System F

Alexandre Miquel — PPS & U. Paris 7 Alexandre.Miquel@pps.jussieu.fr

Types Summer School 2005 August 15–26 — Göteborg

Introduction

System F: independently discovered by
 Girard: System F (1970)
 Reynolds: The polymorphic λ-calculus (1974)

• Quite different motivations...

Girard: Interpretation of second-order logic **Reynolds:** Functional programming

... connected by the Curry-Howard isomorphism

• Significant influence on the development of Type Theory

- Interpretation of higher-order logic
- Type:Type
- Martin-Löf Type Theory
- The Calculus of Constructions

[Girard, Martin-Löf] [Martin-Löf 1971] [1972, 1984, 1990, ...] [Coquand 1984]

Part I

System F: Church-style presentation

System F syntax

Definition					
Types	A, B	::=	$\alpha \mid A \to I$	B ∀a	a B
Terms	t, u	::=	x		
			$\lambda x : A . t \mid$	tu	(term abstr./app.)
			$\Lambda \alpha . t$	tΑ	(type abstr./app.)

Notations

- Set of free (term) variables:
- Set of free type variables:
- Term substitution:
- Type substitution:

FV(t) TV(t), TV(A) $u\{x := t\}$ $u\{\alpha := A\}, B\{\alpha := A\}$

Perform α -conversion to prevent captures of free (term/type) variables!

System F typing rules

Contexts Γ ::= $x_1 : A_1, \dots, x_n : A_n$ Typing judgments $\Gamma \vdash t : A$

$$\overline{\Gamma \vdash x : A} \quad \stackrel{(x:A) \in \Gamma}{}$$

$$\frac{\Gamma, \ x : A \vdash t : B}{\Gamma \vdash \lambda x : A : t : A \to B} \qquad \frac{\Gamma \vdash t : A \to B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash \Lambda \alpha . t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t A : B\{\alpha := A\}}$$

• Declaration of type variables is implicit (for each $\alpha \in TV(\Gamma)$)

- Type variables could be declared explicitly: α : * (cf PTS)
- One rule for each syntactic construct \Rightarrow System is syntax-directed

Example: the polymorphic identity

• Set: id
$$\equiv \Lambda \alpha . \lambda x : \alpha . x$$

One has:

$$\begin{array}{rcl} \mathsf{id} & : & \forall \alpha \ (\alpha \to \alpha) \\ \\ \mathsf{id} \ B & : & B \to B & \text{for any type } B \\ \\ \\ \mathsf{id} \ B \ u & : & B & \text{for any term } u : B \end{array}$$

• In particular, if we take $B \equiv orall lpha \left(lpha
ightarrow lpha
ight)$ and $u \equiv {
m id}$

 $\begin{array}{lll} \operatorname{id} \left(\forall \alpha \; (\alpha \to \alpha) \right) & : & \forall \alpha \; (\alpha \to \alpha) \; \to \; \forall \alpha \; (\alpha \to \alpha) \\ \operatorname{id} \left(\forall \alpha \; (\alpha \to \alpha) \right) \operatorname{id} \; : \; \forall \alpha \; (\alpha \to \alpha) \end{array}$

 \Rightarrow Type system is impredicative (or cyclic)

Properties

Substitutivity (for types/terms): • $\Gamma \vdash u : B \implies \Gamma\{\alpha := A\} \vdash u\{\alpha := A\} : B\{\alpha := A\}$ • $\Gamma, x : A \vdash u : B, \quad \Gamma \vdash t : A \implies \Gamma \vdash u\{x := t\} : B$

Uniqueness of type

 $\Gamma \vdash t : A, \quad \Gamma \vdash t : A' \quad \Rightarrow \quad A = A' \quad (\alpha \text{-conv.})$

Decidability of type checking / type inference

- **Q** Given Γ , t and A, decide whether $\Gamma \vdash t : A$ is derivable
- Q Given Γ and t, compute a type A such that Γ ⊢ t : A if such a type exists, or fail otherwise.

Both problems are decidable

Reduction rules

Two kinds of redexes:

$$\begin{array}{rll} (\lambda x:A.t)u &\succ t\{x:=u\} & \qquad \mbox{1st kind redex} \\ (\Lambda \alpha.t)A &\succ t\{\alpha:=A\} & \qquad \mbox{2nd kind redex} \end{array}$$

Other combinations of abstraction and application are meaningless (and rejected by typing)

Definitions

- One step β -reduction $t \succ t' \equiv$ contextual closure of both rules above
- β -reduction $t \succ^* t' \equiv$ reflexive-transitive closure of \succ
- β -convertibility $t \simeq t' \equiv$ reflexive-symmetric-transitive closure of \succ

