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Introduction

The topics covered include basics of proof theory, such as sequent calculus, equational logic, canon-
ical rewriting and natural deduction, and foundations of applicative programming languages, such
as lambda calculus, combinators, sequential computations, types and polymorphism. The course
ends with a more advanced section on constructive type theory. The material of the course is
completely self-contained.

The main paradigm of the course is the Curry-Howard correspondance between propositions
and types. This analogy permits to make sense of a well-typed program as a proof of the proposition
which corresponds to its type. Conversely, a constructive proof corresponds to an algorithm, whose
specification is the theorem proved.

The course uses this paradigm at the level of the meta-theory, in that the main notions are
defined algorithmically, using a functional meta-language. This language ML is defined in Chapter
1. The main data-structures for representing the logical concepts of propositions and proofs are
defined in Chapter 2: trees, terms, and schemas are obtained by successive refinements. Logic
Programming is introduced in Chapter 3. The resolution rule of inference restricted to Horn clauses
is explained as a composition rule for polymorphic operators, and the Prolog interpreter is justified
through the Principal Type Theorem. Chapter 4 is a digression on constructive methods used to
prove the termination of rewrite rules. Term rewriting systems and their application to solving word
problems in equational theories are systematically studied in Chapter 5. This theory, originated
with the pioneer work of Knuth and Bendix, relies on normalisation. This requirement is dropped in
Chapter 6, in favor of conditions of linearity and non-ambiguity of rewrite systems. It is argued that
such regular term rewriting systems are computationally meaningful, and a theory of sequential
computations is developed, aimed at the design of efficient interpreters for applicative programming
languages. Chapter 7 develops rudiments of category theory, insisting on the connection with
intuitionistic logic. This paves the way for the study of A-calculus structures in Chapter 8, and
natural deduction in Chapter 9. Polymorphism is studied in Chapter 10 at two levels: first, simple
polymorphism of operators typed as schemas, like in ML . Then, full polymorphism in the second-
order calculus of Girard-Reynolds. Constructive type theory is studied in Chapter 11, through the
Calculus of Constructions and various extensions. Finally, Chapter 12 discusses axiomatizations of
various inductive notions in non-predicative type theories.

This edition is very unsatisfactory. Completely explicit ML definitions have been worked out
only for the first 5 chapters. Many topics of interest have been omitted for lack of time: full
resolution theory, rewriting modulo congruences, implementation techniques of A-calculus, pure
A-calculus theory including foundations of recursion, Kripke models and Lindenbaum algebras,
ordinal notations, modal and temporal axiomatisations are among the ominous omissions. On the
other hand, model theory has been purposedly excluded from a pure proof-theoretic study.

This set of notes is aimed at computer scientists rather than mathematicians. It is our thesis
that formal elegance is a prerequisite to efficient implementation.






Chapter 1

Functional Programming in CAML

This chapter explains the meta-language CAML used in the rest of the course.

1.1 What is CAML

1.1.1 ISWIM

The ancestor of ML is ISWIM (If you see what I mean!), a notation devised by P. Landin for
describing recursive procedures [18]. ISWIM is a notational variant of A-calculus with a recursion
operator, allowing the description of recursive procedures which accept functional arguments and
may return functional results. The “let” construction permits us to state definitions, such as:

let I x = x
and K x y = x
and Sxyz=(xz (y z)) in (S K K);

Basically, the construction let x = M in N or its synonym N where x = M is equivalent to
the A-calculus redex (Az - N M), except that here the applicative order of evaluation is assumed:
the expression M is evaluated and bound to the identifier x before the evaluation of the body N.
This evaluation regime is at variance with the normal order of evaluation corresponding to the
standardization theorem of A-calculus, where redexes are reduced in a leftmost-outermost fashion.
In the ALGOL terminology, ISWIM procedures evaluate their arguments by value and not by
name. Thus the expression

let Dx = (xx) and Kxy =x in
let Bottom = (D D) in (K K Bottom);;

will loop on the evaluation of (D D), whereas the corresponding A-expression possesses a normal
form.

Remark 1. If you have no acquaintance with the A-notation, all you need to know at this point
is that the expression Az - M denotes the algorithm M with formal parameter z. It is a convenient
notation for functions and functionals. In ISWIM we write fun x -> M, and thus let I x = x
is equivalent to let I = \fun x -> x. A-calculus will be studied at length further in the course.

Functional application is noted by juxtaposition. Thus £ x, £(x) and (f x) are equivalent
expressions. However, application associates to the left. Thus f x y, equivalently (f x y), or
((£f x) y, is distinct from £ (x y). It is a common mistake to write £ g(x) and to expect
f(g(x)) instead of (£(g)) (x).
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Remark 2. Binding. ISWIM is faithful to A-calculus in its use of variables, with a discipline
of static binding. That is, the names or identifiers used to denote variables do not matter. For
instance,

let £ = let x=1 in fun y -> x
in let x = 2 in f O;

evaluates correctly to 1. This is in sharp contrast with the dynamic binding discipline of a language
such as LISP [19] which, although syntactically similar to A-calculus, evaluates

(let ((f (let ((x 1)) (function (lambda (y) x)))))
(let ((x 2)) (apply £ (list 0))))

incorrectly to 2. This has been however considered an anomaly, and more recent dialects of LISP
have converted to static binding [28, 27]. Note also that functions are special types of values in
LISP, whence the use of an explicit apply operator.

Global variables may however be defined in ISWIM. Evaluating at top-level the declaration

let I x = x3;;

declares the combinator I with a global scope extending forever in the future.

Remark 3. It may be worthwhile to point out that the two problems of applicative versus
normal order of evaluation and static versus dynamic binding of variables pertain only to the
functional (or applicative) features of programming languages. These problems don’t have anything
to do with imperative features such as assignment, which raise memory allocation and sharing
problems which are of no concern to us initially.

Remark 4. Recursion. It is possible to define explicitly a recursion operator in ISWIM, since
a fixpoint combinator may be defined as :

let Y £ = let loop x = £ (x x) in loop(loop);;

However, this would be of no interest because of the applicative order of evaluation. Instead, a
recursion operator is built-in in ISWIM, and we may write let rec £ = Minstead of let £ = Y M.
A similar convention allows N where rec f = M.

Thus one may define for instance the iterate functional as (assuming a minimal amount of
boolean and integer primitives):

let rec power n f x = if n=0 then x else f (power (n-1) f x);;
A better (why?) definition would be:

let power n £ x = pow n
where rec pow n = if n=0 then x else f (pow (n-1));;

1.1.2 LCF’s ML

LCF is a proof assistant for a logic for computable functions PP due to R. Milner, and modeled
after Scott’s continuous domain theory. Experience with an early prototype developed in Stanford
showed the necessity of a good meta-linguistic capability allowing the user to control his proof
strategy by programming. The Edinburgh implementation [14] was thus developed around a meta-
language inspired from ISWIM, and called ML [13]. ML possesses the basic data-types void, bool,
num and string. A product type-formation operator # permits the manipulation of structured
data. Thus (1,true) is a pair of values, of type num&bool. Products are allowed in binders as
well. Thus one may define the binary combinator :
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let app (f,x) = £(x);;

Remark that app is of any type ((a — ) X @) — 3, whereas the internal application operator (i.e.
functional identity) is of any type (o — ) — (o — f).

The main innovation consisted in endowing ML with a polymorphic type system, allowing vari-
able type identifiers in type expressions (such as « and § above). Actually the ML interpreter would
answer to the above declaration:

Val app = - : ((’a => ’b) & ’a -> ’b)

That is, the *’s stand for type variables. More importantly, this example shows that, although ML

has a strong type discipline, the user is not obliged to specify any type for his variables. Instead, the

system synthesizes the most general type compatible with proper type consistency of the expression.

