
Aspects algorithmiques de la combinatoire

Algorithmical aspects of combinatorics

R. Cori, D. Rossin

September 22, 2006

Contents

1 Permutations 1

1.1 Inversion table . 2
1.1.1 Enumeration and application to sorting algorithm analysis 2
1.1.2 Sorting by selection . 3
1.1.3 Sorting by insertion . 3

1.2 Cycles and smallest element . 4
1.3 Descents and excedences . 4

2 Permutation pattern 6

2.1 Greatest increasing subsequence . 6

1 Permutations

Definition 1.1. A permutation of {1 . . . n} is a bijection from {1 . . . n} into itself.

There are several ways to represent a permutation. The first and most natural one is
given below:

σ =

(

1 2 3 4 5 6
σ(1) σ(2) σ(3) σ(4) σ(5) σ(6)

)

This representation is called the two-line representation. As the first line is always
the identity one can forget its writing and the permutation is then given by its one-line
representation:

σ =
(

σ(1) σ(2) σ(3) σ(4) σ(5) σ(6)
)

1

The images of elements are written σ(i) or σi throughout the lesson.
Another notation for permutations, the cyclic notation, will be given further in this

lesson.
In the first part, we are going to use statistics on permutations to give some complexity

results on sorting algorithms.

1.1 Inversion table

Definition 1.2. (σi, σj) is an inversion in σ if and only if σi > σj and i < j. We denote
by Inv(σ) the set of all inversions. Inv(σ) = {(σi, σj), σi > σj and i < j}.

The number of inversions in σ gives the number of elementary operations (transposi-
tions) needed to transform σ into the identity element.

Definition 1.3. The inversion table of a permutation is :
Tα[i] = |{j, (j, i) ∈ Inv(σ)}|

Example: α = (375248619)

1 2 3 4 5 6 7 8 9
Tα

Note that Tα[i] is the number of elements j greater than i but before i in α’s one-line
notation. Thus Tα[n] = 0 and 0 ≤ Tα[k] ≤ n− k.

Exercise 1.1. 1. Prove that given a permutation σ you can compute in O(n2) time its
inversion table.

2. Prove that given a tabular T corresponding to a permutation σ (unknown), one can
retrieve σ in O(n2) time.

3. Can you make faster ?

1.1.1 Enumeration and application to sorting algorithm analysis

Exercise 1.2. How many inversions could a permutation have ?

Let In,k be the number of permutations of length n having k inversions. Note that:

n(n−1)
2

∑

k=0

In,k = n!

Note that In,k is also the number of arrays of size n such that 0 ≤ T [i] ≤ n− i and the sum
of all elements equals k. By deleting the first entry of the array we obtain a new array of
size n− 1 respecting all conditions such that the sum of all elements equals k−T [0]. Thus

In,k =

k
∑

k′=k−n+1

In−1,k′

2

Exercise 1.3. Fill the following array

N. inversions 0 1 2 3 4 5 6 7 8 9 10
n=1 1
n=2
n=3
n=4
n=5

Let In(x) the generating function of inversions:

In(x) =
∑

In,kx
k

Note that In(x) = In−1(x)(1 + x + . . . + xn−1)
In(x) = 1(1 + x)(1 + x + x2)...(1 + x + . . . + xn−1)

Īn(x) = 1
n!

∑

n(n−1)
2

k=0 kIn,k

Īn(x) = I′
n
(1)

In(1)
= ∂ln(In(x))

∂x
(1)

Theorem 1.1. The average number of inversions in a permutation is n(n−1)
4

.

Another (simpler) proof is easily derived from studying the miror permutation with the
permutation.

1.1.2 Sorting by selection

In this algorithm you first find the smallest element and then you put it in the first place.

for (int i = 0; i < n ; i++)

for (int j = i+1; j < n; j++)

if (a[i] > a[j]) swap(a[i],a[j]);

When performing a swap operation, the number of inversions decrease by 1. So, the number
of swaps equal the number if inversions.

1.1.3 Sorting by insertion

for (int i = 1; i < n; i++)

for (int j = i; j !=0 && a[j]<a[j-1]; j--)

swap(a[j],a[j-1]);

Exercise 1.4. The number of tests is :

3

1.2 Cycles and smallest element

Exercise 1.5. Let α be the following permutation : α = 372159648.