Examples

• The polymorphic identity, again

$$\mathsf{id} \ B \ u \equiv (\Lambda \alpha \, . \, \lambda x \, : \, \alpha \, . \, x) \ B \ u \succ (\lambda x \, : \, B \, . \, x) \ u \succ u$$

$$\mathsf{id} \ (\forall \alpha \ (\alpha \rightarrow \alpha)) \ \mathsf{id} \ (\forall \alpha \ (\alpha \rightarrow \alpha)) \ \cdots \ \mathsf{id} \ (\forall \alpha \ (\alpha \rightarrow \alpha)) \ \mathsf{id} \ B \ u \quad \succ^* \quad u$$

• A little bit more complex example...

$$\begin{array}{l} \overset{32 \text{ times}}{\left(\Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . f(\cdots (f x) \cdots)\right)} \\ \left(\forall \alpha \ (\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha)\right) \ (\Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . f x) \\ \left(\lambda n : \forall \alpha \ (\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha) . \Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . n \alpha (n \alpha x f) f\right) \\ \succ^{*} \quad \Lambda\alpha . \lambda x : \alpha . \lambda f : \alpha \rightarrow \alpha . \underbrace{\left(f \ \cdots (f x) \cdots\right)}_{4 \ 294 \ 967 \ 296 \ \text{ times}} \end{array}$$

Properties

Confluence

$$t \succ^* t_1 \land t \succ^* t_2 \quad \Rightarrow \quad \exists t' \ (t_1 \succ^* t' \land t_2 \succ^* t')$$

Proof. Roughly the same as for the untyped λ -calculus (adaptation is easy)

Church-Rosser

$$t_1\simeq t_2 \quad \Leftrightarrow \quad \exists t' \ (t_1\succ^* t' \ \land \ t_2\succ^* t')$$

Subject-reduction

If $\Gamma \vdash t : A$ and $t \succ^* t'$ then $\Gamma \vdash t' : A$

Proof By induction on the derivation of $\Gamma \vdash t : A$, with $t \succ t'$ (one step reduction)

Strong normalisation

All well-typed terms of system F are strongly normalisable

Proof. Girard and Tait's method of reducibility candidates (postponed)

Part II

Encoding data types

Booleans (1/3)

Encoding of booleans

$$\begin{array}{rcl} \mathsf{Bool} &\equiv & \forall \gamma \; (\gamma \to \gamma \to \gamma) \\ \mathsf{true} &\equiv & \Lambda \gamma \cdot \lambda x, y : \gamma \cdot x & : & \mathsf{Bool} \\ \mathsf{false} &\equiv & \Lambda \gamma \cdot \lambda x, y : \gamma \cdot y & : & \mathsf{Bool} \\ \mathsf{if}_A \; u \; \mathsf{then} \; t_1 \; \mathsf{else} \; t_2 \; \equiv \; u \; A \; t_1 \; t_2 \end{array}$$

Correctness w.r.t. typing

$$\frac{\Gamma \vdash u : \text{Bool} \quad \Gamma \vdash t_1 : A \quad \Gamma \vdash t_2 : A}{\Gamma \vdash \text{if}_A \quad u \text{ then } t_1 \text{ else } t_2 : A}$$

Correctness w.r.t. reduction

Booleans (2/3)

Objection: We can do the same in the untyped λ -calculus!

 $\begin{array}{l} {\rm true} & \equiv & \lambda x, y \, . \, x \\ {\rm false} & \equiv & \lambda x, y \, . \, y \\ {\rm if} & u \ {\rm then} & t_1 \ {\rm else} & t_2 \ \equiv & u \ t_1 \ t_2 \end{array} \right\} \qquad {\rm Same \ reduction} \\ {\rm rules \ as \ before}$

But nothing prevents the following computation:

if $\lambda x \cdot x$ then t_1 else $t_2 \equiv (\lambda x \cdot x) t_1 t_2 \succ \underbrace{t_1 t_2}_{\text{meaningless result}}$

Question: Does the type discipline of system *F* avoid this?

Booleans (3/3)

Principle (that should be satisfied by any functional programming language) When a program P of type A evaluates to a value v, then v has one of the canonical forms expected by the type A.

In ML/Haskell, a value produced by a program of type Bool will always be true or false (i.e. the canonical forms of type bool).

In system *F*: Subject-reduction ensures that the normal form of a term of type Bool is a term of type Bool.

To conclude, it suffices to check that in system F:

Lemma (Canonical forms of type bool)

The terms true $\equiv \Lambda \gamma . \lambda x, y : \gamma . x$ and false $\equiv \Lambda \gamma . \lambda x, y : \gamma . y$ are the only closed normal terms of type Bool $\equiv \forall \gamma \ (\gamma \rightarrow \gamma \rightarrow \gamma)$

Proof. Case analysis on the derivation.