The justification for such “parametric polymorphism synthesis” will be explained later in the course.
Thus we shall assume the following functions:

fst : (’a & b > ’a) (x first projection *)
snd : (a & ’b -> ’b) (* second projection *)
=: (a & ’a => bool) (x (infix) equality *)

The following (non-strict) operators are also provided:

if_then_else : (bool & ’a & ’a -> ’a) (* conditional *)
& : (bool & bool —> bool) (* infix left-sequential conjunction *)
or : (bool & bool -> bool) (* infix left-sequential disjunction *)

1.1.3 The next 700 CAML ’s

The initial ML language defined in LCF possessed other valuable features, most notably exceptions
and abstract data types. For instance the (polymorphic, recursive) abstract data type of lists may
be defined, with constructors nil and cons, discriminator null and destructors hd and t1. This
abstract data type facility was crucial for the initial application, since the consistency of the LCF
proof system relied on proper encapsulation of the inference rules of PP\ as primitive constructors
of the pre-defined CAML abstract data type thm of the LCF theorems.

Imperative features permitted the use of assignable variables and iteration. However, records
and variants were missing from the initial design. Luca Cardelli added them in his ML imple-
mentation in Pascal [7]. The original LISP implementation was enhanced by Guy Cousineau to
allow “concrete” data types of constructor signatures, allowing easy definition of abstract syntax
constructions. The resulting ML implementation, documented in [1], was used as the basis of the
new LCF implementation at Cambridge University [24]. An interface with Yacc, developed by
Dave MacQueen and Philippe Le Chenadec, permits the direct manipulation of object language
constructions at the level of an (almost) arbitrary concrete syntax.

The ML design effort is coordinated by Robin Milner, who initiated a standardization effort
[21]. Besides implementations of Standard ML now in progress, several “non standard” dialects
are running. The meta-language used in this course is the CAML implementation at Inria, based on
the Categorical Abstract Machine [10], and documented in [2]. Other interesting related languages
are the “lazy” implementations of normal-order evaluating ML dialects [17] and of Miranda[29], and
the closely related Amber language, which possesses hierarchical types and remanent data values
[8]. Research on ML -like languages is regularly announced in the Polymorphism Newsletter, edited
by Dave MacQueen at Bell Laboratories.
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1.2 A few CAML examples

From now on, we assume that the meta-language of the course is CAML Version 2.2 implemented at
INRIA, and documented in [2], to which we refer the reader for precise definitions.

1.2.1 Recursion

Here is the standard definition of the factorial function:
let rec fact n = if n=0 then 1 else n*xfact(n-1);;
It is also possible to program factorial iteratively, using the while construct:

let fact n = let count=ref n and result=ref 1
in while !count>0 do count,result:=!count-1,!count*!result done;
'result;;

Here is another recursive example, the well-known Hanoi’s towers puzzle:

let move from to = let p_s=print_string and p_n=print_newline in
p—s "I move a disc from peg ";p_s from;p_s " to peg ";p_s to;p_n O;;

let rec Hanoi from middle to n =
if n>0 then (Hanoi from to middle (n-1);move from to;Hanoi middle from to (n-1));;

Ha.rloi IIAII IIBII IICII 3;;

Finally, let us show Ackermann’s function:

let Ack n = A(n,n)

where rec A(n,m) = if n=0 then m+1
if m=0 then A(n-1,1)
else A(n-1,A(n,m-1));;

Note the syntax of the multiple if.
1.2.2 Combinators
Here is a part of the CAML standard prelude file.

let equal x y = (x=y)
and pair x y = (x,y);;

let curry f x y = £(x,y)
and uncurry f(x,y) = £ x y;;

infix "o";; (* new infixes may be user-defined *)

let op o (f,g)= fun x -> £(g(x));;

(* Here combinators like in Curry & Feys *)
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let I x = (* identity *)

and K x y = x (* the kestrel , or cancellatorx)

and Cf xy=fyx (* the cardinal, or permutator *)

and W f x f xx (* the warbler, or duplicator *)

and B f g x = £ (g x) (* the bluebird, or compositor (curried o) *)
and S f g x = f x (g x) (* the starling *)

and Tx f = f x (* the thrush, or transpositor *)

infix "Co";;

letopCof gxy=1=f (gy) x;; (x permutation-composition  *)

(* named so because (f Co g) =C (f o g) *)

1.2.3 List manipulations

In CAML , the list (abstract) type constructor is predefined. A list is noted with square brackets,
like:

let L1 = [1;2;3];;

The empty list is [J. The identifier nil is initially bound to this value. null is the obvious predi-
cate testing equality to []. The list constructor is cons : ’a & ’a list -> ’a list. It may also
be denoted by a double colon :: used in infix notation. The destructors are hd : ’a list -> ’a
and t1l : ’a list -> ’a list.

Many list operations are pre-defined in CAML . For instance, append concatenates two lists, and
may be used with an infix syntax, like in:

[1;2;3]@[4;5;6] = [1;2;3;4;5;6];

The length function gives the length of a list. It could have been defined as:
let rec length 1 = if (null 1) then O else 1+length (tl 1);;
Here are a few other useful list operators:

let rev = revrec []
where rec revrec 1 = fun
a0->1
| (x::1°) —> revrec (x::1) 1°;;
let rec flat = fun
0 ->10
| (1::11) -> 1 @ (flat 11);;

This gives another syntax, for definitions by cases according to the constructors of a type.
The map functional maps a function on a list, so that

map £ [11; 12 ... 1n] = [f 11; £ 12; ... f 1n].
We could have defined map as:

let rec map f = fun
0 ->10
| (h::t) => (£ h) :: map f t;;
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Note that CAML infers that this functional is doubly polymorphic:
Val map = - : ((’a -> ’b) -> ’a list -> ’b list).

For instance, we get:
map fact L1 = [1;2;6];

A more general list iterator is it_list, which performs iterated compositions of its first argu-
ment, as follows:

it_list £ x [11; 12 ... 1n] = (£ ... (f (f x 11) 12) ... 1n)
it_list : ((?’a -=> ’b -> ’a) -> ’a -> ’b list -> ’a).

It is convenient to be able to iterate the list in the reverse order, using the functional list_it:

list_it f [11; 12 ... 1In] x = (f 11 (£ 12 ... (f 1n x)...))
list_it : ((’a -> ’b -> ’b) -> ’a list -> ’b -> ’b)

list_it is an CAML primitive. It could have been defined as:

let list_it £ 1 b = itfb 1 where rec
itfb = fun [] > b | (a::1) —> £ a (itfb 1);;

For instance, we could have defined append as list_it cons;;

We could also have defined:
let map f 1 = list_it (cons o £f) 1 [1;;
Here is a useful cross between map and it_list:

let num_map f list = let consf (i,1) 1i = (i+1,(f i 1i)::1) in
rev (snd (it_list consf (1,[]) list));;

For instance:
num map Pa.iI' [Ilall . Ilbll . "C”] = [1 Ila” . 2 ||b|| . 3 ||C||]
The it_list and 1list_it operators are similar to APL’s reduce. Here are more examples.

let add x y = x+y and mult x y = x*y;;
let sigma = it_list add O
and pi = it_list mult 1;;

Let us define the range function:

(x range n = [1; 2 ... n] *)
let range = interval 1
where rec interval from to = if from>to then [] else from::(interval (from+1l) to);;

We may thus define the factorial function in a non-standard way:

let fact = pi o range;;
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Remark that you now have a choice between writing your list processing algorithms in the
recursive manner, or using it_list in an iterative manner.

