
Normalisation of Second Order Arithmetic

Alexandre Miquel � PPS & U. Paris 7

Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005

August 15�26 � Göteborg

Syntax of HA2

Variables x , y , z , . . . of individuals (i.e. natural numbers)
αn, βn, γn, . . . of predicates (for each arity n ≥ 0)

Individuals t, u ::= x | 0 | s(t)

Formulæ A,B ::= αn(t1, . . . , tn) (for all n ≥ 0)
| A⇒ B
| ∀x B (�rst-order)
| ∀αn B (second order, for all n ≥ 0)

Contexts Γ, ∆ ::= A1, . . . ,An (lists of formulæ)

Predicate variables of arity 0 represent propositions

Predicate variables represent sets (of numerals, of pairs, etc.)

Real numbers can be represented as predicate variables
(intuitionistic analysis)

Substitution

Term substitution u{x := t} ⇒ de�ned in the usual way

First-order substitution B{x := t} ⇒ de�ned in the usual way

Second-order substitution B{αn := λx1, . . . , xn .A}

In the formula B, replace each atomic subformula of the form

αn(t1, . . . , tn)

by the (substituted) formula

A{x1 := t1; . . . ; xn := tn}

�
The notation `λx1, . . . , xn .A' is not part of the syntax

Encoding missing constructions

Other connectives can be encoded:

> ≡ ∀γ0 (γ0 ⇒ γ0)

⊥ ≡ ∀γ0 γ0

A ∧ B ≡ ∀γ0 ((A⇒ B ⇒ γ0) ⇒ γ0)

A ∨ B ≡ ∀γ0 ((A⇒ γ0) ⇒ (B ⇒ γ0) ⇒ γ0)

¬A ≡ A⇒ ⊥

Existential quanti�er (1st + 2nd order)

∃x B[x] ≡ ∀γ0 (∀x (B[x] ⇒ γ0) ⇒ γ0)

∃αn B[αn] ≡ ∀γ0 (∀αn (B[αn] ⇒ γ0) ⇒ γ0)

Leibniz equality:

t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

Deduction rules of HA2

General rules for second-order intuitionistic logic:

Γ ` A
A∈Γ

Γ,A ` B

Γ ` A⇒ B
Γ ` A⇒ B Γ ` A

Γ ` B

Γ ` B
Γ ` ∀x B

x /∈FV 1(Γ)
Γ ` ∀x B

Γ ` B{x := t}

Γ ` B
Γ ` ∀αn B

αn /∈FV 2(Γ)
Γ ` ∀αn B

Γ ` B{α := λx1, . . . , xn .A}

Speci�c rules (axioms) for arithmetic:

Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y) Γ ` ∀x ¬ s(x) = 0

�
Remember that constructions `t = u' and `¬A' are not primitive, but encoded!

Derivable rules (1/2)

Logical deduction rules of HA2 only talk about the primitive constructions
`⇒' and `∀' (implication + 1st/2nd-order universal quanti�cation)

But in this framework, the other constructions (>, ⊥, ∧, ∨, ∃ etc.) are
de�nable and their (standard) deduction rules can be derived:

Logical connectives: >, ⊥ and ∧

Γ ` >
Γ ` ⊥
Γ ` C

Γ ` A Γ ` B
Γ ` A ∧ B

Γ ` A ∧ B
Γ ` A

Γ ` A ∧ B
Γ ` B

Derivable rules (2/2)

Logical connectives: ∨

Γ ` A
Γ ` A ∨ B

Γ ` B
Γ ` A ∨ B

Γ,A ` C Γ,B ` C Γ ` A ∨ B

Γ ` C

Existential quanti�er: 1st and 2nd-order

Γ ` B{x := t}
Γ ` ∃x B

Γ,B ` C Γ ` ∃x B

Γ ` C
x /∈FV 1(Γ,C)

Γ ` B{αn := λx1, . . . , xn .A}
Γ ` ∃αn B

Γ,B ` C Γ ` ∃αn B

Γ ` C
αn /∈FV 2(Γ,C)

Equality rules

Leibniz equality is de�ned as: t = u ≡ ∀γ1 (γ1(t) ⇒ γ1(u))

