
Approximation Algorithms Exam

Nicolas Schabanel Guillaume Theyssier

January 14, 2005 — 9:00-12:00

Notes. Only the French version is reliable. Exercises are independent of each
other and can be processed in any order ; questions are not ordered by increa-
sing difficulty ; and most of the time one does not need to solve one particular
question to solve the following. Let #A denote the number of elements in set
A, bxc = max{i ∈ Z : i 6 x} and dxe = min{i ∈ Z : i > x} denote respectively
the floor and ceil integer parts of x ∈ R.

EXERCISE 1
Consider multicut problem on stars : given a star G = (V ∪ {r}, E = {ur : u ∈ V })
with root r and with capacities c : E → Q+ on edges, and a set of pairs of vertices
S = {{s1, t1}, . . . , {sk, tk}} such that si 6= ti for all i, find a minimum capacity subset of
edges C ⊆ E which disconnects all pairs {si, ti}.

Question 1 Give a (polynomial time) factor preserving reduction between this problem
and minimum weight vertex cover on undirected graphs.
Hint. Match leaves and vertices.

EXERCISE 2
Consider set cover problem : given an universal set U = {u1, . . . , um} and a collection
of subsets S = {S1, . . . , Sn} with non-negative costs c : S → Q+ on the subsets, find a
minimum cost set cover, i.e., a minimum cost subset C ⊆ S such that

⋃
S∈C S = U . Let

f denote the maximum frequency of an element : f = maxj #{i : uj ∈ Si}.

Question 2 Explain with two sentences (only) why the following integer program (IP)
computes an optimal solution for this problem. Give the simplest LP relaxation of (IP),
which will be denoted (LP).

(IP)


Minimize

n∑
i=1

cixi

subject to
∑

i : uj∈Si

xi > 1 (∀j)

xi ∈ {0, 1} (∀i)

1



Consider the following algorithm : compute an optimal solution x∗ of (LP), and select
every set Si such that x∗i > 1/f .

Question 3 Show that the solution computed by this algorithm is always a valid set cover.

Question 4 What is the approximation factor guaranteed by this algorithm? Prove it.
To which classic technics does this algorithm belong ?

EXERCISE 3
In this exercise, we want to count (approximately) the number of solutions to a DNF
boolean formula.

Problem 1 (Counting DNF solutions) Let f = C1 ∨ · · · ∨ Cm be a DNF
boolean formula on n variables x1, . . . , xn. Each clause Cj is of the form Cj =
l1∧· · ·∧ lkj

, where each li is a litteral (i.e., a variable or its negation). We assume
that every clause is satisfiable and non redundant (i.e., contains each variable at
most once, negated or not).
Compute #f , the number of truth assignments of variables (xi) that satisfy f .

We want to evaluate #f by sampling randomly the 2n possible truth assignments of
variables (xi). Let us first consider uniform sampling : draw a uniform random truth
assignment τ in {0, 1}n, and set X = 2n if τ satisfies f and X = 0 otherwise.

Question 5 Show that E[X] = #f . How many random bits does every draw of X use ?

However, X does not estimate #f correctly in polynomial time, because even if #f > 0,
the probability for X to be non-zero can be exponentially small. Thus, a polynomial
number of draws of X is not enough to estimate #f up to a constant factor. Indeed :

Question 6 Assume n is even and consider the following formula : f = x1∧x2∧· · ·∧xn/2.
What is the value of #f ? What is the probability for X to be non-zero ?

Let X1, . . . , Xk be the values of k independent draws of X. What is the probability that
one (at least) of the draws is non-zero ? Show that if k is polynomial in n, the probability
that X1 = · · · = Xk = 0 is 1− o(1).

We then decide to use a biased variable which samples only satisfying assignments.
Let Sj denote the set of truth assignments of (xi) that satisfy clause Cj (which has kj

litterals). Note that #f = #(
⋃

j Sj).

Question 7 What is the size of Sj ?

Let c(τ) denote the number of clauses satisfied by truth assignement τ . Note that the
sum of c(τ) over all possible truth assignements τ is M =

∑m
j=1 #Sj.

Question 8 Design a (polynomial time, in n and m) randomized algorithm that draws
a truth assignment τ with probability c(τ)/M , i.e., with probability proportional to c(τ).
How many random bits does your algorithm use (as a function of n and m) ?
Hint. Remark that you can first draw a set Sj and then choose τ in Sj. Explain in details
your random sampling procedure.

2



Consider the random variable Y defined as follows : draw a truth assignment τ with
probability c(τ)/M , and set Y = M/c(τ).

Question 9 Show that E[Y ] = #f .

Let σ2(Z) = E[(Z − E[Z])2] denote the variance of a random variable Z.

Question 10 Show that σ2(Y ) 6 ((m−1) E[Y ])2, where m is the number of clauses in f .
Hint. Show that Y belongs to interval [M/m, M ].

Recall Chebychev inequality which claims that for all random variable Z and all
a ∈ R+,

Pr{ |Z − E[Z]| > a } 6
σ2(Z)

a2
.

