Normalisation of Second Order Arithmetic

Alexandre Miquel — PPS & U. Paris 7

Alexandre.Miquel@pps. jussieu.fr

Types Summer School 2005
August 15-26 — Goteborg

Syntax of HA2

Variables x, y,z, ... of individuals (i.e. natural numbers)
a", B", 4", ... of predicates (for each arity n > 0)

Individuals t,u x |0 | s(t)

Formulz AB n= a(t1,...,ta) (for all n > 0)

| A=B

| Vx B (first-order)

| Va" B (second order, for all n > 0)
Contexts [,A n= A, A, (lists of formulae)

o Predicate variables of arity 0 represent propositions
o Predicate variables represent sets (of numerals, of pairs, etc.)

@ Real numbers can be represented as predicate variables
(intuitionistic analysis)

Substitution

o Term substitution u{x:=1t} = defined in the usual way
o First-order substitution B{x:=t} = defined in the usual way

o Second-order substitution B{a" := Ax1,...,xa.A}

In the formula B, replace each atomic subformula of the form
a"(tl, ey t,.)
by the (substituted) formula

A{x1 :=t1;...;%Xn = tn}

@ The notation ‘Axy,...,xn.A" is not part of the syntax

Encoding missing constructions

@ Other connectives can be encoded:

T = " E =)

1 = Vy°4°

ANB = V(A= B=1") =1

AVB = ¥° ((A:>7°):>(B:>'y°):>’y°)
-A = A= 1

o Existential quantifier (1st + 2nd order)
Ix BIx] VY (¥x (Blx] = 7°) = %)
Ja” Bla"] vA° (Ya” (Bla"] = 1°) = °)

o Leibniz equality:

t=u = ¥ (v'(t) = 7' (u))

Deduction rules of HA2

o General rules for second-order intuitionistic logic:

rEa
rMA-B rFrA=B TFA
rN-A=2_8B r=B
r-B [-Vx B
— = x¢FV _— =
rrvx g o0 [FB{x =t}
(EB norvam [Va" B
Va" B M B{a:=Ax1,...,%: . A}
@ Specific rules (axioms) for arithmetic:
M- VxVy (s(x) =s(y) = x=y) M=vx = s(x)=0

@ Remember that constructions ‘t = ¢’ and ‘A’ are not primitive, but encoded!

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions

=' and 'V (implication + 1st/2nd-order universal quantification)

But in this framework, the other constructions (T, L, A, V, J etc.) are
definable and their (standard) deduction rules can be derived:

o Logical connectives: T, L and A

rEA r-B8 r'-AAB r'EAAB
FrEAAB r=A r=B

Derivable rules (2/2)

o Logical connectives: V

_rea - _TFEB
r-AvVB r-AvB

NAEC rBrcC rEAvB
r=c

o Existential quantifier: 1st and 2nd-order

M- B{x:=t} B+ C N-3x B
x¢@FV1(F,C)
l-3x B r=c
M= B{a" :=Ax1,...,xn. A} NBrC M- 3a" B
a¢FV2(r,C)

N-=3a" B r=c

Equality rules

Leibniz equality is defined as: t=u = Yy (Y (t) =+ (v)

@ The following formulae are provable (by purely logical means):
Vx (x = x)
VxVy (x=y = y=x)
VxVyVz(x=y = y=z = x=2)
Vol Vx Yy (@l (x) = x=y = o'(y))

@ Moreover, HA2 assumes the following two axioms:
(Injectivity) Vx Yy (s(x) =s(y) = x=y)
(Non-surjectivity) Vx = (s(x) =0)

Induction principle

Induction can be recovered via the predicate:
Nat(x) = Vo' (al(O) = Vy (al(y)éal(s(y))) = al(x))
= defines the smallest class containing zero and closed under successor

o In particular, we have: Nat(0) and Vx (Nat(x) = Nat(s(x)))

o All the first-order quantifications should be restricted to this class:

= Systematically use Vx (Nat(x) = A) and 3Ix (Nat(x) A A)

