Aspects algorithmiques de la combinatoire
Algorithmical aspects of combinatorics

R. Cori, D. Rossin
September 27, 2006

Contents
1 Permutations 1
1.1 Inversion table 2
1.1.1 Enumeration and application to sorting algorithm analysis 2
1.1.2 Sorting by selectiono L 3
1.1.3 Sorting by insertiono 4
1.2 Cycles and smallest element 0oL 4
1.3 Descents and excedences 5
2 Permutation pattern 6
2.1 Greatest increasing subsequence L. 6
2.2 Permutation pattern 7
2.3 One-stack sortable permutations 7
24 Dyck paths 8
2.5 Enumeration. 8
2.5.1 Enumeration of binary trees 9
2.5.2 Enumeration of Dyck paths 9
2.5.3 Direct proof on Dyck path 9
2.6 Enumeration of pattern-avoiding permutations 9

1 Permutations

Definition 1.1. A permutation of {1...n} is a bijection from {1...n} into itself.

There are several ways to represent a permutation. The first and most natural one is
given below:

This representation is called the two-line representation. As the first line is always
the identity one can forget its writing and the permutation is then given by its one-line
representation:

c=(0o(1) o(2) o(3) o4) o(5) o(6))

The images of elements are written (i) or o; throughout the lesson.

Another notation for permutations, the cyclic notation, will be given further in this
lesson.

In the first part, we are going to use statistics on permutations to give some complexity
results on sorting algorithms.

1.1 Inversion table

Definition 1.2. (0;,0;) is an inversion in o if and only if o; > 0; and i < j. We denote
by Inv(o) the set of all inversions. Inv(c) = {(0;,0;),0; > 0; and i < j}.

The number of inversions in o gives the number of elementary operations (transposi-
tions) needed to transform o into the identity element.

Definition 1.3. The inversion table of a permutation is :
Tali] = {4, (4,4) € Inv(o)}]

Example: a = (375248619)

[1]2]3]4[5]6|7|8]9
| |

Note that T,[i] is the number of elements j greater than ¢ but before i in a’s one-line
notation. Thus T,[n] =0 and 0 < T,[k] < n — k.

Exercise 1.1. 1. Prove that given a permutation o you can compute in O(n?) time its
wnversion table.

2. Prove that given a tabular T corresponding to a permutation o (unknown), one can
retrieve o in O(n?) time.

3. Can you make faster ¢

1.1.1 Enumeration and application to sorting algorithm analysis

Exercise 1.2. How many inversions could a permutation have ?¢

Let I, be the number of permutations of length n having k inversions. Note that:

n(n—1)
2

Z In,k =n!

k=0

Note that I, is also the number of arrays of size n such that 0 < T'[i] < n—i and the sum
of all elements equals k. By deleting the first entry of the array we obtain a new array of
size n — 1 respecting all conditions such that the sum of all elements equals & — 7'[0]. Thus

k
In,k - E In—l,k’
k

'=k—n+1

Exercise 1.3. Fill the following array

N. inversions | 0 | 1| 283|456 78| 9] 10
n=1 1
n=2
n=3
n=4
n=>

Let I,,(x) the generating function of inversions:

I,(x) = Z]mkxk

Note that I,(z) = I, 1(z)(1+z + ... + 2" })
L(x)=101+z)1+z+2%)..(1+z+...+2")

n(n—1)

7 II.(1) _ dln(In(x
In(x) = ITLB = (8x((1)
Theorem 1.1. The average number of inversions in a permutation is ”("4_1)

Another (simpler) proof is easily derived from studying the miror permutation with the
permutation.
1.1.2 Sorting by selection
In this algorithm you first find the smallest element and then you put it in the first place.

for (int i = 0; 1 < n ; i++)
for (int j = i+1l; j < n; j++)
if (alil > aljl) swap(alil,aljl);

When performing a swap operation, the number of inversions decrease by 1. So, the number
of swaps equal the number if inversions.

1.1.3 Sorting by insertion

for (int i = 1; i < n; i++)
for (int j = i; j !'=0 && aljl<alj-1]; j--)
swap(aljl,alj-11);

Exercise 1.4. The number of tests is :

1.2 Cycles and smallest element

Exercise 1.5. Let a be the following permutation : o = 372159648.