Cartesian product

Encoding	of t	he cartesian product $A imes B$		
A imes B	≡	$\forall \gamma \; ((A {\rightarrow} B {\rightarrow} \gamma) {\rightarrow} \gamma)$		
$\langle t_1, t_2 \rangle$	≡	$\Lambda\gamma.\lambda f: A \to B \to \gamma.f \ t_1 \ t_2$		
fst snd	=	$ \lambda p: A \times B \cdot p A (\lambda x: A \cdot \lambda y: B \cdot x) \lambda p: A \times B \cdot p B (\lambda x: A \cdot \lambda y: B \cdot y) $:	$A \times B \to A$ $A \times B \to B$

Correctness w.r.t. typing and reduction

$\Gamma \vdash t_1 : A \qquad \Gamma \vdash t_2 : B$	fst $\langle t_1, t_2 \rangle$	\succ^*	t_1
$\Gamma \vdash \langle t_1, t_2 \rangle : A \times B$	snd $\langle t_1, t_2 angle$	\succ^*	t_2

Lemma (Canonical forms of type $A \times B$)

The closed normal terms of type $A \times B$ are of the form $\langle t_1, t_2 \rangle$, where t_1 and t_2 are closed normal terms of type A and B, respectively.

Disjoint union

Encoding of the disjoint union
$$A + B$$

 $A + B \equiv \forall \gamma ((A \rightarrow \gamma) \rightarrow (B \rightarrow \gamma) \rightarrow \gamma)$
 $inl(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . f v : A + B \quad (with v : A)$
 $inr(v) \equiv \Lambda \gamma . \lambda f : A \rightarrow \gamma . \lambda g : B \rightarrow \gamma . g v : A + B \quad (with v : B)$
 $case_{c} u \text{ of } inl(x) \mapsto t_{1} \mid inr(y) \mapsto t_{2} \equiv u C (\lambda x : A . t_{1}) (\lambda y : B . t_{2})$

Correctness w.r.t. typing and reduction

$$\frac{\Gamma \vdash u : A + B}{\Gamma} \quad \frac{\Gamma, \ x : A \vdash t_1 : C}{\Gamma \vdash \text{case} c \ u \text{ of } \inf(x) \mapsto t_1 \ | \ \inf(y) \mapsto t_2 \ : \ C}$$

$$\begin{array}{rrrr} \operatorname{case}_{C} \operatorname{inl}(v) \ \operatorname{of} & \operatorname{inl}(x) \mapsto t_{1} & \mid & \operatorname{inr}(y) \mapsto t_{2} & \succ^{*} & t_{1}\{x := v\} \\ \operatorname{case}_{C} & \operatorname{inr}(v) \ \operatorname{of} & \operatorname{inl}(x) \mapsto t_{1} & \mid & \operatorname{inr}(y) \mapsto t_{2} & \succ^{*} & t_{2}\{y := v\} \end{array}$$

+ Canonical forms of type A + B (works as expected modulo η)

Finite types

Encoding of Fin_n
$$(n \ge 0)$$

Fin_n $\equiv \forall \gamma (\underbrace{\gamma \to \dots \to \gamma}_{n \text{ times}} \to \gamma)$
 $\mathbf{e}_i \equiv \Lambda \gamma . \lambda x_1 : \gamma ... \lambda x_n : \gamma . x_i : Fin_n \quad (1 \le i \le n)$

Again, $\mathbf{e}_1, \ldots, \mathbf{e}_n$ are the only closed normal terms of type Fin_n. In particular:

(Notice that there is no closed normal term of type \perp .)

Natural numbers

Lemma (Canonical forms of type Nat) The terms $\overline{0}, \overline{1}, \overline{2}, \ldots$ are the only closed normal terms of type Nat.

Computing with natural numbers (1/2)

Intuition: Church numeral \overline{n} acts as an iterator:

$$\overline{n} A f x \succ^* \underbrace{f (\cdots (f x) \cdots)}_{n} (f : A \to A, x : A)$$

Successor

succ
$$\equiv \lambda n : \text{Nat} . \Lambda \gamma . \lambda x : \gamma . \lambda f : \gamma \rightarrow \gamma . f (n \gamma x f)$$

Addition

$$\begin{array}{rcl} \mathsf{p}|\mathsf{us} &\equiv& \lambda n, m : \mathsf{Nat} . \, \Lambda \gamma . \, \lambda x : \gamma . \, \lambda f : \gamma \rightarrow \gamma . \, m \, \gamma \, \left(n \, \gamma \, x \, f \right) f \\ \mathsf{p}|\mathsf{us}' &\equiv& \lambda n, m : \mathsf{Nat} . \, m \, \mathsf{Nat} \, n \, \mathsf{succ} \end{array}$$

Multiplication

$$\begin{array}{ll} \text{mult} &\equiv& \lambda n, m: \text{Nat.} \Lambda \gamma . \lambda x: \gamma . \lambda f: \gamma \rightarrow \gamma . n \ \gamma \ x \ (\lambda y: \gamma . m \ \gamma \ y \ f) \\ \text{mult}' &\equiv& \lambda n, m: \text{Nat.} n \ \text{Nat.} n \ \text{Nat} \ \overline{0} \ (\text{plus} \ m) \end{array}$$