The following formulæ are provable (by purely logical means):

∀x (x = x)

∀x ∀y (x = y ⇒ y = x)

∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

∀α1 ∀x ∀y (α1(x) ⇒ x = y ⇒ α1(y))

Moreover, HA2 assumes the following two axioms:

(Injectivity)

(Non-surjectivity)

∀x ∀y (s(x) = s(y) ⇒ x = y)

∀x ¬ (s(x) = 0)

Induction principle

Induction can be recovered via the predicate:

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
⇒ de�nes the smallest class containing zero and closed under successor

In particular, we have: Nat(0) and ∀x
`
Nat(x) ⇒ Nat(s(x))

´
All the �rst-order quanti�cations should be restricted to this class:

⇒ Systematically use ∀x (Nat(x) ⇒ A) and ∃x (Nat(x)∧A)

Thanks to this trick, induction becomes provable:

∀α1
“
α1(0) ⇒ ∀x

`
Nat(x) ⇒ α1(x) ⇒ α1(s(x))

´
⇒ ∀x (Nat(x) ⇒ α1(x))

”

The notion of cut (1/2)

A cut is a piece of a proof constituted by an introduction rule immediately
followed by the corresponding elimination rule

Each cut can be contracted in order to make the reasoning more direct. . .
. . . but not necessarily shorter [And actually, usually larger!]

Implication cut:

[Γ,A,Γ′`A].... π1

Γ,A ` B

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

.... π2

Γ, Γ′ ` A
.... π1

Γ ` B

Here, [Γ,A, Γ′ ` A] represents all the instances of an axiom with the formula A in the
proof π1. (Such instances may occur in extended contexts of the form Γ,A, Γ′.)
These instances are then used as placeholders that are �lled by the proof π2 during the
contraction of the cut (after some weakenings due to the presence of extra contexts Γ′)

The notion of cut (2/2)

Cut of the 1st-order universal quanti�cation:

.... π

Γ ` B
Γ ` ∀x .B

Γ ` B{x := t}

.... π{x :=t}

Γ ` B{x := t}

The �rst piece of proof is replaced by the proof π in which the 1st-order variable x is
replaced by the term t recursively. Notice that the substitution has no e�ect on Γ, since
x /∈ FV (Γ). (Of course, the substitution has to be performed on each context too.)

Cut of the 2nd-order universal quanti�cation:

.... π

Γ ` B
Γ ` ∀αn .B

Γ ` B{αn := λx1, . . . , xn .A}

.... π{αn :=··· }

Γ ` B{αn := λx1, . . . , xn .A}

Same principle, but with a 2nd-order substitution (ie. with a predicate λx1, . . . , xn .A)

Derived cuts

From the encoding of the connectives ∧ and ∨, one can derive other cuts:

Cuts of the conjunction:

.... π1

Γ ` A

.... π2

Γ ` B
Γ ` A ∧ B

Γ ` A

.... π1

Γ ` A (+ symmetric cut with ∧-elim2)

Cuts of the disjunction:

[Γ,A,Γ′`A].... π1

Γ,A ` C

[Γ,B,Γ′`B].... π2

Γ,B ` C

.... π

Γ ` A
Γ ` A ∨ B

Γ ` C

.... π

Γ, Γ′ ` A
.... π1

Γ ` C

(+ symmetric cut with ∨-intro2)

Filling placeholders in π1 with π is done in the same way as for the cut of implication

Cut-free proofs

A cut-free proof is a proof that contains no cut

⇒ Cut-free proofs have a simpler structure that make them easier to analyse

Fact (Cut-free consistency)

1 If π is a cut-free proof of the formula t = u [≡ ∀α1 (α1(t) ⇒ α1(u))]
in the empty context, then the terms t and u are syntactically identical

2 There is no cut-free proof of ⊥ [≡ ∀α0 α0] in the empty context

Proof. Both properties are proved simultaneously by induction on the size of the cut-free
proof. Notice that a cut-free proof of ` t = t has one of the following two forms:

α1(t) ` α1(t)

` α1(t) ⇒ α1(t)

` ∀α
1 (α1(t) ⇒ α

1(t))| {z }
t=t

` ∀x ∀y (s(x) = s(y) ⇒ x = y)

` ∀y (s(t) = s(y) ⇒ t = y)

` s(t) = s(t) ⇒ t = t

(cut-free)
.
.
.
.