1. Draw the digraph (directed graph) where each vertex represents a number of the per-
mutation and there ezists an arc between i and j if and only if 7 = «(7).

2. Write the cycles of this graph. This is called the cyclic notation of the permutation.

3. Let C, 1, be the number of permutations of size n with k cycles. Give the first values
forn <5.

4. Show that Cpi1p = nChj + Cp—1-
5. Let Cp(z) =Y. C,xx®. Prove that
Cp(x) = ' (x +14)

6. Prove that the average number of cycles in a permutation of size n is H, =Y ., %

Definition 1.4. Let o be a permutation. o(i) is a partial minimum if o(i) is tricly less
than all 0(7),j < 1.

The following algorithm gives the number of partial minima in a permutation.
min = a[0];
for (int i = 0; 1 < n ; i++)

if (ali] < min) min = ali];

Exercise 1.6. Show that number of changes of partial minimal is equal to C), .

We can give a bijective proof of this result using Foata transformation.

1.3 Descents and excedences

Definition 1.5. Let a be a permutation of size n.
o «; is a descent if o; > i
e «; is an excedence (or weak excedence) if a; > i
e «; is a strict excedence if a; > i

Fill the following array:

Nb descents | Nb excedences | Nb strict excedences

123
132
213
231
312
321

We denote by:

e D, the number of permutation of size n having k descents.

e [, 1 the number of permutation of size n having & excedences.

e [, the number of permutation of size n having k strict excedences.

Note that for n = 3 we have D,,, = F,,), = Ep, j11.
Proposition 1.1. D, = D, 1.
Proof. Use & the mirror permutation. [
Proposition 1.2. a7 '(i) = j & a(j) =14, |E(a)| + |F(a™)| =n. Thus E,; = Fnn

Proof. e Prove that if i < (i) then a™*(«a(i)) is not a strict excedent for a*.

e Prove that if i > a(i) then a~!(a(i)) is a strict excedent for a~!.

Proposition 1.3. D, = E, ,,_1

Proof. We only sketch the proof. Let o be a permutation with n —k excedents. We rewrite
the permutation « in the cyclic notation, with the greatest element of each cycle in the
first place and every maxima in increasing order like in Foata transformation. We obtain
a permutation with £ descents.

Exercise 1.7. Make an example of this transformation and prove the property above.

O
Exercise 1.8. With the three last propositions, prove the claim result D, = F, p = Ey k+1
Proposition 1.4. D, = (k+1)Dy_1 5+ (n — k) D1 41
Proof. Choose where you insert the greatest element.]

Exercise 1.9. Let D,(z) = > D,2*. Prove that D,(z) = (1 + (n — 1)z) D,,_1(z) + (z —
2*) Dy, (@)

2 Permutation pattern

2.1 Greatest increasing subsequence

Definition 2.1. The longest increasing subsequence of a permutation o is the largest value
p such that there exist i1,...,1, and a;; < a;, < ... < a;, with 1y <iy <... <1,

Exercise 2.1. Let 0 = (7,9,12,2,11,3,8,5,6,1,4,10). Give the longest increasing subse-
quence.

Proof. Build iteratively all the longest increasing subsequences.

7 <—9<—{12
11
8
2 3¢5+« 6+<10
4
1

]

This leads to the following dynamic programming algorithm where you fill in two dif-
ferent arrays:

e BEST[i] = j if the longest increasing subsequence of size i ends by j and j is the
smallest value possible.

e PREDI|k] = precessor of k in the largest increasing subsequence ending with k.

Exercise 2.2. Give the algorithm for computing the longest increasing subsequence.

2.2 Permutation pattern

Definition 2.2. Let 0 and m be two permutations of size n and p respectively with p < n.
We say that 7 is a pattern of o whenever there exists iy < is < ... <1, such that o;, < 0,
whenever T < m for all1 <k #1<p.

For example, we say that 132 occurs in 123645. But we say that 543216 avoids 132. .

2.3 One-stack sortable permutations

A stack is an ordered set, with two operations, pop and push such that:
e pop returns the last element inserted and deletes it from the set.
e push add an element to the set.