Computing with natural numbers (2/2)

- Predecessor function pred : Nat \rightarrow Nat pred $\overline{0} \simeq \overline{0}$ pred $(\overline{n+1}) \simeq \overline{n}$ fst $\equiv \lambda_p : \operatorname{Nat} \times \operatorname{Nat} . p \operatorname{Nat} (\lambda_x, y : \operatorname{Nat} . x) : \operatorname{Nat} \times \operatorname{Nat} \rightarrow \operatorname{Nat}$ snd $\equiv \lambda_p : \operatorname{Nat} \times \operatorname{Nat} . p \operatorname{Nat} (\lambda_x, y : \operatorname{Nat} . y) : \operatorname{Nat} \times \operatorname{Nat} \rightarrow \operatorname{Nat}$ step $\equiv \lambda_p : \operatorname{Nat} \times \operatorname{Nat} . (\operatorname{snd} p, \operatorname{succ} (\operatorname{snd} p)) : \operatorname{Nat} \times \operatorname{Nat} \rightarrow \operatorname{Nat} \times \operatorname{Nat}$
 - pred $\equiv \lambda n$: Nat . fst (n (NatimesNat) $\langle \overline{0}, \overline{0} \rangle$ step) : Nat ightarrow Nat
- Ackerman function ack : Nat \rightarrow Nat \rightarrow Nat

 $\begin{array}{lcl} \mathsf{down} &\equiv& \lambda f: (\mathsf{Nat} \to \mathsf{Nat}) . \ \lambda p: \mathsf{Nat} . \ p \; \mathsf{Nat} \; (f \; \overline{\mathbf{1}}) \; f & : & (\mathsf{Nat} \to \mathsf{Nat}) \to (\mathsf{Nat} \to \mathsf{Nat}) \\ \mathsf{ack} &\equiv& \lambda n, m: \mathsf{Nat} . n \; (\mathsf{Nat} \to \mathsf{Nat}) \; \mathsf{succ} \; \mathsf{down} \; m & : & \mathsf{Nat} \to \mathsf{Nat} \to \mathsf{Nat} \end{array}$

SN theorem guarantees that all well-typed computations terminate

Part III

System F: Curry-style presentation

System F polymorphism

ML/Haskell polymorphism

Types	A, B	::=	$\alpha \mid A \to B \mid$	• • •	(user datatypes)
Schemes	S	::=	$\forall \vec{\alpha} \ B$		

The type scheme $\forall \alpha \ B$ is defined after its particular instances $B\{\alpha := A\}$ \Rightarrow Type system is predicative

System F polymorphism

Types
$$A, B ::= \alpha \mid A \rightarrow B \mid \forall \alpha B$$

The type $\forall \alpha B$ and its instances $B\{\alpha:=A\}$ are defined simultaneously

$$\forall \alpha \ (\alpha \to \alpha)$$
 and $\forall \alpha \ (\alpha \to \alpha) \to \forall \alpha \ (\alpha \to \alpha)$

 \Rightarrow Type system is impredicative, or cyclic

Extracting pure λ -terms

In Church-style system F, polymorphism is explicit:

id $\equiv \Lambda \alpha . \lambda x : \alpha . x$ and id Nat 2

• Two kind of redexes $(\lambda x : A \cdot t)u$ and $(\Lambda \alpha \cdot t)A$

Idea: Remove type abstractions/applications/annotations

Erasing function $t \mapsto |t|$ |x| = x $|\lambda x : A \cdot t| = \lambda x \cdot |t|$ $|\Lambda \alpha \cdot t| = |t|$ |tu| = |t||u| |tA| = |t|

- Target language is pure λ -calculus
- Second kind redexes are erased, first kind redexes are preserved

Extending the erasing function

Erased terms have a nice computational behaviour...

- Only one kind of redex, easy to execute (Krivine's machine)
- Irrelevant part of computation has been removed
- The essence of computation has been preserved (to be justified later)
- ... but what is their status w.r.t. typing?

The erasing function, defined on terms, can be extended to:

- The whole syntax
- The judgements
- The typing rules
- The derivations
- \Rightarrow Induces a new formalism: Curry-style system F

Curry-style system F [Leivant 83]

TypesA, B::= $\alpha \mid A \rightarrow B \mid \forall \alpha \mid B$ Termst, u::= $x \mid \lambda x \cdot t \mid tu$ Judgments Γ ::=[] $\Gamma, x:A$ Reduction $(\lambda x \cdot t)u \succ t\{x := u\}$

Remarks:

- Types (and contexts) are unchanged
- Terms are now pure λ -terms
- Only one kind of redex

Curry-style system F: typing rules

$$\overline{\Gamma \vdash x : A}$$
 (x:A) $\in \Gamma$

$$\frac{\Gamma, \ x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \qquad \qquad \frac{\Gamma \vdash t : A \to B \qquad \Gamma \vdash u : A}{\Gamma \vdash tu : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