Let us now define a function which partitions a list according to a predicate given as its argu-
ment. That is, partition p 1 returns a pair (11,12), where 11 (resp. 12) consists of the elements
of 1 which satisfy p (resp. not p).

let partition p = it_list fork ([],[])
where fork (yes,no) x = if p x then (x::yes),no else yes,(x::no);;

For instance, here is the function that discards element x from list 1:
let discard x 1 = snd (partition (equal x) 1);;
Here is a simple permutation algorithm:

let rec permut =
let perms 1 x = map (cons x) (permut (discard x 1)) in

fun [0 -> [[1]
| 1 -> flat (map (perms 1) 1);;

Now you may scientifically compose your love letters:

let love_letter =

permut [" belle marquise";" vos beaux yeux";" me font";" mourir";" d’amour"]
in

(map (fun 1 -> map print_string l;print_newline()) love_letter);();;

This example is due to Pierre Weis, after Moliere.
Exercise. Find out what the following function computes.

let weird n m =
let Cstar = C I
in sigma (map (Cstar n) (map (Cstar fact) (map power (range m))));;

Same question for:

let strange n m =
let f(x,y) = (z,z+y) where z=fact x
in snd(power m £ (n,0));;

The reader should carefully study these examples, and try to derive general algebraic laws
relating the various combinators introduced. More examples of recursive list operators are given
in [2, 5]. A good introduction to recursive programming is Burge [6]. Functional programming
application and implementation is explained in Henderson [15]. A good textbook is Abelson-
Sussman [3].

1.2.4 Defining an object language in CAML

We now give a simple example where we define an object language in CAML . Our goal is to define
a small calculator of arithmetical expressions. This example is due to Philippe Le Chenadec.
First we define an CAML type for the abstract syntax of our language.
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type exp = Nat of num
| Minus of exp
| Plus of exp & exp
| Diff of exp & exp
| Times of exp & exp
| Quot of exp & exp
| Fact of exp;;

10

Such a declaration defines first a new type, here the type exp, and second the various construc-

tors of that type:

New constructors declared:

Nat :

Mi
Pl
Di
Ti

Quot :

nus : (exp ->

(num -> exp)

exp)

us : ((exp & exp) -> exp)
ff : ((exp & exp) -> exp)
mes : ((exp & exp) -> exp)

Fact : (exp —>

le

exp)

((exp & exp) -> exp)

It is convenient to program by cases according to constructors, as in:

t rec size =
Nat (n) ->
Minus (x) ->
Plus(x,y) ->
Diff(x,y) ->
Times(x,y) ->
Quot(x,y) =->
Fact (%) ->

function

1

1+(size
1+(size
1+(size
1+(size
1+(size
1+(size

x)
x)+(size
x)+(size
x)+(size
x)+(size
x);;

v)
y)
v)
y)

We may now define a concrete syntax as a Yacc file [16], containing context-free grammar

rules for our object language. The semantic actions associated with each rule are CAML expressions

specifying the corresponding abstract syntax value. The special identifiers $i refer to the semantic
value associated with the i-th token in the production.

In this very simple example, we have only one non-terminal symbol exp. What follows is

the contents of a file named “calc.mly”. Note the special syntax allowing binomial coefficients
C(n,p) = sy

%mlescape

/*
Wt
ht
%1
Al
%n
hh
ex

C *x/

oken BINOMIAL
oken NUM

eft )+) 2.
eft )*7 ):7
onassoc ’7?

p : mlescape {$1}

NUM {Nat($1)}

/* ANTI-QUOTATION =/
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| >~ exp {Minus($2)}

| exp ’+’ exp {Plus($1,$3)}

| exp ’-? exp {Diff($1,$3)}

| exp ’*’ exp {Times($1,$3)7

| exp ’:? exp {Quot($1,$3)}

| exp ’!’ {Fact($1)}

| BINOMIAL °(’ exp ’,’ exp ’)’ {Quot(Fact($3),Times(Fact($5),Fact(Diff($3,$5))))%}
| ;(7 exp :); {$2}

The concrete syntax is then compiled and loaded:
compile_syntax ‘calc‘;;

A more detailed description of the CAML to Yacc interface can be found in [2]. We may now use
our calculator expressions between quotation marks, as in:

let E = "C(4!,3%2-1):2";;

The returned CAML value is thus the abstract syntax tree of the above expression (note how the
parser has macro-generated the binomial coefficient):

E =
Quot (Quot (Fact (Fact (Nat 4)),
Times (Fact (Diff (Times (Nat 3,Nat 2),Nat 1)),
Fact (Diff (Fact (Nat 4),
Diff (Times (Nat 3,Nat 2),Nat 1))))),
Nat 2)
: exp

We may now define an interpreter for our language, describing a little arithmetic calculator:

let rec calc = function

Nat (n) ->n
| Minus (x) -> - (calc x)
| Plus(x,y) -> (calc x)+(calc y)
| Diff(x,y) -> (calc x)-(calc y)
| Times(x,y) -> (calc x)*(calc y)
| Quot(x,y) -> (calc x)/(calc y)
| Fact (x) -> fact (calc x);;
Val calc = - : (exp -> num)

We may now compute:

calc E;;
21252 : num

We may also write, using the anti-quote character =
calc "C("x,"y-1):2" where x="4!" and y = "3*2";;

This facility gives us a powerful macro-expansion mechanism, useful for formal computation.
The next section will develop a more complete example, describing a mini-PASCAL.
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1.3 Denotational semantics

This section gives the complete treatment of the syntax and semantics of a small PASCAL-like
language. The method of semantic definition is the Scott-Strachey denotational style [25, 20]. A
good introductory textbook is Gordon [12]. This example was developed by Guy Cousineau.

1.3.1 Abstract Syntax

type program = Prog of declaration & command

and declaration =
Vardecl of string
| Procdecl of string & string & string & declaration & command
| Fundecl of string & string & expression
| Compdecl of declaration list

and command =

Asscom of string & expression

Proccom of string & string & expression
Ifcom of expression & command & command
Whilecom of expression & command
Writecom of expression

Readcom of string

Compcom of command list

and expression =
Varexp of string
Funexp of string & expression
Unopexp of string & expression

I
I
| Binopexp of expression & string & expression
| Intconstexp of num

| Boolconstexp of bool

I

Ifexp of expression & expression & expression;;

1.3.2 Concrete Syntax

The syntax of our mini-language follows PASCAL. A certain number of restrictions have been
made. For instance, a procedure has always two parameters, the first one called by reference, the
second one called by value. There are no arrays or records, and no goto’s.

/* program procedure function if then else while do write read begin end var := suc */
%token PROGRAM PROCEDURE FUNCTION IF THEN ELSE WHILE DO WRITE READ BEGIN END V ASSYM SUC
%token NUM BOOL IDENT

%right ELSE

%1eft Y4 2

hleft 7%’

%left UMINUS

o
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program : PROGRAM block ’.° {Prog ($2)}
block : declaration BEGIN command END {($1,$3)}
declaration : declarationl {(fun 1 -> if null (tl 1) then (hd 1) else (Compdecl 1))$1}
declarationl : declelem {[$1]1}
| declelem declarationl {$1 :: $2}
declelem : V IDENT ’;°’ {Vardecl $2}
| PROCEDURE IDENT °(’ IDENT ’,’ IDENT ’)’ ’;’ block ’;’ {Procdecl ($2,$4,$6,$9)}
| FUNCTION IDENT ’(’ IDENT ’)’ ’;’ expression ’;’ {Fundecl ($2,%$4,$7)}
command : commandl {(fun 1 -> if null (tl 1) then (hd 1) else (Compcom 1))$1}
| BEGIN commandl END {(fun 1 -> if null (t1l 1) then (hd 1) else (Compcom 1))$2}
commandl : commandelem {[$1]}
commandelem ’;’ commandl {$1 :: $3}
commandelem : IDENT ASSYM expression {Asscom ($1,$3)}
| IDENT ’(’ IDENT ’,’ expression ’)’ {Proccom($1,$3,$5)}
| IF expression THEN command ELSE command {Ifcom ($2,$4,%$6)}
| WHILE expression DO command {Whilecom ($2,$4)}
| WRITE expression {Writecom $2}
| READ IDENT {Readcom $2}

