

New opportunities for paramagnetic materials using ultra-fast MAS

Frank Engelke, Sebastian Wegner

Bruker BioSpin GmbH

EU-FP7: pNMR Workshop, Aarhus, 8 July 2015

Collaborations and acknowledgements

BBIO

Benno Knott David Osen David Bennett (ER) Sebastian Wegner Armin Purea Andreas Ruppel Alexander Krahn Heiko Beiler Reinhard Steppe Fabien Aussenac

ENS Lyon

Guido Pintacuda Loren Andreas Daniela Lalli Kevin Sanders Anne Lesage Sachin Chaudhuri

ZHAW Winterthur

Dirk Wilhelm Nicoleta Herzog Alexander S. Weber

Outline

- 1. Why faster MAS ?
- 2. What means fast MAS?
- 3. Probe hardware for fast MAS
- 4. How about CRAMPS ?
- 5. Heteronuclear decoupling under fast MAS
- 6. Cross polarization under fast MAS
- 7. Some applications to paramagnetic systems
- 8. Fast MAS and extended VT

Why faster and faster Rotation ?

- Strong dipole dipole interactions
 - Homonuclear dipole dipole couplings
 - ${}^{1}H \leftrightarrow {}^{1}H$ and ${}^{19}F \leftrightarrow {}^{19}F$ (also ${}^{1}H \leftrightarrow {}^{19}F$)
 - Heteronuclear dipole dipole couplings
 - MAS frequency should be 3-5 times higher than the coupling
- Quadrupolar nuclei
 - Fast MAS rotation enables the observation of undistorted central transitions, free of spinning sidebands
 - Spinning sidebands from satellites can be detected more easily und undistorted
- Paramagnetic species
 - Paramagnetically distorted samples can have anisotropies resulting in spectra with widths more than a 1.000 ppm

Some common interactions in solid state NMR

Parameter	Order of magnitude	Example		
CSA, chemical shift	up to 100 kHz	⁷⁷ Se, ¹¹⁹ Hg		
Dipole dipole coupling	up to 100 kHz	¹⁹ F, (¹ H)		
J-coupling	up to 10 kHz	¹ J(³¹ P, ³¹ P)		
Quadrupolar coupling	If eQ small, only 1 st order important, can be averaged by MAS	² H, ¹⁴ N, ⁶ Li		
	If eQ large, than 1 st and 2 nd order are important, second order not averaged but only scaled by MAS	²⁷ Al ^{47/49} Ti		

-> fast MAS in the regime of 100kHz can be benificial for some interactions !

What means fast MAS?

The terms "fast MAS" or "very fast MAS" or "ultrafast MAS"

Technology for fast MAS

Fig. 7: Relative ¹H rf efficiencies for MAS probes with rotor diameters from 0.7mm to 4mm.

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 ppm

¹H spectrum of glycine at 1000 MHz and spinning at an MAS speed of 111 kHz.

Single pulse excitation (P1 = 1.1μ s), single scan. Active sample volume 350 nl

MAS 0.7mm Control of bearing and drive flow Frictional heating

		MAS	CS difference	frictional heating		sample T
		10 kHz	0	0		15
	O	40 kHz	0		0	15
		60 kHz	0,1	4		19
	MAS	80 kHz	0,3	12		27
		100 kHz	0,5	20		35
		111 kHz	0,6	24		39
		111 kHz + BCU-X	0		0	15
MAS 3 PNEUMATIC CONTROL UNIT	Image: Participation of the second	3.6933 m 2.7392 med	ean: 111000.0639	14:15 15		
	10:00 10:5	1 11:42	12.33 13.24	14.10 15	10:01	10.48 17:39

- Spin regulation up to 200kHz
- Fiberoptical spin-signal-interface to the probe (and backward compatible spin-interface)
- New spinrate readout resolution: 0,1Hz
- Additional pneumatic channels for future probe designs
- Safer and faster communication using ethernet and CAN-bus
- Several logging functions
- Internal 3-axis magnetic field sensors for coarse stray field measurements
- Easy probe profile management therefore easy A2B conversion

Fast MAS – technological limits

100 -

50 -

f =

Spectral resolution: What about the good old CRAMPS ?

 @ 70kHz -> 1.3mm probe the result seems disappointing, since 70kHz is not fast enough

Resolution: What about the good old CRAMPS ?

- @ 70kHz → 1.3mm probe the result seems to be insufficient, since spinning at 70kHz is not fast enough.
- @ 111kHz it looks better

→ 111kHz exceeds the homonuclear coupling strength of glycine

Decoupling under fast MAS

CW Decoupling

Heteronuclear decoupling can be done with different approaches

•

- High power decoupling
- Low power CW decoupling matched to MAS speed

TPPM / SPINAL

CW Decoupling at 42kHz (MAS 1.9mm)

See, e.g., M. Weingarth, et al., Chem.Phys.Lett. 466, 247-251, 2009. M. Ernst, J. Magn. Reson. 162, 1-34, 2003.