 \Rightarrow Rules are no more syntax directed

Curry-style system F: properties

Things that do not change

- Substitutivity $+ \beta$ -subject reduction
- Strong normalisation (postponed)

Things that change

• A term may have several types

- No principal type (cf later)
- Type checking/inference becomes undecidable [Wells 94]

Erasing and typing

Equivalence between Church and Curry's presentations
If Γ ⊢ t₀ : A (Church), then Γ ⊢ |t₀| : A (Curry)
If Γ ⊢ t : A (Curry), then Γ ⊢ t₀ : A (Church) for some t₀ s.t. |t₀| = t

The erasing function maps:

Church's world			Curry's world		
1.	derivations	to	derivations	(isomorphism)	
2.	valid judgements	to	valid judgements	(<mark>surjective</mark> only)	

On valid judgements, erasing is not injective:

$$\begin{array}{rcl} \lambda f: (\forall \alpha \ (\alpha \rightarrow \alpha)) . f(\forall \alpha \ (\alpha \rightarrow \alpha)) f & : & \forall \alpha \ (\alpha \rightarrow \alpha) \ \rightarrow \ \forall \alpha \ (\alpha \rightarrow \alpha) \\ \lambda f: (\forall \alpha \ (\alpha \rightarrow \alpha)) . \Lambda \alpha . f(\alpha \rightarrow \alpha) (f\alpha) & : & \forall \alpha \ (\alpha \rightarrow \alpha) \ \rightarrow \ \forall \alpha \ (\alpha \rightarrow \alpha) \\ & \rightsquigarrow \qquad \lambda f. ff & : & \forall \alpha \ (\alpha \rightarrow \alpha) \ \rightarrow \ \forall \alpha \ (\alpha \rightarrow \alpha) \end{array}$$

Erasing and reduction

Second-kind redexes are erased, first-kind redexes are preserved

Fact 1 (Church to Curry):If $t_0, t'_0 \in Church, then<math>t \succ^n t' \Rightarrow |t_0| \succ^p |t'_0|$ (with $p \le n$)

Fact 2 (Curry to Church): If $t_0 \in \text{Church}$, $t' \in \text{Curry}$ and t_0 well-typed, then $|t_0| \succ^p t' \Rightarrow \exists t'_0 (|t'_0| = t' \land t_0 \succ^n t'_0)$ (with $n \ge p$)

Normalisation equivalence

Fact 3 (Combinatorial argument):

- During the contraction of a 1st-kind redex, the number of redexes of both kinds may increase
- Ouring the contraction of a 2nd-kind redex
 - the number of 1st-kind redexes may increase
 - the number of 2nd-kind redexes does not increase
 - the number of type abstractions ($\Lambda \alpha . t$) decreases

Combining facts 1, 2 and 3, we easily prove:

Theorem (Normalisation equivalence):

The following statements are combinatorially equivalent:

- All typable terms of syst. F-Church are strongly normalisable
- All typable terms of syst. F-Curry are strongly normalisable

Subtyping

In Curry-style system F, subtyping is introduced as a macro:

$$A \leq B \equiv x : A \vdash x : B$$

Admissible rules

(Reflexivity, transitivity)	$\overline{A \leq A}$	$\frac{A \leq B}{A \leq C} = \frac{B \leq C}{A \leq C}$
(Polymorphism)	$\overline{\forall \alpha \ B \ \leq \ B\{\alpha := A\}}$	$\frac{A \leq B}{A \leq \forall \alpha \ B} \alpha \notin TV(A)$
(Subsumption)	$\frac{\Gamma \vdash t : A}{\Gamma \vdash}$	$\frac{A \leq B}{t:B}$

Problem with η -redexes in Curry-style system F

• The (desired) subtyping rule for arrow-types

$$\frac{A \le A' \qquad B \le B'}{A' \to B \ \le \ A \to B'}$$

is not admissible

- In particular, we have: $f : \operatorname{Nat} \to \forall \beta \ \beta \ \not\vdash \ f : \forall \alpha \ \alpha \to \mathsf{Bool}$ but if we η -expand: $f : \operatorname{Nat} \to \forall \beta \ \beta \ \vdash \ \lambda x \cdot fx : \forall \alpha \ \alpha \to \mathsf{Bool}$
- This shows that:
 - **O** Curry-style system F does not enjoy η -subject reduction
 - In this problem is connected with subtyping in arrow-types

The well-typed term:
$$\lambda x \cdot fx : (\forall \alpha \ \alpha) \rightarrow \text{Bool}$$
 (Curry-style)
comes from the term $\lambda x : (\forall \alpha \ \alpha) \cdot f \ (x \text{ Nat}) \text{ Bool}$ (Church-style)

not an η -redex

System F_{η} [Mitchell 88]

Extend Curry-style system F with a new rule

$$\frac{\Gamma \vdash \lambda x \cdot tx : A}{\Gamma \vdash t : A} \quad x \notin FV(t)$$

to enforce $\eta\text{-subject}$ reduction

Properties:

• Substitutivity, $\beta\eta$ -subject-reduction, strong normalisation

• Subtyping rule
$$\frac{A \leq A' \quad B \leq B'}{A' \to B \leq A \to B'}$$
 is now admissible

Expansion lemma

If $\Gamma \vdash t : A$ is derivable in F_{η} , then $\Gamma \vdash t' : A$ is derivable in system F for some η -expansion t' of the term t.