)

expression : NUM {Intconstexp $1}

| BOOL {Boolconstexp $1}

| IDENT {Varexp $1}

| IF expression THEN expression ELSE expression {Ifexp ($2,%$4,$6)}
| IDENT ’(’ expression ’)’ {Funexp ($1,$3)}

| expression ’+’ expression {Binopexp ($1,"+",$3)}
| expression ’*’ expression {Binopexp ($1,"x",$3)}
| expression ’-’ expression {Binopexp ($1,"-",$3)}
| expression ’=’ expression {Binopexp ($1,"=",$3)}
| expression ’>’ expression {Binopexp ($1,">",$3)}
| ’-’ expression %prec UMINUS {Unopexp ("-",$2)}

| SUC expression {Unopexp ("suc",$2)}

| >’ expression ’)’ {$2}

hh
1.3.3 Semantics

Semantic Domains

type env = Env of (string -> dval)
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and dval = Locdval of loc
| Procdval of proc
| Fundval of func
and loc = Loc of num
and proc = Proc of (string & value -> store -> store)
and func = Fun of (value -> store -> value)
and value = Intval of num

| Boolval of bool
| Fileval of num list
and store = Store of loc & (loc -> value);;

New constructors declared:

Env : ((string -> dval) -> env)

Locdval : (loc -> dval)

Procdval : (proc -> dval)

Fundval : (func -> dval)

Loc : (num -> loc)

Proc : (((string # value) -> store -> store) -> proc)
Fun : ((value -> store -> value) —-> func)
Intval : (num -> value)

Boolval : (bool -> value)

Fileval : (num list -> value)

Store : ((loc # (loc -> value)) -> store)

Utilities

(* complist : ((’a => ’a) list -> ’a => ’a) *)
let rec complist = function
0->1I
| (h::t) -> h o (complist t)
(* appfunlist : ((’a -> ’b) list & ’a -> ’b list) *)
and appfunlist = function
a,. -> (1
| (h::t),v -> (b v) :: appfunlist (t,v);;

(* emptystore : store x*)
let emptystore = Store (Loc 2,
fun (Loc i) -> if i= 0 or i=1 then Fileval []
else failwith "unused");;

(* initenv : env *)

let initenv = Env (fun t -> if t="input" then Locdval (Loc 0)
if t= "output" then Locdval (Loc 1)
else failwith (t ~ " unbound"));;

(x valof : (env & store & string -> value) *)
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let valof (Env e,Store (u,s),t) = s 1 where (Locdval 1) = e t;;

(* dvalof : (env & string -> dval) *)
let dvalof (Env e,t) = e t;;

(*x pushstore : (value & store -> store) *)
let pushstore (v,s) = let (Store (Loc i,f)) = s in
Store (Loc (i+1),fun (Loc j)->if i=j then v else f (Loc j)) ;;

(* updstore : (env & store & string & value -> store) %)
let updstore (Env e,Store (1,f),t,v) = Store (1,ff)
where ff = fun 1 -> if 1= 1’ where (Locdval 1’) = e t
then v else £ 1 ;;

(* extendstore : (store -> store) x*)
let extendstore (Store (1,f)) = Store (Loc (i+1), f)
where (Loc i) =1 ;;

(x updenv : ((env & string & dval) -> env) *)
let updenv (Env e,t,dv) = Env (fun tt -> if tt=t then dv else e tt);;

(x pushenv : (string -> value -> (env & store) -> (env & store)) x)
let pushenv t v (e,s) = updenv(e,t,Locdval 1) , pushstore (v,s)
where (Store (1,u)) = s ;;

The semantic functions

(* sembinop : (string -> (value & value) -> value) *)
let sembinop = fun
"+ —=> (fun (Intval v1,Intval v2) -> Intval (vl + v2))
| "=" => (fun (Intval vi,Intval v2) -> Intval (vl - v2))
| "x" => (fun (Intval vi,Intval v2) -> Intval (vl * v2))
| "=" -> (fun (Intval vi,Intval v2) —-> Boolval (vi=v2)
| (Boolval v1,Boolval v2) -> Boolval (vi=v2)
| _ => failwith "wrong args to operator = ")
| ">" => (fun (Intval vi,Intval v2) -> Boolval (vi>v2)
| _ -> failwith ("wrong args to operator > "))
| t -> failwith ("wrong operator : " ~ t);;

(* semunop : (string -> value -> value) *)
let semunop = fun "suc" -> (fun (Intval v) -> Intval (1+v))
| "= -> (fun (Intval v) -> Intval (-v))
| t -> failwith ("wrong operator : " " t);;

(*x semexp : (expression -> env -> store -> value) *)
let rec semexp = function
Unopexp (opr,E1l) -> ((fun e s -> sop (S e s))
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where S=semexp E1 and sop = semunop opr)

| Binopexp (El,opr,E2) -> ((fun e s -> sop (S1 e 5,52 e s))
where sop = sembinop opr
and S1 = semexp E1l
and S2 = semexp E2)

| Funexp (fn,arg) -> ((fun e s-> ff (S e s) s

where (Fundval (Fun ff)) = envf fn where (Env envf) = e )

where S = semexp arg)

| Varexp t -> (fun e s -> valof (e,s,t))
| Intconstexp i -> (fun e s -> Intval i)
| Boolconstexp b -> (fun e s -> Boolval b)
| Ifexp (test,expl,exp2) ->
((fun e s -> let (Boolval tt) = Stest e s in
if tt then S1 e s else S2 e s)
where Stest = semexp test
and S1 = semexp expl
and 82

| _ -> failwith "wrongexp";;

semexp exp2)

(* semcom : (command -> env -> store -> store) *)
let rec semcom = function

Asscom (id,exp) -> ((fun e s->updstore (e,s,id,S e s))
where S = semexp exp)

| Proccom (pn,id,exp) ->
((fun e s => pp (id,S e s8) s
where (Procdval (Proc pp)) = envf pn
where (Env envf) = e)
where S = semexp exp)

| Ifcom (test,coml,com2) ->
((fun e s => let (Boolval tt) = Stest e s in
if tt then S1 e s else S2 e =)
where Stest = semexp test
and S1 = semcom coml
and S2 = semcom com2)

| Whilecom (test, comm) -> ((fun e —>
let rec wh s = let (Boolval tt) = St e s in
if tt then wh (S e s) else s in wh)
where S = semcom comm
and St = semexp test)

| Writecom exp ->

16
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((fun e s -> updstore (e,s,"output",Fileval (v :: prevoutput))
where (Intval v) = S e s
and (Fileval prevoutput) = valof (e,s,"output"))
where S = semexp exp)

| Readcom id ->
(fun e s —> updstore (e,updstore (e,s,"input",Fileval vl),id,Intval v)
where (Fileval (v::vl)) = valof (e,s,"input"))

| Compcom coml -> ((fun e s -> complist (appfunlist (SS,e)) s)
where SS = map semcom (rev coml))

| _ => failwith "wrongcom";;

(* semdecl : (declaration -> (env & store) -> (env & store)) *)
let rec semdecl = function

Vardecl id -> (fun (e,s) —> updenv (e,id,Locdval i) , extendstore s
where (Store (i,uu)) = s)

| Fundecl (fn,id,exp) ->
((fun (e,s) -> (updenv (e,fn,Fundval (Fun ff)) , s)
where rec ff = fun vl sl -> S (updenv (e2,fn,Fundval (Fun ff))) s2
where (e2,s2) = pushenv id vl (e,sl) ) %sl et pas s’
where S = semexp exp)

| Compdecl decl -> ((fun (e,s) -> complist SL (e,s))
where SL = map semdecl (rev decl))

| Procdecl (pn,idl1,id2,decl,comm) ->
((fun (e,s) -> updenv (e,pn,Procdval (Proc pp)) , s
where rec pp = fun (t1,vl) sl —>
(SC (updenv (e2,pn,Procdval (Proc pp))) s2)
where (e2,s2) = SD (e3,s3)
where (e3,s3) = pushenv id2 vl (e4,sl) %sl1l, not s%
where e4 = updenv (e,idl,dvalof(e,t1)) )
where SD = semdecl decl and SC = semcom comm)

| _ -> failwith "wrongdecl";;

(*x semprog : (program -> int list -> int list) =*)

let semprog (Prog (decl,comm)) = (fun 1 -> 1’

where (Fileval 1’) = valof (e,ss,"output")

where ss = ¢ e (updstore (e,s,"input",Fileval 1)))
where (e,s) = semdecl decl (initenv,emptystore)
and ¢ = semcom comm; ;

Note that semprog transforms a program into a function mapping a list of inputs to a list of
outputs.
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Polymorphism was not used in this example, except for utility functions: all semantic functions
are of ground type. Note that the treatment of Ifexp and Ifcom are similar, suggesting the use of
a polymorphic treatment of conditionals, which would share the common code.

