{4\pi} \frac{B_0^2}{15kT} \frac{\gamma_H \gamma_N h}{4\pi^2 r_{HN}^3} \left[\Delta \chi_{ax}^{mol} (3\cos^2 \theta - 1) + \frac{3}{2} \Delta \chi_{rh}^{mol} (\sin^2 \theta \cos 2\phi) \right]$$
- **depend on** the NH / C^{\alpha}H^{\alpha} / C'C^{\alpha} / ... **vector orientation**
- **do not depend on any distance** with respect to the metal ion
Therefore, values of the same order of magnitude can be obtained
for all the coupled nuclei of the protein

- they **all refer to the same reference system**, and thus relate all the internuclear vectors to the same frame (and not the internuclear vectors to one another).

High	snin iron(III)	• 3	d⁵								Tran	sition El	ments							
due t	o the non-d	eg	ener	ate gr	ound state				3	4 5	6	7	3 9	10 Ni	11	12				
- elec	tron relaxat	ior	n me	chani	sms are relat	ively i	nefficient:		Y	Zr N	Mo	Tc B	u Rł	Pd	Ag	Cd				
<i>T</i> _{1e} c	T_{1e} of the order of 10 ⁻⁹ s												s Ir	Pt	Au	Hg				
Δχ =	$\Delta \chi \approx 0.6 \cdot 10^{-32} \text{ m}^3$												Rf Db Sg Bh Hs Mt							
-Spin	-Spin orbit coupling introduces a relatively small ZFS, which																			
mod	modulation causes electron relaxation:																			
I 1e Ca	T_{1e} can be of 10 ⁻¹¹ s (with D of the order of 10 cm ⁻¹)																			
Δ <u>χ</u> ~	$\Delta \chi \approx 3.10^{-52} \text{ m}^3$																			
				_			Li	gand f	ield				_							
Conf	m _l of occupied	τ.	s	Free	octahedra	tetrahed	iral	squa	square		square pyramid. (C_{dv})		trigonal bipyram (D_{3b})							
com	orbitals	-		conf.	(O_h)		(T_d)	(D_{dh})		(C					•					
										w.	(-497			(3h)						
					t t				Ţ		ţ			t.						
d^5	2,1,0,-1,-2	0	5/2	6S	ttt	⁶ A	T T	6A	† †	6A	T†	6/	۱.	¦	64	1				
	I	ļ											1		1	_				
Groun	d state: 2S+1X	(, v	vher	e X=S,	P, D, F	(A	symmetry	y: non	-dege	nera	ate g	rou	nd :	stat	e)					
depen	depending on the L value equal to 0, 1, 2, 3, (E symmetry: doubly degenerate ground states)																			
respec	tively					(1	symmetry	/. mre	e pos	SIDIE	= RLO	unc	sla	nes	,					

Low : In no - elec shor - Δχ	spin iron(III n-idealized tron relaxa t electron r ≈2.4·10 ⁻³² r) <u>:</u> 3 ge tio ela n ³	8d ⁵ ome n m ixati	etry, tł echan on tim	nere are low- isms (Orbach ne (10 ⁻¹³ - 10 ⁻¹	lying e) are v ¹² s)	excited sta very efficio	tes ent:	3 52 7	4 5 Ti V Er Ni Hr Ta Br Di	Transiti d G 7 Cr Mr Mo TC & W Re Sg BH	Bar Fee Ru Os Hs	9 10 Co Ni Rh Pd Ir Pt Mt	11 Cu Ag Au
							Li	gand f	ield					
Conf.	m _l of occupied orbitals	L	s	Free ion conf.	octahedra (O _h)	d	tetraheo (T_d)	iral	squa plan (D ₄)	re ar	square pyramid. (C_{4v})		trigonal bipyram. (D _{3h})	
					(strong ligands) — —		t		-		_		_	
<i>d</i> ⁵	2,1,0,-1,-2	0	1/2	6S	t ti ti	² T	tt tt	² T	11 ^T 11	² A	ţŢ	²E	ţŢ	2 E
round epend	state: ^{2S+1} X ling on the ively	:, v L v	/her alue	e X=S, equa	P, D, F to 0, 1, 2, 3,	(A (E (T	symmetry symmetry symmetry	/: non /: dou /: thre	-dege bly de e pos	nera gen sible	ate gro erate e grou	oun gro nd :	d state und st states	≘) ate)