More subtyping

If we set

$$\begin{array}{rcl} \bot & := & \forall \gamma \ \gamma \\ A \times B & := & \forall \gamma \ ((A \to B \to \gamma) \to \gamma) \\ A + B & := & \forall \gamma \ ((A \to \gamma) \to (B \to \gamma) \to \gamma) \\ \text{List}(A) & := & \forall \gamma \ (\gamma \to (A \to \gamma \to \gamma) \to \gamma) \end{array}$$

then, in F_{η} , the following subtyping rules are admissible:

$$\frac{A \leq A'}{\Box \leq A} \qquad \frac{A \leq A'}{\mathsf{List}(A) \leq \mathsf{List}(A')}$$
$$\frac{A \leq A' \quad B \leq B'}{A \times B \leq A' \times B'} \qquad \frac{A \leq A' \quad B \leq B'}{A + B \leq A' + B'}$$

But most typable terms have no principal type

Adding intersection types

Extend system F_{η} with binary intersections Types $A, B ::= \alpha \mid A \to B \mid \forall \alpha B \mid A \cap B$ $\frac{\Gamma \vdash t : A \quad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \quad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \quad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$

- $\beta\eta$ -subject reduction, strong normalisation, etc.
- Subtyping rules $\overline{A \cap B \leq A}$ $\overline{A \cap B \leq B}$ $\frac{C \leq A \quad C \leq B}{C \leq A \cap B}$
- All the strongly normalising terms are typable...
 ... but nothing to do with ∀: already true in λ→∩
- All typable terms have a principal type
 λx:xx. : ∀α ∀β ((α→β) ∩ α → β)

Part IV

The Strong Normalisation Theorem

The meaning of second-order quantification (1/2)

Question: What is the meaning of $\forall \alpha \ (\alpha \rightarrow \alpha)$?

First scenario: an infinite Cartesian product (à la Martin-Löf)

$$\begin{array}{ll} \forall \alpha \; (\alpha \rightarrow \alpha) &\approx & \prod_{\alpha \; \text{type}} (\alpha \rightarrow \alpha) \\ &\approx \; (\bot \rightarrow \bot) \times (\mathsf{Bool} \rightarrow \mathsf{Bool}) \times (\mathsf{Nat} \rightarrow \mathsf{Nat}) \times \cdots \end{array}$$

Since all the types $A \rightarrow A$ are inhabited:

- O The cartesian product ∀α (α→α) should be larger than all the types of the form A → A
- ② In particular, ∀α (α→α) should be larger than its own function space ∀α (α→α) → ∀α (α→α)...

... seems to be very confusing!

The meaning of second-order quantification (2/2)

Second scenario: In *F*-Curry, both rules ∀-intro and ∀-elim

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha \ B} \quad \alpha \notin TV(\Gamma) \qquad \qquad \frac{\Gamma \vdash t : \forall \alpha \ B}{\Gamma \vdash t : B\{\alpha := A\}}$$

suggest that \forall is not a cartesian product, but an intersection

Taking back our example:

- **1** The <u>intersection</u> $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than all $A \rightarrow A$
- In particular, $\forall \alpha \ (\alpha \rightarrow \alpha)$ is smaller than its own function space $\forall \alpha \ (\alpha \rightarrow \alpha) \rightarrow \forall \alpha \ (\alpha \rightarrow \alpha) \dots$
- ... our intuition feels much better!
- $\Rightarrow We will prove strong normalisation for Curry-style system F$ Remember that $SN(F-Church) \Leftrightarrow SN(F-Curry)$ (combinatorial equivalence)

Strong normalisation: the difficulty

Try to prove that

 $\Gamma \vdash t : A \Rightarrow t \text{ is SN}$

by induction on the derivation of $\Gamma \vdash t : A$

$$\overline{\Gamma \vdash x : A}^{(x:A) \in \Gamma}$$

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B} \qquad \frac{\Gamma \vdash t : A \to B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B}$$

$$\frac{\Gamma \vdash t : B}{\Gamma \vdash t : \forall \alpha B} \stackrel{\alpha \notin TV(\Gamma)}{\alpha := A}$$

All the cases successfully pass the test except application Two terms t and u may be SN, whereas tu is not [Take $t \equiv u \equiv \lambda x \cdot xx$]

 \Rightarrow The induction hypothesis "t is SN" is too weak (in general)

Reducibility candidates [Girard 1971]

To prove that

 $\Gamma \vdash t : \mathbf{A} \implies t \text{ is SN},$

the induction hypothesis "t is SN" is too weak.