` s(t) = s(t)

` t = t

⇒ Reasoning on cut-free proofs is purely combinatorial

Cut-elimination

⊥ ≡ ∀α0 α0 has no cut-free proof (in the empty context)
⇒ Means that a proof of ⊥ necessarily contains at least one cut

But each cut can be individually contracted
(Keeping in mind that contracting a cut may produce several new cuts)

Question [Takeuti]

Is there a strategy for contracting cuts in a proof such that the process
converges to a cut-free proof ?

Theorem (Cut-elimination [Girard])

Any strategy for contracting cuts converges to a cut-free proof
(in a �nite number of contraction steps)

Corollary (Cut-free proofs & Consistency)

1 Any proposition that has a proof has also a cut-free proof

2 The proposition ⊥ has no proof in the empty context

Outline of the proof

Idea: Deduce cut-elimination of HA2 from strong normalisation of system F

1 Map each formula A of HA2 to a type A∗ of system F

2 Map each logical context Γ of HA2 to a typing context Γ∗ of system F

3 Map each proof π of a sequent Γ ` A in HA2 to a term π∗ of system F
such that the judgement Γ∗ ` π∗ : A∗ is derivable

4 Check that each cut of π becomes a redex in π∗

[Note: this works only for ⇒-cuts and 2nd-order ∀-cuts. The case of 1st-order ∀-cuts is
treated separately, using a combinatorial argument similar to the one we used for
2nd-kind redexes, when we proved that SN(F -Curry) entails SN(F -Church)]

5 Conclude that cuts can be eliminated in any proof of HA2
(using any strategy)

Translating HA2 formulæ (1/2)

Each predicate variable of HA2 is mapped to a type variable of system F

(We keep the same names for simplicity)

Formulæ of HA2 are translated into the types of system F :

(αn(t1, . . . , tn))
∗ ≡ α

(A⇒ B)∗ ≡ A∗ → B∗

(∀x .B)∗ ≡ B∗

(∀αn .B)∗ ≡ ∀α B

Remarks: � arity of predicate variables is lost
� all the �rst-order constructions disappear

⇒ The translation only preserves (pure) second-order constructions

Substitutivity: (B{x := t}) ≡ A∗

(B{αn := λx1, . . . , xn .A})∗ ≡ B∗{α := A∗}

Translating HA2 formulæ (2/2)

We can test the translation on derived formulæ:

(A ∧ B)∗ ≡ A∗ × B∗ (cartesian product of system F)

(A ∨ B)∗ ≡ A∗ + B∗ (disjoint union)

(t = u)∗ ≡ (∀α1 α1(t) ⇒ α1(u))∗ ≡ ∀α α → α ≡ Unit

⇒ Equality proofs have no computational contents

Translation of contexts: Each logical context

Γ ≡ A1, . . . , An

is translated into a typing context of system F

Γ∗ ≡ ξ1 : A∗
1 , . . . , ξn : A∗

n

by associating a term variable ξi (a `name') to each hypothesis

Translating proofs (1/4)

Principle: Translate each proof π of a sequent Γ ` A into a term π∗

such that Γ∗ ` π∗ : A∗ is derivable

Axiom: “
Γ,A ` A

”∗
= ξ

where ξ is the variable associated to the formula A in the context Γ,A

Introduction of the implication:0B@
.... π

Γ,A ` B

Γ ` A⇒ B

1CA
∗

= λξ :A∗ . π∗

where ξ is the variable associated to A in the context Γ,A

Translating proofs (2/4)

Elimination of the implication:0B@
.... π1

Γ ` A⇒ B

.... π2

Γ ` A
Γ ` B

1CA
∗

= π∗
1π∗

2

Introduction of the 1st-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀x B