Thanks to this trick, induction becomes provable:

vat (al(O) = V¥x (Nat(x) = a'(x) = a'(s(x))) = Vx (Nat(x) = al(x))>

The notion of cut (1/2)
@ A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

@ Each cut can be contracted in order to make the reasoning more direct. . .
... but not necessarily shorter [And actually, usually larger!]

o Implication cut:

[MA,T'A]
L m G
rAFB w2 Lr-A
rFA=B TFA L
rFB res

Here, [, A, T’ - A] represents all the instances of an axiom with the formula A in the
proof 7y. (Such instances may occur in extended contexts of the form ', A, ")

These instances are then used as placeholders that are filled by the proof 72 during the
contraction of the cut (after some weakenings due to the presence of extra contexts I')

The notion of cut (2/2)

o Cut of the 1st-order universal quantification:

™

reB " D on{xi=t}
r-vx.B e B{x:=t}
e B{x:=t}

The first piece of proof is replaced by the proof 7 in which the 1st-order variable x is
replaced by the term t recursively. Notice that the substitution has no effect on I, since
x & FV(I). (Of course, the substitution has to be performed on each context too.)

@ Cut of the 2nd-order universal quantification:

.o

reB . D rfami=..)
r-ve".B M B{a" := Ax1,...,xn. A}

e B{a" := Ax1,...,xn. A}

Same principle, but with a 2nd-order substitution (ie. with a predicate Axi, ..., xn.A)

Derived cuts

From the encoding of the connectives A and V, one can derive other cuts:

o Cuts of the conjunction:

— D ora

: : D om
rFA kB ~ TFA (+ symmetric cut with A-elimy)
T'FAAB
A
@ Cuts of the disjunction:
[MA,A] [F.B,I'FB] S -
- Do rFA . TNIHA
rAFC T,BFC TFAVB D
e rec

(+ symmetric cut with V-introz)

Filling placeholders in 7y with 7 is done in the same way as for the cut of implication

Cut-free proofs

A cut-free proof is a proof that contains no cut

= Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

O If 1 is a cut-free proof of the formula t=u [= Vo' (o'(t) = o'(u))]
in the empty context, then the terms t and u are syntactically identical
© There is no cut-free proof of L [= Va® o] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of -t =t has one of the following two forms:

- FVx Vy (s(x) =s(y) = x=y) (cut-free)
oty rat() F Yy (s(t) = s(y) = t =) :
Fal(t) = o' (1) Fs(t)=s(t) >t=t F s(t) = s(t)
F Vol (o(1) = ot (1) Fr=t
N e

t=t

= Reasoning on cut-free proofs is purely combinatorial

Cut-elimination

o L = Va® a® has no cut-free proof (in the empty context)
= Means that a proof of L necessarily contains at least one cut

@ But each cut can be individually contracted

(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof 7

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a finite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

@ Any proposition that has a proof has also a cut-free proof

© The proposition | has no proof in the empty context

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

© Map each formula A of HA2 to a type A™ of system F
@ Map each logical context I' of HA2 to a typing context ™ of system F

© Map each proof 7 of a sequent ' - A in HA2 to a term 7" of system F
such that the judgement I* F 7* : A* s derivable

© Check that each cut of m becomes a redex in 7~

[Note: this works only for =--cuts and 2nd-order V-cuts. The case of 1st-order V-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F-Curry) entails SN(F-Church)]

@ Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Translating HA2 formulae (1/2)

o Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

o Formulae of HA2 are translated into the types of system F:

(a"(tr,...,tn))" = «
(A= B)* = A" =B
(vx.B)" = B*
(Va". B)* = VYaB

o Remarks: - arity of predicate variables is lost

— all the first-order constructions disappear

= The translation only preserves (pure) second-order constructions

o Substitutivity: (B{x:=t}) = A"
(B{Oén =)\Xl,...,X,,.A})* = B*{a = A*}

Translating HA2 formulae (2/2)

@ We can test the translation on derived formulz:

(AANB)* = A*xB* (cartesian product of system F)
(AvB) = A*+B* (disjoint union)
(t=u)* = (Vo' oM (t) = al(u))* = Vaa—a = Unit