1. Draw the digraph (directed graph) where each vertex represents a number of the per-
mutation and there exists an arc between i and j if and only if j = α(i).

2. Write the cycles of this graph. This is called the cyclic notation of the permutation.

3. Let Cn,k be the number of permutations of size n with k cycles. Give the first values
for n ≤ 5.

4. Show that Cn+1,k = nCn,k + Cn,k−1.

5. Let Cn(x) =
∑

Cn,kx
k. Prove that

Cn(x) = Πn−1
i=0 (x + i)

6. Prove that the average number of cycles in a permutation of size n is Hn =
∑n

i=1
1
i
.

Definition 1.4. Let σ be a permutation. σ(i) is a partial minimum if σ(i) is tricly less
than all σ(j), j < i.

The following algorithm gives the number of partial minima in a permutation.

min = a[0];

for (int i = 0; i < n ; i++)

if (a[i] < min) min = a[i];

Exercise 1.6. Show that number of changes of partial minimal is equal to Cn,k.

We can give a bijective proof of this result using Foata transformation.

1.3 Descents and excedences

Definition 1.5. Let α be a permutation of size n.

• αi is a descent if αi > αi+1

• αi is an excedence (or weak excedence) if ai ≥ i

• αi is a strict excedence if ai > i

Fill the following array:

4

Nb descents Nb excedences Nb strict excedences
123
132
213
231
312
321

We denote by:

• Dn,k the number of permutation of size n having k descents.

• En,k the number of permutation of size n having k excedences.

• Fn,k the number of permutation of size n having k strict excedences.

Note that for n = 3 we have Dn,k = Fn,k = En,k+1.

Proposition 1.1. Dn,k = Dn,n−k−1.

Proof. Use α̃ the mirror permutation.

Proposition 1.2. α−1(i) = j ⇔ α(j) = i, |E(α)|+ |F (α−1)| = n. Thus En,k = Fn,n−k

Proof. • Prove that if i ≤ α(i) then α−1(α(i)) is not a strict excedent for α−1.

• Prove that if i > α(i) then α−1(α(i)) is a strict excedent for α−1.

Proposition 1.3. Dn,k = En,n−k

Proof. We only sketch the proof. Let α be a permutation with n−k excedents. We rewrite
the permutation α in the cyclic notation, with the greatest element of each cycle in the
first place and every maxima in increasing order like in Foata transformation. We obtain
a permutation with k descents.

Exercise 1.7. Make an example of this transformation and prove the property above.

Exercise 1.8. With the three last propositions, prove the claim result Dn,k = Fn,k = En,k+1

Proposition 1.4. Dn,k = (k + 1)Dn−1,k + (n− k)Dn−1,k−1

Proof. Choose where you insert the greatest element.

Exercise 1.9. Let Dn(x) =
∑

Dn,kx
k. Prove that Dn(x) = (1 + (n− 1)x) Dn−1(x) + (x−

x2)D′

n−1(x).

5

2 Permutation pattern

2.1 Greatest increasing subsequence

Definition 2.1. The longest increasing subsequence of a permutation σ is the largest value
p such that there exist i1, . . . , ip and ai1 < ai2 < . . . < aip with i1 < i2 < . . . < ip.

Exercise 2.1. Let σ = (7, 9, 12, 2, 11, 3, 8, 5, 6, 1, 4, 10). Give the longest increasing subse-
quence.

Proof. Build iteratively all the longest increasing subsequences.

7 ← 9←

{

12

11

2 ← 3←











8

5← 6← 10

4

1

This leads to the following dynamic programming algorithm where you fill in two dif-
ferent arrays:

• BEST [i] = j if the longest increasing subsequence of size i ends by j and j is the
smallest value possible.

• PRED[k] = precessor of k in the largest increasing subsequence ending with k.

Exercise 2.2. Give the algorithm for computing the longest increasing subsequence.

6

Index

inversion, 2
generating function, 3
table, 2

minimum
partial, 4

permutation, 1
descent, 4
excedence, 4
increasing subsequence, 6
inversion, 2
inversion table, 2
representation

cyclic, 4
one-line, 1
two-line, 1

sorting
insertion, 3
selection, 3

table
inversion, 2

computation, 2

7