1CA
∗

= π∗

Elimination of the 1st-order universal quanti�cation:0B@
.... π

Γ ` ∀x B
Γ ` B{x := t}

1CA
∗

= π∗

Remark: 1st-order ∀-intro/elim are invisible in the extracted system F term

Translating proofs (3/4)

Introduction of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` B
Γ ` ∀αn B

1CA
∗

= Λα . π∗

Elimination of the 2nd-order universal quanti�cation:0B@
.... π

Γ ` ∀αn B
Γ ` B{αn := λx1, . . . , xn .A}

1CA
∗

= π∗A∗

Properties:

Each stage preserves the invariant Γ∗ ` π∗ : A∗

1 Cuts of implication become 1st-kind redexes

2 Cuts of 2nd-order universal quanti�cation become 2nd-kind redexes . . .

3 . . . but cuts of 1st-order universal quanti�cation disappear

Translating proofs (4/4)

Injectivity: Since`
∀x ∀y (s(x) = s(y) ⇒ x = y)

´∗ ≡ Unit→ Unit

it is natural to set:“
Γ ` ∀x ∀y (s(x) = s(y) ⇒ x = y)

”∗
≡ λξ :Unit . ξ

Non-surjectivity: Quite problematic, since the type

(∀x ¬ s(x) = 0)∗ ≡ Unit→ ⊥

has no closed inhabitant in system F .

Solution (hack ?): Add a dummy constant Ω : ⊥ in the system and put:“
Γ ` ∀x ¬ s(x) = 0

”∗
≡ λξ :Unit . Ω

Cut-elimination

1 Each proof of (intuitionistic) second-order arithmetic has been translated
into a well-typed term of system F (+ constant Ω)

Note: From the point of view of normalisation, system F + Ω is the same as system F :
Ω merely acts as a free variable that we have declared in all contexts once and for all

2 Via the translation of proofs:

Cuts of implication become 1st kind redexes
Cuts of 2nd-order quanti�cation become 2nd kind redexes
cuts of 1st-order quanti�cation disappear

Treat the last kind of cuts as we did with 2nd-kind redexes when we
proved SN(F -Curry) ⇒ SN(F -Church), noticing that

Fact (Contraction of 1st-order ∀ cuts)

Each time we contract a cut of 1st-order quanti�cation, the number of
�rst-order ∀-intro decreases in the proof

3 Then we conclude that HA2 enjoys the property of cut-elimination

Natural numbers

Problem: The translation of formulæ and proofs erased all the terms!

⇒ Where did my numerals go ?

Answer: To bene�t from induction, we restricted all the 1st-order
quanti�cations with the predicate

Nat(x) ≡ ∀α1
“
α1(0) ⇒ ∀y

`
α1(y) ⇒ α1(s(y))

´
⇒ α1(x)

”
whose translation in system F is:

(Nat(x))∗ ≡ ∀α
`
α → (α → α) → α

´
≡ Nat (of system F)

Fact (Translation of natural numbers)

For each term of the form sn(0) (concrete numeral)

1 The proposition Nat(sn(0)) has exactly one cut-free proof in HA2 . . .

2 . . . whose translation in system F is precisely Church numeral n

Extracting programs from proofs

Representation theorem

Any function whose totality can be proved in HA2 is representable in system F
by a term of type Nat→ Nat [Converse is also true]

Proof. Consider a proof π in HA2 of a statement of the form

∀x
`
Nat(x) ⇒ ∃y (Nat(y) ∧ P[x, y])

´
By translating the proof π into system F , we obtain a term

π
∗ : Nat→ ∀α ((Nat× P

∗ → α) → α)

(using the 2nd-order encoding of ∃ given in slide 3), so that the term

λξ :Nat . π
∗

ξ Nat fst : Nat→ Nat

(where fst : Nat× P∗ → Nat is the �rst projection) actually computes the desired function

Remark: We cheated a little bit, since π∗ may contain the dummy constant Ω that could
block some computations. There are two solutions to �x this:

1 Use the shape of cut-free proofs of Nat(sn(0)) to show that this never happens

2 De�ne a modi�ed translation that avoids the use of Ω [cf Proofs and Types]