1.3.4 Examples
Factorial

let fact_prog ="

program

var Xx;

function fact (x);

if x = 1 then 1 else x * fact(x-1);
begin

read x ; write fact (x)

end.

", .
1

let FACT = semprog fact_prog;;

FACT[20];;
[2432902008176640000] : num list

Fibonacci

let fib_prog =
program

var x ;
function fib (x);

if x = 1 then 1 else
if x = 2 then 1 else
fib (x-1) + fib (x-2);
begin

read x ; write fib (x)

end.

", .
EA

let FIB = semprog fib_prog;;

FIB[10];;
[65] : num list

Remarks. This approach is close in spirit to a system such as P. Mosses’ SIS [22] or L.
Paulson’s compiler generator [23]. However, we avoid one level of interpretation here, since our
denotational definitions are directly executable as CAML programs, whereas Mosses generated A-
calculus expressions which were later reduced by a graph-reduction algorithm (Paulson used a
stack abstract machine). In this way, we bridge the gap between denotational definitions and
operational definitions: the CAML definition fulfills both purposes.
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Compared to the closely related approach followed by Wand [9], using a typed language such
as CAML as opposed to an untyped one such as Scheme has the advantage of giving an additional
level of confidence in the semantic definition, since the adequacy of the semantic definitions with
respect to the semantic domains is automatically ensured from CAML ’s type checking.

This application of CAML as a programming environment meta-language is characteristic of
its usefulness for rapid software prototyping. Once a programming language definition has been
agreed upon, after extensive testing on benchmarks of user programs, the systematic development
of further tools (compilers, debuggers, proof assistants) can proceed mechanically from the official
CAML definition.

Designing compiler-generators from denotational definitions is an active research area [30, 26,
4, 11].
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Chapter 2

Hierarchical Structures and Pattern
Matching

This chapter develops the theory of first-order terms. The formalism is progressively introduced.
First we consider trees. Then labeled trees over a ranked alphabet. Finally terms with free variables.

2.1 Utilities on standard data structures

In this section we review a few basic algorithms on lists, sets and association lists.

2.1.1 Lists

A list L of length n over type 7 may be considered as a finite function, of type n — 7, with n
identified with the cardinal {0,1,...,n — 1}. The i-th element L; of L, with ¢ < n, is thus obtained
as L; = L(i — 1). We can get a similar coercion with CAML ’s lists, using the operator:

% nth : ’a list -> num -> ’a %
let nth 1 n = if n<0 then fail else (nthrec 1 n 7 failwith "nth")
where rec nthrec (hd::tl) n = if n=1 then hd else nthrec tl (n-1);;

The standard CAML list search primitive is find, which returns the first element of a list which
satisfies a given predicate:

(x find : (Pa -> bool) -> ’a list -> ’a *)
let rec find p = fun [] -> fail
| (x::1) => if (p x) then x else find p 1;;

The primitive filter_pos and filter_neg filter a list according to a predicate:

(x filter_pos, filter_neg : (’a -> bool) -> ’a list -> ’a list *)
let filter_pos p = fst o (partition p)
and filter_out p = snd o (partition p);;

Lists can also be used to represent updatable sequences. The following operators may be de-

fined:

change [l1;1lo;.0n] 0 f = [li;lo; - dicas f sl L]
update [l1;le;..0n) i x = [li;lo; . dicy; 2 liga .. 0.

22
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(* change : ’a list -> num -> (’a -> ’a) -> ’a list *)
let change 1 n f = (changerec 1 n 7 failwith "change")
where rec changerec (h::t) n = if n=1 then f(h)::t else h::changerec t (n-1);;
(* update : ’a list -> num -> ’a -> ’a list *)
let update 1 n x = change 1 n (K x);;
We also assume known the combinators split and combine, which transform lists of pairs into
pairs of lists and conversely:
(* split : (’a & ’b) list -> (’a list & ’b list) *)
let rec split = fun
(] -> (1,
| ((x,y) :: 1) -> let 1x,ly = split 1 in (x::1x , y::1ly)
(* combine : (’a list & °’b list) -> (’a & ’b) list *)
and combine = function
(hil::t1),(h2::t2) —> (h1,h2)::combine(t1,t2)
| ., -> []

| _ -> fajilwith "combine";;

2.1.2 Sets

We could define ’a set as an abstract data type, with appropriate primitives. Here we choose
rather to represent finite sets as lists.

let singleton x = [x]

and make_set 1 = list_it (fun a s -> if mem a s then s else a::s) 1 []
and intersect 11 12 = filter_pos (fun x -> mem x 12) 11

and subtract 11 12 = filter_neg (fun x -> mem x 12) 11;;

let union 11 12 = subtract 11 12 @ 12;;

2.1.3 Association lists

Association lists are lists of pairs (name,value) used as dictionaries. The standard association-list
search primitive is:

let assoc x = find(eq_fst x) where eqfst x (y,z) = (x=y);;
For instance:
assoc 2 [(1,4);(3,2);(2,5);(2,6)] = (2,5);;

The primitive assoc is inspired from its LISP synonym. However, it is not quite as useful, since
the fact that when it fails the failure token is trapped by a mechanism distinct from the conditional
makes sometimes programming with association lists awkward, as will be evident from the examples
below.

2.2 Trees

2.2.1 Abstract Syntax
We consider trees as oriented graphs whose nodes are labeled by strings:

type tree = Tree of string & tree list;;
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2.2.2 Concrete Syntax

%mlescape
%token IDENT

b
tree : mlescape {$1}
| IDENT trees {Tree($1i,rev $2)}

.
b

trees : {[1}
| 2’ t_list tree ’)’ {($3::$2)}

b

t_1list : {[1}
| t_list tree ’,’ {($2::$1)}

hh
So now we may parse trees according to the usual mathematical convention:
<<F(A,G(B))>> = Tree ("F",[Tree ("A",[1); Tree ("G",[Tree ("B",[1D1)1)
Conversely, we define a simple tree pretty-printer:

let unparse M = (unparserec M;print_newline())
where rec unparserec (Tree (oper,sons)) =
print_string oper;
match sons with
o >0

| (t :: 1t) -> print_string "(";
unparserec t;
map (fun t -> print_string ",";unparserec t) 1t;
print_string ")";;

2.2.3 Occurrences

Occurrences are lists of positive integers, denoting a tree address. For instance, occurrence [2;3]
denotes the 3rd subterm of the 2nd subterm.

let rec above = function
0 -> false
| 0,_ -> true
| (n::u),(m::v) => n=m & above(u,v);;

(* The subterm of M at occurrence u is noted M at u *)

directive infix "at";;
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(xTree(oper,sons) at [nl;...;nk] = nth ( ... (ath sons n1) ... ) nk *)

let op at(M,u) = it_list (fun (Tree(_,sons)) -> nth sons) M u ? failwith "at";;
let head M u = oper where (Tree(oper,_)) = M at u;;

(* let T1 = <<F(G(A,H(B)),H(C))>>;;
T1 at [1;2] = <<H(B)>>;;
head T1 [1;2] = "H";; *)

(x Tree replacement M[u<-N] x)
let replace M u N = replacerec (M,u)
where rec replacerec = function
> >N
| Tree(oper,sons), (n::u) -> Tree(oper,change sons n (fun P -> replacerec(P,u)));;

(* unparse (replace T1 [1;2] T2 where T2 = T1 at [2;1]);; ==>
F(G(A,C),H(C)) %)

2.2.4 Tree traversal

We generalize the functionals it_list and list_it to trees as general tree traversing functionals.
Think of £ (resp. g) as a vertical (resp. horizontal) mapping.