= Equality proofs have no computational contents

o Translation of contexts: Each logical context

r = Ay, ..., A
is translated into a typing context of system F
" = &A% ..., & A,

by associating a term variable & (a ‘name’) to each hypothesis

Translating proofs (1/4)

Principle: Translate each proof 7 of a sequent T~ A into a term ©*
such that I 7" : A* s derivable

o Axiom: .
(Fara) = ¢

where ¢ is the variable associated to the formula A in the context ', A

@ Introduction of the implication:

rAFB = MGATT
r'FA=_B

where ¢ is the variable associated to A in the context ', A

Translating proofs (2/4)

o Elimination of the implication:

:7\'1 :772
r-A=B TH+FA = mm
r-B8

@ Introduction of the 1st-order universal quantification:

r-8 = 7
M+ vx B

o Elimination of the 1st-order universal quantification:

r+VxB =
e B{x:=t}

Remark: 1st-order V-intro/elim are invisible in the extracted system F term

Translating proofs (3/4)

o Introduction of the 2nd-order universal quantification:
re B = Aa.7w
M- va" B

*

o Elimination of the 2nd-order universal quantification:

[VYa" B = 7TA
M- B{a" == Ax1,...,%,. A}

Properties:
Each stage preserves the invariant ™ F 7" : A*

O Cuts of implication become 1st-kind redexes

@ Cuts of 2nd-order universal quantification become 2nd-kind redexes ...

© ... but cuts of Ist-order universal quantification disappear

Translating proofs (4/4)

o Injectivity: Since

(Vx Vy (s(x) =s(y) = x=y))" = Unit — Unit

it is natural to set:

(I'FVXVy (s(x)=s(y) = x=y))* = A¢:Unit.¢

o Non-surjectivity: Quite problematic, since the type
(Vx = s(x)=0)" = Unit— L

has no closed inhabitant in system F.

Solution (hack ?): Add a dummy constant Q: L in the system and put:

(M-Vx - s(x)=0)* = A:Unit.Q

Cut-elimination

@ Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Q)

Note: From the point of view of normalisation, system F + Q is the same as system F:
Q merely acts as a free variable that we have declared in all contexts once and for all

@ Via the translation of proofs:

o Cuts of implication become 1st kind redexes
o Cuts of 2nd-order quantification become 2nd kind redexes
o cuts of 1st-order quantification disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F-Curry) = SN(F-Church), noticing that

Fact (Contraction of 1st-order V cuts)

Each time we contract a cut of Ist-order quantification, the number of
first-order V-intro decreases in the proof

© Then we conclude that HA2 enjoys the property of cut-elimination

Natural numbers

@ Problem: The translation of formula and proofs erased all the terms!

= Where did my numerals go ?

o Answer: To benefit from induction, we restricted all the 1st-order
quantifications with the predicate

Nat(x) = va' (a}(0) = Wy (a*(y) = a’(s(y))) = o'(x))
whose translation in system F is:

(Nat(x))* = Va(a—(a—a)—a) = Nat (ofsystem F)

Fact (Translation of natural numbers)
For each term of the form s"(0) (concrete numeral)
@ The proposition Nat(s"(0)) has exactly one cut-free proof in HA2 . ..

© ... whose translation in system F is precisely Church numeral i

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat — Nat [Converse is also true]

Proof. Consider a proof w in HA2 of a statement of the form
vx (Nat(x) = 3y (Nat(y) A P[x, y]))
By translating the proof 7 into system F, we obtain a term
™ ¢ Nat — Va ((Nat x P* — a) — «)
(using the 2nd-order encoding of 3 given in slide 3), so that the term
A¢:Nat.7m" & Nat fst : Nat — Nat

(where fst : Nat x P* — Nat is the first projection) actually computes the desired function

Remark: We cheated a little bit, since 7 may contain the dummy constant Q that could
block some computations. There are two solutions to fix this:

© Use the shape of cut-free proofs of Nat(s"(0)) to show that this never happens
@ Define a modified translation that avoids the use of Q [cf Proofs and Types]