 \Rightarrow Should replace it by an invariant that depends on the type A Intuition:

The more complex the type, the stronger its invariant, the smaller the set of terms that fulfill this invariant

Invariants are represented by suitable sets of terms:

- Reducibility candidates [Girard], or
- Saturated sets [Tait]

Outline of the proof

- Define a suitable notion of reducibility candidate
 = the sets of λ-terms that will interpret/represent types
 (Here, we use Tait's saturated sets)
- Ensure that the notion of candidate captures the property of strong normalisation (which we want to prove)

Each candidate should only contain strongly normalisable λ -terms as elements

- Associate to each type A a reducibility candidate [[A]] Type constructors '---' and 'V' have to be reflected at the level of candidates
- Check (by induction) that $\Gamma \vdash t : A$ implies $t \in \llbracket A \rrbracket$ This is actually a little bit more complex, since we must take care of the typing context
- Solution Conclude that any well-typed term *t* is SN by step 2.

Preliminaries (1/2)

Notations:

Λ	\equiv	set of all untyped λ -terms (open & closed)
SN	\equiv	set of all strongly normalisable untyped λ -terms
Var	\equiv	set of all (term) variables
TVar	\equiv	set of all type variables

- A reduct of a term t is a term t' such that $t \succ t'$ (one step) The number of reducts of a given term is finite and bounded by the number of redexes
- A finite reduction sequence of a term t is a finite sequence $(t_i)_{i \in [0..n]}$ such that $t = t_0 \succ t_1 \succ \cdots \succ t_{n-1} \succ t_n$ Infinite reduction sequences are defined similarly, by replacing [0..n] by \mathbb{N}
- Finite reduction sequences of a term *t* form a tree, called the reduction tree of *t*

Definition (Strongly normalisable terms)

A term t is strongly normalisable if all the reduction sequences starting from t are finite

Proposition

The following assertions are equivalent:

- 1 t is strongly normalisable
- ② All the reducts of t are strongly normalisable
- The reduction tree of t is finite

Saturated sets [Tait]

Definition (Saturated set)A set $S \subset \Lambda$ is saturated if:(SAT1) $S \subset SN$ (SAT2) $x \in Var$, $\vec{v} \in list(SN) \Rightarrow x\vec{v} \in S$ (SAT3) $t\{x := u\}\vec{v} \in S, u \in SN \Rightarrow (\lambda x \cdot t)u\vec{v} \in S$

- (SAT1) expresses the property we want to prove
- Saturated sets contain all the variables (SAT2) Extra-arguments v ∈ list(SN) are here for technical reasons
- Saturated sets are closed under head β -expansion (SAT3) Notice the condition $u \in SN$ to avoid a clash with (SAT1) for K-redexes
- The set of all saturated sets is written SAT $[\subset \mathfrak{P}(SN) \subset \mathfrak{P}(\Lambda)]$

Properties of saturated sets

Proposition (Lattice structure)

- SN is a saturated set
- **SAT** is closed under arbitrary non-empty intersections/unions:

$$I \neq \varnothing$$
, $(S_i)_{i \in I} \in \mathsf{SAT}' \Rightarrow \left(\bigcap_{i \in I} S_i\right), \left(\bigcup_{i \in I} S_i\right) \in \mathsf{SAT}$

(SAT, \subset) is a complete distributive lattice, with $\top = SN$ and $\bot = \{t \in SN \mid t \succ^* xu_1 \cdots u_n\}$ (Neutral terms)

Realisability arrow: For all $S, T \subset \Lambda$ we set

$$S \to T$$
 := $\{t \in \Lambda \mid \forall u \in S \quad tu \in T\}$

Proposition (Closure under realisability arrow)

If $S, T \in \mathsf{SAT}$, then $(S \to T) \in \mathsf{SAT}$

Interpreting types (1/2)

Principle: Interpret syntactic types by saturated sets

• Type arrow $A \rightarrow B$ is interpreted by $S \rightarrow T$ (realisability arrow)

• Type quantification $\forall lpha$.. is interpreted by the intersection $\bigcap_{s \in \mathsf{SAT}} \cdots$

Remark: this intersection is impredicative since S ranges over all saturated sets

Example: $\forall \alpha \ (\alpha \to \alpha)$ should be interpreted by $\bigcap_{S \in SAT} (S \to S)$

To interpret type variables, use type valations:

Definition (Type valuations) A type valuation is a function ρ : TVar \rightarrow SAT The set of type valuations is written TVal (= TVar \rightarrow SAT)

Interpreting types (2/2)