Question 11 Let Z1 and Z2 be two independent random variables and Z = Z1 + Z2.
Show that E[Z1Z2] = E[Z1] E[Z2] and that σ2(Z) = σ2(Z1) + σ2(Z2).

Let Y1, . . . , Yk be the values of k independent draws of Y , and set Z = (Y1 + · · ·+ Yk)/k.

Question 12 Show that for all ε > 0, and all k > 4(m− 1)2/ε2,

Pr{|Z −#f | 6 ε#f} > 3/4.

Question 13 Give, for all ε > 0, a polynomial time (in n, m and 1/ε) randomized
algorithm which outputs a value v such that (1 − ε) #f 6 v 6 (1 + ε) #f with constant
probability (independent of n, m and ε).

Question 14 Can we use this algorithm to solve SAT? Explain why. Can we obtain from
it a PTAS for Max-SAT? Explain why.

EXERCISE 4
Consider the following problem.

Problem 2 (Multicoloring) Let G = (V, E) be a finite undirected graph with
demands d : V → N on the vertices.
A multicoloring of G is a function C : V → ℘(N) that assigns to each vertex
u ∈ V a subset C(u) of d(u) distinct colors (for all u ∈ V , C(u) ⊂ N and
#C(u) = d(u)), such that two neighboring vertices do not share any color (for
all uv ∈ E, C(u)∩C(v) = ∅). The size of a multicoloring is the number of colors
used : size(C) = #(

⋃
u∈V C(u)). The problem consists in finding a minimum size

multicoloring.

Given a clique K in G, denote by d(K) the sum of the demands of the vertices in K.
We define the clique number as ω(G) = maxK clique of G d(K).

Question 15 Show that ω(G) is a lower bound on OPT.

3



Question 16 Assume in this question that G is bipartite.1 What is the value of ω(G) ?
Design a (polynomial time) optimal multicoloring algorithm for graph G.
Hint. Show that OPT = ω(G).

Give the colors assignment computed by your algorithm on the following bipartite graph
(the demands are written in the vertices).

2

5

1

6
2

3

4

We now focus on multicoloring subgraphs induced by finite subsets of vertices in the
triangular lattice. Surprisingly enough, this restriction of the multicoloring problem is
already NP-complete.

The triangular lattice T is (mathematically speaking) the sublattice of the plane ge-
nerated by the three vectors (0, 1), (−1/2,

√
3/2) and (1/2,

√
3/2). It admits the following

“Red-Green-Blue” 3-coloring which will be very useful next :

Rouge

Vert

Bleu

Assume from now on that G is a finite induced subgraph of the triangular lattice. A
vertex of G is red, if its color is red in the 3-coloring of T (same for blue and green).

Let p = dω(G)/3e and q = ω(G) − 2p. We define four sets of colors : the red colors
{1, . . . , p}, the green colors {p+1, . . . , 2p}, the blue colors {2p+1, . . . , 3p} and the black
colors {3p + 1, . . . , 3p + q}.

The first step of the algorithm assigns to each red (resp. blue, green) vertex u, the
min(p, d(u)) smallest red (resp. blue, green) colors. Denote by H the subgraph of G
induced by the still unsatisfied vertices.

Question 17 Show that H is triangle-free.

A vertex in H is a corner if it has (at least) two neighbors in H of the same color.

Question 18 Show that every corner in H has at most three neighbors, and that its
neighbors are all of the same color.

1A graph G is bipartite if it is 2-colorable in the classic sense, i.e., if there exists a partition (X, Y ) of
the vertices in V such that every edge in G has one end in X and the other one in Y .

4



We say that a red (resp. green, blue) corner is right if its neighbors in H are green
(resp., blue, red) — i.e., if the horizontal edge in the subgraph induced by its neighbors
points in the right direction. The figure bellow gives the right corners of the graph H in
bold.

Rouge

Vert

Bleu

Coins droits

H

Question 19 Show that the right corners in H form an independent set (i.e., that the
subgraph induced by these vertices in H is totally disconnected).

The second step of the algorithm assigns to each red (resp., green, blue) right corner
u de H, the d(u) − p largest blue (resp., red, green) colors. We say that the red right
corner borrows blue colors from its blue neighbors.

Question 20 Show that this second step satisfies the demands of all the right corners
without conflicts with their neighbors (in G) — i.e., that the borrowed colors were indeed
available.
Hint. Consider the triangle consisting of the red corner, its blue neighbor in G and one
of its green neighbors.

Denote by K the subgraph in H induced by the still unsatisfied vertices.

Question 21 Show that K consists of isolated vertices and trees.

Question 22 Show how to satisfy the remaining demand of each isolated vertex in K
with black colors, and possibly by borrowing colors from its neighbors (this is the third
step of the algorithm).

Denote by L the subgraph of K induced by the still unsatisfied vertices.

Question 23 Show how to satisfy the remaining demands of the vertices in L with black
colors.

Question 24 What is the approximation ratio achieved by this algorithm?

Question 25 Give an infinite family of instances In such that OPT(In) > 9
8
ω(In).

Hint. Look for a small triangle-free odd cycle in T , and assigns an uniform demand n to
each vertex.

F
F F

5