Transport Answer Transport Answer High spin iron(11): 3 d ⁶ - -												11 1 Cu Z Ag C Au F			
since electron relaxation time (10 s) $\Delta \chi$ =2.1-10 ⁻³² m ³															
							Li	gand f	ield						
Conf.	m _l of occupied orbitals	L	s	Free ion conf.	octahedral (O_h)		tetrahedral (T_d)		square planar (D _{4h})		square pyramid. (C_{4v})		trigonal bipyram. (D _{3h})		nal am. m)
<i>d</i> ⁶	2,2,1,0,-1, -2	2	2	5D	†† ↓†††	5T	† † † ↓† †	5E	t T ↓t t	5E	† † † ††	⁵ A	ţ		5E
Ground depend	state: ^{2S+1} X ing on the	:, w L v	/her alue	e X=S, equal	P, D, F to 0, 1, 2, 3,	(A (E	symmetry	y: non /: dou	-dege bly de	nera gen	ite g erate	rour e gro	id s	tate d st	e) ates
depend respect	ing on the ively	Ĺv	alue	equal	to 0, 1, 2, 3,	(Е (Т	symmetry	/: dou /: thre	bly de	gen sible	erate gro	e gro und	und stat	d st tes	а)

High spin Cobalt(II): 3d ⁷ In non-idealized geometry, there are low-lying excited states -Distorted Octahedral (⁴ T): very efficient electron relaxation mechanisms: short electron relaxation time (10 ⁻¹² s) 3 4 5 0 10 0 10 11 12 $\Delta \chi$ =7:10 ⁻³² m ³												12 a d			
Conf.	<i>m_l</i> of occupied orbitals	L	s	Free ion conf.	$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $			ield squa plan (D ₄)	re ar	squa pyran (C4	re nid. ,)	trigonal bipyram. (D _{3h})			
d ⁷	2,2,1,1,0,- 1,-2	3	3/2	⁴ F	†† ↓†↓††	⁴ T	t t t ↓t ↓t	⁴ A	† † ↓†↓†	⁴ A	ţ Ţ Ţ	4E	ţ ţ ţ	⁴ A	
Ground depend respect	Ground state: ²⁵⁺¹ X, where X=S, P, D, F (A symmetry: non-degenerate ground state) depending on the L value equal to 0, 1, 2, 3, (E symmetry: doubly degenerate ground states) respectively (T symmetry: three possible ground states)														

	$eq:main_set_set_set_set_set_set_set_set_set_set$															
	Conf.	m _l of occupied orbitals	L	s	Free ion conf.	$\begin{tabular}{c} Ligand field for $Ligand field $Ligan$			ield squa plan (D ₄	ure ar h)	squa pyran (C4	ure nid. v)	tri bij (l 1.		
	<i>d</i> ⁵	2,1,0,-1,-2	0	5/2	⁶ S	†† †††	⁶ A	††† ††	⁶ A		⁶ A	† † † †	6A	ţ	f 6	A
c c	Ground state: ²⁵⁺¹ X, where X=S, P, D, F (A symmetry: non-degenerate ground state) depending on the L value equal to 0, 1, 2, 3, (E symmetry: doubly degenerate ground states) creanstringly.															

<u>Gad</u> Nor rela <i>Τ</i> _{1e} : Δχ :	$\frac{\text{Iolinium(III)}: 4f^7}{\text{a degenerate ground s}}$ xation mechanism: $\geq 2 \times 10^{10} \text{ s}$ $\approx 0.2 \cdot 10^{-32} \text{ m}^3$	state; modulation of the	transie	nt ZFS is th	e dominant el	ectron						
	Conf.	m_l of occupied orbitals	L	s	Free ion conf.							
	f'	3,2,1,0,-1,-1,-2,-3	0	7/2	⁸ S							
Groun	Ground state: ²⁵⁺¹ X, where X=S, P, D, F depending on the L value equal to 0, 1, 2, 3, respectively											

Solution structure calculation protocol

- Least square penalty energy:

$$E = \sum_{l} w_{l} \sum_{i} \left[\max \left(X_{i,obs} - X_{i,calc} \right) - \operatorname{tol}_{i}, 0 \right)^{2}$$

- The contributions to the **energy gradient** from each class of restraints are calculated as the first derivative of the energy terms, E, with respect to the coordinates

- Force constants *w*_l do not change during the calculation

- Force constants w_l were calibrated in such a way that each class of restraints has a **comparable contribution** to the energy with respect to the standard restraints

Only PCS and RDC of residues not experiencing large mobility as revealed from **relaxation measurements** have been included

A paramagnetic ion is included in the N-terminal domain The N60D mutant of calmodulin was used as it selectively binds lanthanides in the second binding loop of the N-terminal domain

PCS and RDC measured for atoms in the **N-terminal** domain are used to calculate the magnetic susceptibility anisotropy tensor

PCS and RDC measured for atoms in the C-terminal domain provide information on the effects transmitted through the linker, i.e. on the region of space sampled by the C-terminal

Bertini, Del Bianco, Gelis, Katzaros, Luchinat, Parigi, Peana, Provenzani, Zoroddu, PNAS 2004, 101, 6841