CP efficiency at fast MAS example @ 42kHz (MAS 1.9mm)

- Approaching very fast Magic Angle Spinning the dipolar coupling gets averaged -> what about cp efficiencies?
- Intensity of ¹³CH₂ signal
 - in glycine at various spinning rates
 - Same contact time
 - Same ¹³C RF-field
 - ¹H RF-field was adjusted while (using a 50% to 100% ramp)
 - MAS 10 kHz
 - MAS 25 kHz
 - MAS 42 kHz

CP and MAS

See, e.g., E.O. Stejskal, et al, J. Magn. Reson. 57, 471, 1984

CP MAS dynamics

Using MAS the energy levels in the rotating frame are modulated by the magic angle rotation.

For the case when ω_R is small compared to the RFfields $\omega_{1,I}$ and $\omega_{1,S}$ the CP Hartmann-Hahn matching conditions is given by:

$$\omega_{1,I} \pm n \omega_{R} = \omega_{1,S}$$
$$\omega_{1,I} - \omega_{1,S} = \pm n \omega_{R}$$

This is shown on the right side for n=1: The polarisation transfer is supported by *flip-flop* terms (zero-quantum transitions)

CP and very fast MAS

When the MAS speed $\omega_{R is}$ approaching a regime, where ω_{R} is faster (stronger) than the RF-fields $\omega_{1,I}$ and $\omega_{1,S}$ the CP Hartmann-Hahn condition can also be:

$$\omega_{1,I} \pm n \omega_{R} = - \omega_{1,S}$$
$$\omega_{1,I} + \omega_{1,S} = \pm n \omega_{R}$$

Shown on the right for n = 1; now the polarisation transfer is also supported by *flop-flop* processes, the elemental CP step is now a double-quantum transition.

Hartmann-Hahn at 111kHz MAS

ZQ condition: $\omega_{1I} - \omega_{1S} = \pm n$ ω_R n=3 n=2 n=1 n=0 ZQ-CP condition $\omega_{\underline{1}\underline{I}} + \omega_{\underline{1}\underline{S}} = \pm n$ DQ condition: ω_{R} For ω_{R} = 111 kHz, ω_{1S} = 15 kHz matching conditions: $\omega_{11}(ZQ,n=0) = 15 \text{ kHz}$

 $\omega_{11}(ZQ,n=1) = 126 \text{ kHz}$ $\omega_{11}(ZQ,n=2) = 237 \text{ kHz}$ $\omega_{11}(ZQ,n=3) = 348 \text{ kHz}$

 $\omega_{11}(DQ, n=1) = 96 \text{ kHz}$ $\omega_{11}(DQ, n=2) = 207 \text{ kHz}$ $\omega_{11}(DQ,n=3) = 318 \text{ kHz}$

Hartmann-Hahn at 111kHz MAS destructive overlay of H-H conditions

ZQ Kondition:
$$\frac{\omega_{1S} - \omega_{2S}}{\omega_{R}} = \pm n$$

DQ Kondition:
$$\frac{\omega_{1S} + \omega_{2S}}{\omega_{R}} = \pm n$$

Für $\omega_R = 111$ kHz, $\omega_{11} = 55$ kHz the matching conditions are:

 $\omega_{1S}(ZQ,n=0) = 55 \text{ kHz}$ $\omega_{1S}(ZQ,n=1) = 166 \text{ kHz}$ $\omega_{1S}(ZQ,n=2) = 277 \text{ kHz}$ $\omega_{1S}(ZQ,n=3) = 388 \text{ kHz}$ $\omega_{1S}(DQ,n=1) = 56 \text{ kHz}$ $\omega_{1S}(DQ,n=2) = 167 \text{ kHz}$ $\omega_{1S}(DQ,n=3) = 278 \text{ kHz}$

MAS 0.7 mm ¹H detected ¹⁵N-¹H 2D correlation @ 111kHz

Paramagnetic metalloproteins: Metal-ion coordination

Paramagnetic Solids Large Offsets and Large Shift Anisotropies

Fast MAS and extended VT

- Ultrafast MAS (0.7 mm) (ENS Lyon February 2015)
- Fast MAS (1.3 mm) low temperature (100 K) DNP probe (ENS Lyon 2016, ETHZ 2017)
- Fast MAS (1.3 mm) non-DNP with extended VT capabilities (functional prototype July 2016)

Thank you for your attention !