Let S be a stack. A permutation o10s... 0, is said to be one-stack sortable if it can be
transformed to identity by the following algorithm.

1. i — 1, S is the empty stack
2. Either:

e push the element o; in the stack and increment ¢ by one.

e or pop an element from the stack and write it out.
3. Return to step 2.
The output is the list of elements popped from the stack.
Exercise 2.3. 1. Give the one-stack sortable permutations of size 1, 2, 3 and 4.
2. Find a characterization for these permutations and prove it..

Definition 2.3. A plane tree of size n is a tree with n edges embedded in the plane and
rooted on an edge.

Exercise 2.4. 1. How many tree are there of size 1, 2 and 3.

Exercise 2.5. Let T be the following tree:

1. Number the edges through a postfix depth first traversal of the tree
2. Read the tree through a prefiz depth first traversal of the tree
3. Notice that the resulting permutation avoids 231. Prove it.

Definition 2.4. A unary-binary tree is a plane rooted tree where each vertex has arity 1
or 2 (i.e. degree 2 or3). Vertices of arity 1 have either a right or a left son. A binary tree
15 a plane rooted tree where each vertex has arity 2.

Exercise 2.6. 1. How many unary-binary trees are there of size 1, 2, 3 and 4 ¢

2. Notice that a vertex of a plane tree is either the leftmost child of another node or the
brother of a node. Deduce a correspondance between unary-binary trees and plane
trees.

3. How many binary trees are there with 2, 3 and 4 leaves ?

4. Find a correspondance between those objects

2.4 Dyck paths

Definition 2.5. A Dyck path of length n is a path in the plane starting at (0,0), ending at
(n,n) and made of n horizontal and n vertical steps that never goes under the line y = x.
A Dyck path of length n is a path in the plane starting at (0,0), ending at (2n,0) made of
n (1,1) steps and n (1,—1) steps which never goes below the x azis.

Exercise 2.7. Considering a left-right depth first traversal of a plane tree, show that Dyck
paths of length n are in one-to-one correspondence with plane trees of size n.

2.5 Enumeration

We want to enumerate the number of plane trees with n edges or the number of Dyck path
of size n or the number of unary-binary trees with n — 1 edges or the number of binary
trees with n 4 1 leaves.

2.5.1 Enumeration of binary trees

A binary tree is either a leaf or an ordered set of two binary trees. Thus :

B(z) = x + B*(z)

2.5.2 Enumeration of Dyck paths
A Dyck path is either an empty one or an ordered set of two Dyck paths. Thus:

D(x) = xD*(z) + 1

2.5.3 Direct proof on Dyck path

Note that a Dyck path is a word which contains n letters a and n letters b. Get a Dyck
path and add a dwon step at the end. These paths are in bijection with Dyck paths. Then
consider all words with n letters a and n+ 1 letters b. Notice that only one rotation of this
word corresponds to such a path.

2.6 Enumeration of pattern-avoiding permutations

The first question which arises in this definition is given a pattern m, how many permuta-
tions of size n avoids 7 7

Stanley and Wilf conjectured (Bona 1997, Arratia 1999), that for every permutation
pattern o, there is a constant ¢(o) < oo such that for all n, F'(n,o) < [c¢(o)]™.

A related conjecture stated that for every o, the limit limn — 00)[F(n,o)]t/™ exists
and is finite.

Arratia (1999) showed that these two conjectures are equivalent. The conjecture was
proved by Marcus and Tardos (2004). In fact Marcus and Tardos prove The Fiiredi-Hajnal
conjecture on matrix containment.

See article from Marcus and Tardos for the proof.

Index

conjecture

Stanley-Wilf, 9
Dyck path, 8

inversion, 2
generating function, 3
table, 2

minimum
partial, 4

path
Dyck, 8
pattern, 7
permutation, 1
descent, 5
excedence, b
increasing subsequence, 6
inversion, 2
inversion table, 2
one-stack sortable, 7
pattern, 7
avoidance, 7
involvment, 7
representation
cyclic, 4
one-line, 2
two-line, 2

sorting
insertion, 4
selection, 3

Stanley-Wilf, 9

table
inversion, 2
computation, 2

tree, 7
binary, 8
plane, 7

unary-binary, 8

10