(x treetrav : ((string & ’a) -> ’b) -> (’b => ’a -> ’a) -> ’a -> tree
-> b *)
let treetrav f g start = travrec
where rec travrec (Tree(oper,sons)) = f(oper,list_it (g o travrec) sons start);;

let preorder = treetrav (op ::) append []
and postorder = treetrav post append [] where post(x,y) = y@[x];;

(* Preorder T1 = [IIFII; IIGII; IIAII; IIHII; IIBII; IIHII; IICII]
pOStOI‘deI‘ Tl = [IIAII; IIBII; IIHII; IIGII; IICII; IIHII; IIFII] *)

(* The other traversal *)
(* left_treetrav : ((string & ’a) -> ’b) => (°b -> ’a => ’a) -> ’a —->
tree -> ’b *)
let left_treetrav f g start = travrec
where rec travrec (Tree(oper,sons)) = f(oper,it_list (g Co travrec) start sons);;

(x The set of all occurrences in a tree, sorted lexicographically in a

list *)

let occsin = left_treetrav (snd o snd) putprefix (0,[[1])

where putprefix occsson (rankleft,occsleft) = let rank=1+rankleft in
(rank,occsleft @ (map (cons rank) occsson));;

(¥ ocesin T1 = [[1; [11; [1; 11; [1; 21; [1; 2; 11; [2]; [2; 111 : num
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list list *)

map (fun occ -> unparse (T1 at occ)) (occsin T1);; ==>
F(G(A,H(B)) ,H(C))

G(A,H(B))

A

H(B)

B

H(C)

C

2.3 Terms

Terms are trees over a ranked alphabet. We could axiomatize them by changing slightly the type
tree above, in such a way that the operators would have an arity in addition to a name. This
would have the disadvantage of allowing distinct operators with the same name. And in a trivial
sense, every tree is a term over an alphabet constituted by the tree operator names indexed by
natural numbers.

We shall rather assume that an arity function has been defined, which tells what is the arity
of the operators of the alphabet, named unambiguously by strings. Then, any tree which is
well-formed according to the following definition, is a legitimate term.

type signature == string -> num;;

(*x legim : signature -> tree -> bool *)

let legim arit = treetrav check count 0

where check(oper,n) = if arit oper = n then true else failwith oper ~ " has wrong arity"
and count x y = y+1;;

(* Example *)
let Sigma = fun

IIFII . 2
| IIGII . 1
| IIAII . O
| x . failwith x © " unknown operator";;

let Sigma_term = legim Sigma;;

Sigma_term "F(G(A),A)";; ==> true
Sigma_term "F(A)";; ==> evaluation failed F wrong arity
Sigma_term T1;; ==> evaluation failed C unknown operator

For terms, preorder is injective. This is what is generally referred to as “Polish prefix notation”.
Here is how to retrieve a tree from its preorder list, given the signature.

let parse arity polish =
let rec parsel (oper::lops) = let (trees,rest) = parsen([],lops,arity oper)
where rec parsen(accu,rest,n) =
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if n=0 then (accu,rest)
else let N,r = parsel rest in parsen(N.::ccu,r,n-1)
in (Tree(oper,rev trees),rest)
in match parsel polish 7 failwith "parse"
with (M,[]) -> M
| (_,rest) -> failwith "Excess input: " ~ concat_list rest;;

Exercise. Prove by induction on the tree M that for an arbitrary signature sigma we have
parse sigma (preorder M) = M <= legim sigma M.

2.4 Terms with variables

Note that our anti-quotation mechanism gives us a way of doing macro-processing. For instance,
let X = <<G(A)>> and Y = <<B>> in <<F("X,"Y)>>isequal to <<F(G(A) ,B)>>. Better yet, the
CAML expression fun X Y -> <<F("X,"Y)>> denotes a function which, applied to any terms M and
N, yields the corresponding instance of the “schema” <<F ("X, "Y)>>. We shall now internalize such
term schemas as terms with variables.

In many respects, variables will act as constants, i.e. operators of arity 0. However, we shall
carefully distinguish them from operators in the abstract syntax.

2.4.1 Abstract Syntax

Variables are represented abstractly as integers, to emphasize the fact that their concrete names
are irrelevant.

Var of num

type term =
| Term of string & term list;;

2.4.2 Concrete Syntax

The names of variables is remembered in a dictionary, here an association list.
type dict == (string & num) list;;

Parsing returns a tuple (M,D,n) with M a term and D a dict of length n.
type concrete_term == term & dict & num;;

By convention, variable names start with lower-case letters.

let var_name string = let n=ascii_code string in n>96 & n<123;;
Here are the parsing routines.

let var D name = let n=assoc name D in (Var(am),D)
? let n=1+length D in (Var(n),(name,n)::D);;

let collect f g 10 = let t1,11 = g 10 in let ts,1 = f 11 in (tl::ts),1l;;

let mk_terml ((sl,fl),(s,f)) = (sl @ s),(f::f1);;
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let mk_term (oper,sl,fl) = sl,
(fun 10 -> let t1,1 = it_list collect (fun 1 -> [],1) f1 10 in
Term(oper,tl),1);;

(+ map_to_num ["x";"y";"x"] = ([1; 2; 11,["y",2; "x",1],2) *)
let map_to_num 1 =

let search s (1,(ass,n as pair)) = ((assoc s ass)::1l,pair)

? let n’=n+1 in n’::1,(s,n’)::ass,n’

in list_it search 1 ([]1,[],0);;

let mk_end_term (sl,f) = let il,dl,n = map_to_num sl
in let tl,[] = f il in tl1,d1l,n;;

let const_or_var name = if var_name name then [name],fun (n::1)->Var(n),l
else mk_term(name,[]1,[1);;

load_syntax "term";;
Here is the mlyacc file term.mly:

%mlescape
%token IDENT NUM
Wt
term : terml {mk_end_term($1)3}
terml : IDENT {const_or_var($1)}
| NUM {mk_term(string_of_num($1),[1,[1)}
| IDENT terms {mk_term($1,$2)}

b

terms : ’(’ t_list terml ’)’ {mk_terml($2,$3)}
t_list : {01,003}
| t_1list terml ’,’ {mk_terml($1,$2)}

hh
Examples.

<<F(A,G(x))>> = (Term ("F",[Term ("A",[]1); Term ("G",[Var 1]1)1),[("x",1)],1)
<«<F(x,F(x,y))>> = (Term ("F",[Var 2; Term ("F",[Var 2; Var 1])]),
[(IIXII’Z); (Ilyll,l)],2)

Let us now give unparsing routines.

(* Inversing an association list *)
let inverse = map (fun (x,y) -> (y,x));;

let unparse D M = let Dop = inverse D in unparserec M;print_newline()
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where rec unparserec = function
Var(n) -> print_string (assoc n Dop)
| Term(oper,sons) -> (
print_string oper;
match sons with
>0
| (£ :: 1t) -> print_string "(";
unparserec t;
map (fun t -> print_string ",";unparserec t) lt;
print_string ")");;
For example, we get:
let M1,D1,n = <<F(x,G(x,y))>>;;
M1 = Term ("F",[Var 1; Term ("G",[Var 1; Var 2])]) : term
D1 = ["y",2; "x",1] : dict
n =2 : num
unparse D1 M1;; ==> F(x,G(x,y))

2.4.3 Occurrences

We just adjust our algorithms to the new abstract syntax. This section is a slight adaptation of
2.2.3 and 2.2.4 above.