By induction on A, we define a function $\llbracket A \rrbracket$: TVal \rightarrow **SAT**

$$\llbracket A \to B \rrbracket_{\rho} = \llbracket A \rrbracket_{\rho} \to \llbracket B \rrbracket_{\rho} \qquad \llbracket \alpha \rrbracket_{\rho} = \rho(\alpha)$$
$$\llbracket \forall \alpha \ B \rrbracket_{\rho} = \bigcap_{S \in \mathsf{SAT}} \llbracket B \rrbracket_{\rho; \alpha \leftarrow S}$$

Note:
$$(\rho; \alpha \leftarrow S)$$
 is defined by
$$\begin{cases} (\rho; \alpha \leftarrow S)(\alpha) = S \\ (\rho; \alpha \leftarrow S)(\beta) = \rho(\beta) & \text{for all } \beta \neq \alpha \end{cases}$$

Problem: The implication

$$\Gamma \vdash t : A \Rightarrow t \in \llbracket A \rrbracket_{
ho}$$

cannot be proved directly. (One has to take care of the context)

 \Rightarrow Strengthen induction hypothesis using substitutions

Substitutions

Definition (Substitutions)

A substitution is a finite list $\sigma = [x_1 := u_1; ...; x_n := u_n]$ where $x_i \neq x_j$ (for $i \neq j$) and $u_i \in \Lambda$

Application of a substitution σ to a term t is written $t[\sigma]$ Exercise: Define it formally

Definition (Interpretation of contexts) For all $\Gamma = x_1 : A_1; ...; x_n : A_n$ and $\rho \in TVal$ set: $\llbracket \Gamma \rrbracket_{\rho} = \{ \sigma = [x_1 := u_1; ...; x_n := u_n]; u_i \in \llbracket A_i \rrbracket_{\rho} (i = 1..n) \}$

Substitutions $\sigma \in \llbracket \Gamma \rrbracket_{\rho}$ are said to be adapted to the context Γ (in the type valuation ρ)

The strong normalisation invariant

Lemma (Strong normalisation invariant) If $\Gamma \vdash t : A$ in Curry-style system F, then $\forall \rho \in \mathsf{TVal} \quad \forall \sigma \in \llbracket \Gamma \rrbracket_{\rho} \quad t[\sigma] \in \llbracket A \rrbracket_{\rho}$ Proof. By induction on the derivation of $\Gamma \vdash t : A$.

Exercise: Write down the 5 cases completely

Theorem (Strong normalisation)

The typable terms of F-Curry are strongly normalisable

Corollary (Church-style SN)

The typable terms of F-Church are strongly normalisable

A remark on impredicativity

In the SN proof, interpretation of \forall relies on the property: If $(S_i)_{i \in I}$ $(I \neq \emptyset)$ is a family of saturated sets, then $\bigcap_{i \in I} S_i$ is a saturated set

in the special case where I = SAT (impredicative intersection)

- In 'classical' mathematics, this construction is legal
 - $\Rightarrow~$ Standard set theories (Z, ZF, ZFC) are impredicative
- In (Bishop, Martin-Löf's style) constructive mathematics, this principle is rejected, mainly for philosophical reasons:
 - No convincing 'constructive' explanation
 - Suspicion about (this kind of) cyclicity

Impredicativity: An example (1/2)

Assume E is a vector space, S a set of vectors. How to define the sub-vector space $\overline{S} \subset E$ generated by S in E?

Standard 'abstract' method:

- 2 Fact: \mathfrak{S} is non empty, since $E \in \mathfrak{S}$

3 Take:
$$\overline{S} = \bigcap_{F \in \mathfrak{S}} F$$

- Observation and the sub-spaces of E containing S
- **(5)** But \overline{S} is itself a sub-vector space of E containing S (so that $\overline{S} \in \mathfrak{S}$)
- \bigcirc So that \overline{S} is actually the smallest of all such spaces

This definition is impredicative (step 3) (but legal in 'classical' mathematics) The set \overline{S} is defined from \mathfrak{S} , that already contains \overline{S} as an element

discovered a fortiori

Impredicativity: An example (2/2)

But there are other ways of defining \overline{S} ...

- Standard 'concrete' definition, by linear combinations: Let S be the set of all vectors of the form v = α₁ · v₁ + ··· + α_n · v_n where (v_i) ranges over all the finite families of elements of S, and (α_i) ranges over all the finite families of scalars
- Inductive definition:

Let \overline{S} be the set inductively defined by: (1) $\vec{0} \in \overline{S}$, (2) If $v \in S$, then $v \in \overline{S}$, (3) If $v \in \overline{S}$ and α is a scalar, then $\alpha \cdot v \in \overline{S}$ (4) If $v_1 \in \overline{S}$ and $v_2 \in \overline{S}$, then $v_1 + v_2 \in \overline{S}$.

⇒ Both definitions are predicative (and give the same object)