(* Occurrences are lists of positive integers, denoting a term address
*)

(* For instance, occurrence [2;3] denotes the 3rd subterm of the 2nd
subterm *)

let rec above = function u,[] -> false
| [D,_ -> true

| (n::u),(m::v) => n=m & above(u,v);;

(* The subterm of M at occurrence u is noted M at u *)
directive infix "at'";;

(xTerm(oper,sons) at [nl;...;nk] = nth ( ... (nth sons n1) ... ) nk *)
let op at (M,u) = it_list (function Term(_,sons) -> nth sons) M u ? failwith "at";;

let head M u = oper where (Term(oper,_)) = M at u;;

(* let N1,D1,n1 = <<F(G(A,H(x)),H(y))>>;;
let unparsel = unparse Di;;
unparsel (N1 at [1;2]) ==> H(x)
head N1 [1;2] = "H";; *)

(* Term replacement M[u<-N] *)
let replace M u N = replacerec (M,u)
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where rec replacerec = function
0 >N
| Term(oper,sons),(n::u) -> Term(oper,change sons n (fun P -> replacerec(P,u)));;

(* unparsel (replace N1 [1;2] N2 where N2 = N1 at [2;1]);; ==> F(G(A,y),H(y)) *)

(x We generalize it_list to terms as a general term traversing functiomal *)
(* The last argument v tells what to do to variables *)
(* termtrav :
(string & ’a -> ’b) => (°b => ’a => ’a) -> ’a -> (num -> ’b) -> term -> ’b *)
let termtrav f g start v = travrec
where rec travrec = function
Term(oper,sons) -> f(oper,list_it (g o travrec) sons start)
| Var(n) -> v(n);;

let preorder = termtrav (op ::) append [] (singleton o string_of_num)
and postorder = termtrav post append [] (singleton o string_of_num)
where post(x,y) = y@[x];;

(* preOI‘deI‘ N1 = [IIFII; IIGII; IIAII; IIHII; Ilill; IIHII; II2II]
pOS‘tOI‘deI‘ N1 = [IIAII; Illll; IIHII; IIGII; II2II; IIHII; IIFII] *)

(* Copying a term *)
let copy = termtrav Term cons [] Var;;
(* For every term M, we have M = copy M *)

(* An unparser as a function from terms to strings *)

let pretty = termtrav wrappar args ("",0) string_of_num
where wrappar(sl,s2,n) = s1 ~ (if n=0 then "" else "(" ~ s2 =~ ")")
and args sl (s2,n) = (s1 ° (if n=0 then "" else ",") ~ s2),n+l;;

(* (let M,D,n = <<F(G(x,y),H(x),A)>> in pretty M) = "F(G(1,2),H(1),A)" %)

(* The other traversal *)
(* left_termtrav :
(string & ’a -> ’b) => (°b => ’a => ’a) => ’a -> (num -> ’b) -> term -> ’b *)
let left_termtrav f g start v = travrec
where rec travrec = function
Term(oper,sons) -> f(oper,it_list (g Co travrec) start sons)
| Var(n) -> v(n);;

(* The set of all occurrences in a term, sorted lexicographically in a list *)

(* occsin : term -> num list list *)

let occsin = left_termtrav (snd o snd) putprefix (0,[[]1]) occstriv

where putprefix occsson (rankleft,occsleft) = let rank=1+rankleft in
(rank,occsleft @ (map (cons rank) occsson))
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and occstriv n = [[1];;
(* occsin N1 = [[1; [11; [1; 11; [1; 21; [1; 2; 11; [2]; [2; 111 : num list list )

(* The set of subterms of a term *)
let subterms M = make_set (map (fun occ -> (M at occ)) (occsin M));;

(* map unparsel (subterms N1) ==
F(G(A,H(x)) ,H(y))

G(A,H(x))

A

H(x)

X

H(y)

v *)

2.4.4 Signatures

Similarly to trees above, we may check that terms with variables are consistent with a signature
declaration.

type signature == string -> num;;

(* legim : signature -> term -> bool *)

let legim arit = termtrav check count O (K true)

where check(oper,n) = if arit oper = n then true else failwith oper ~ " has wrong arity"
and count x y = y+1;;

(* Example *)
let Sigma = fun

nEn -y 9
| ngr o-> 1
| IIAII -> O

| x => if var_name x then O else failwith x = " unknown operator";;

let Sigma_term = legim Sigma;;

(*
Sigma_term T where T,_="F(G(A),A)";; ==> true
Sigma_term T where T, _="F(A)";; ==> evaluation failed F has wrong arity
Sigma_term N1;; ==> evaluation failed H unknown operator
*)
let parse arity polish =
let rec parsel (oper :: lops) = let (terms,rest) = parsen([],lops,arity oper)

where rec parsen(accu,rest,n) =
if n=0 then (accu,rest)
else let N,r = parsel rest in parsen(N::accu,r,n-1)
in (Term(oper,rev terms),rest)
in match parsel polish 7 failwith "parse"
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with (M,[]) -> M
| (_,rest) -> failwith "Excess input: " " concat_list rest;;

(x parse Sigma (preorder M) = M where M,D,n="F(G(A),A)";;*)

2.4.5 Various measures on terms
(x The length of a term : len M = length (preorder M) *)
let len = termtrav snd add 1 (K 1);;

(* The set of variables of a term *)
let vars = termtrav snd union [] singleton;;

(* nu M is the number of distinct variables occurring in M x*)
let nu = length o vars;;

(* The complexity of terms *)
let complex M = (len M) - (nu M);;

(* Linear terms do not contain multiple occurrences of variables *)

let linear M = ((termtrav snd disjoint_union [] singleton M; true) 7 false)
where disjoint_union 11 12 = list_it comns’ 11 12

where cons’ x 1 = if mem x 1 then fail else x::1;;

If M is linear, we have complex M = termtrav snd add 1 (K 0) M. We shall call pattern a
linear term. CAML patterns (in the fun and match constructions) are patterns in this sense. This
restriction to linear terms comes from the fact that CAML uses pattern-matching as a binding

mechanism. More generally, we shall define pattern-matching for arbitrary terms. To this end, we
study substitutions.

2.4.6 Substitutions

Substitutions are functions from variables to terms. Since all terms have a finite number of variables,
we only need to consider substitutions with a finite domain.

(x We shall represent substitutions by association lists :
[(varl,terml);...; (varN,termN)] x*)

type subst == (num & term) list;;

let pretty_subst =
map (fun (v,t) ->(string_of_num v) =~ " --> " = (pretty t));;

let bindng n subst = (assoc n subst) 7 Var n;;
??let bound n subst = (assoc n subst;true)?false;;

let rec substitute subst = function
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Term(oper,sons) -> Term(oper, (map (substitute subst) sons))
| Var(n) -> bindng n subst;;

(x occurs n t = mem n (vars t) *)
let occurs n t = let found m = if m=n then fail else false in
(termtrav snd K false found t) ? true;;

let compsubst substl subst2 =
(map (fun (v,t) -> (v,substitute substl t)) subst2) @ substil;;

Substitutions as functions can be easily extracted from our concrete substitutions. We recall
the C combinator, defined as: C £ x y = £ y x.

let subst_map = C bindng;;
(* (compsubst substl subst2) = (subst_map subst2) o (subst_map substl) x*)

Any such mapping in num -> term may be extended as as a ¥-morphism over the current signature

3

(* morphism_ext : (num -> term) -> (term —-> term) *)
let morphism_ext = termtrav Term cons [];;
(x For instance, copy = morphism_ext Var *)

let subst_morphism = morphism_ext o subst_map;;
(* subst_morphism is same as substitute above *)

(* More generally, let a Sigma algebra be defined by a type alpha, and
a function Operators : string -> (alpha list) -> alpha. Any function
Interpretation : num -> alpha extends uniquely to a morphism
(morphism Operators Interpretation) : term -> alpha, with : *)

let morphism Operators = termtrav (uncurry Operators) cons [];;

(x Example: other versions of measure len above *)
let len’ = let operators _ = succ o sigma and interpretation _ = 1 in

morphism operators interpretation;;

2.4.7 Matching

We shall need frequently to iterate on two lists in parallel. A convenient operator to do this is:

(x it_list2 : ((’a => b & ’c -> ’a) -> ’a -> ’b list -> ’c list -> ’a
*)
let it_list2 f init listl list2 =

it_list f init (combine (listl,list2) ? failwith "it_list2");;

(* matching = - : (term -> term -> subst) *)
let matching terml term2 =
let rec matchrec subst
fun (Var v,M) -> if bound v subst then let N = assoc v subst in
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if M=N then subst else failwith "matching"
else (v,M)::subst
| (Term(opl,sonsi),Term(op2,sons2)) ->
if opl = op2 then it_list2 matchrec subst sonsl sons2
else failwith "matching"
in matchrec [] (terml,term2);;

(* matching returns the matching substitution, or fails *)
let M1,D1,n1

and M2,D2,n2
and M3,D3,n3

<<F(G(A,x),H(x,y))>>
<<F(G(x,y),2)>>
<<F(x,y)>>;;

let Subl = matching M2 Mij;;

(* Subl = [(1,Term("H", [Var 2; Var 1])); (2,Var 2); (3,Term("A",[]1))] =*)

let Sub2 = matching M3 Mij;;

(x Sub2 = [(1,Term("H", [Var 2; Var 1])); (2,Term("G", [Term("A",[]); Var 2]))] =*)

The control structure in the variable case is not very nice, since we must evaluate twice the
expression (assoc v subst).
Note that for linear terms the variable case can be greatly simplified:

let matching_linear terml term2 =
let rec matchrec subst =
fun (Var v,M) -> (v,M)::subst
| (Term(opl,sonsl),Term(op2,sons2)) —>
if opl=op2 then it_list2 matchrec subst sonsl sons2 else failwith "matching"
in matchrec [] (terml,term2);;

Thus pattern-matching of patterns is linear in the size of the pattern, independently from the
size of the matched term.

Matching defines a quasi-ordering on terms: we write M < N iff match M N does not fail.
In that case, there exists a unique substitution o of domain vars M such that N = o(M). o is
precisely the result of match M N. As we saw, 0 may be uniquely extended as a ¥-morphism, where
Y is the current signature. The isomorphisms are exactly the variable renamings, which apply an
arbitrary permutation to the variable indexes of a term. Let us write = for the corresponding
equivalence: M = N & M < NAN < M. The classes of ¥-terms under = are partially ordered
by matching. We shall see that this partial ordering admits glb’s, and conditional lub’s. That is,
if two terms admit a common substitution instance (we then say they are unifiable), they admit a
most general such instance.

2.4.8 Unification

The partial ordering < extends to substitutions: ¢ < 7 iff for some p we have 7 = p 0 0. Let us
call unifier of M and N any substitution o such that (M) = o(N). If M and N are unifiable,

they admit a principal unifier, which is the lub of all their unifiers.

(* A naive unification algorithm *)
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let rec unify =
fun (Var nl,term2)-> if Var nl = term2 then []
if occurs nl term2 then fail
else [nl1,term2]
| (terml,Var n2)-> if occurs n2 terml then fail
else [n2,termil]
| (Term(opl,sonsl),Term(op2,sons2)) —>
if opl = op2 then
(it_1list2 unifylist [] sonsl sons2
where unifylist s (t1,t2) =
compsubst (unify(substitute s tl,substitute s t2)) s)
else fail 7 failwith "unify";;

let T1 = Term("F",[Var 1;Term("G",[Var 1])])
and T2 = Term("F", [Var 2;Var 2])
and T3 = Term("F", [Term("H", [Var 2]);Var 3]);;

(* unify(T1,T1) = []1 : subst;;
unify(T1,T2);; ==> evaluation failed unify
pretty_subst (unify(T1,T3));; ==> ["1 --> H(2)"; "3 --> G(H(2))"] *)

2.4.9 Anti-unification

Two arbitrary terms possess a least general generalization, or maximal factorization, which is a glb
with respect to the ordering <.

(* L is list of tuples ((Mi,Ni),ni)x*)
let enter x L = (let k=assoc x L in Var k,L)
? let n=length(L)+1 in Var n,(x,n)::L;;

type subst2 == ((term & term) & num) list;;

(x fctrec : (term & term) -> subst2 -> (term & subst2) x*)
let rec fctrec pair L = match pair with
Term(opl,termsl),Term(op2,terms2) ->
if opl=op2 then let 1’,L’= it_list2 collect ([],L) termsl terms2
where collect (1,S) p = let T,S’ = fctrec p S in T::1,S’
in Term(opl,rev 17),L’
else enter pair L
| _ -> enter pair L;;

(x factor : (term & term) -> term *)
let factor pair = fst(fctrec pair []);;

(x let M,_="F(G(A),A,A,A,B)" and N,_="F(G(B),B,B,A,C)" in pretty(factor(M,N));;
==> "F(G(1),1,1,A,2)" *)
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Note that the second component of the pair computed by fctrec is a proof that factor computes
a common factor, in the form of a pair of substitutions. More precisely, with (P,L) = fctrec (M,N) [],
the list L:subst2 may be interpreted as a pair of substitutions:

(* factorization : (term & term) -> (term & subst & subst) *)
let factorization (pair) = let (P,L) = fctrec pair [] in
let L1,L2 = split L in
let L3,L4=split L1 in P,combine(L2,L3),combine(L2,L4);;

And it is easy to prove by induction that factorization (T1,T2) = (P,S1,S2) with substitute S1 P ="
and substitute S2 P = T2, and that P is the greatest such term in ordering <.

Exercise. Complete the proof above, showing the existence of greatest lower bounds with respect
to ordering <. Prove that the ordering < is well-founded (i.e. that there are no infinite strictly
decreasing sequences), by showing that M < N implies complex(M) < complex(N). (We write
M < N for M < NA N < M). Conclude from these two facts the following theorem.

Theorem. Let 7y be the set of equivalence classes of Y-terms, ordered by the match partial
ordering <, to which we add a maximum element T. 7y is a complete lattice.

Corollary. Any unifiable set of terms possesses a minimum common instance.

Unification appeared in Herbrand’s thesis [3]. It has become well-known since Robinson’s seminal
paper on resolution [8]. The algebraic theory of term structures was developed in [6, 7, 4, 2].

2.5 Infinite rational terms and recursion equations

It is possible to generalize the formalism of standard finite first-order terms to infinite rational
terms described by recursion equations. Ordinary unification generalizes to unification of infinite
rational terms. Substitutions are replaced by systems of recursive equations. For unification, this
amounts to suppress the “occur test”:

A set of recursive equations is a list of pairs (V,T) where V is a set of variables and T is a term.
This set is an equivalence class of variables bound together. When T=Var(0), this means the class
of variables V is free. Otherwise, T is a non-variable term, and the class is bound to term T. The
first variable in a class is its canonical representative.

type rec_eqs == (num list & term) list;;
let class n = find (function V,_ -> mem n V);;
(* n is assumed canonical *)

let rem_class n = remrec
where rec remrec (p::E) = let (i::V,_) = p in if i=n then E else p::remrec E;;

let rec reduce_eqgs E fun
1 >E
| (p::L) => let E’ = reduce_eqs E L in (match p with
Var(nl) ,Var(n2) -> merge_classes nl n2 E’

| Var(nl),term2 -> put_class nl term2 E’
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| terml,Var(n2) -> put_class n2 terml E’
| Term(opl,sonsl),Term(op2,sons2) ->
if opl=op2 then reduce_eqs E’ (combine(sonsl,sons2)) else fail)
where merge_classes 1 j E = let (ci::I),T = class i E and (cj::J),U = class j E
in if ci=cj then E
else let E’ = rem_class ci (rem_class cj E)
and IJ = ci::cj::(I @ J) in match T with
Var(_) -> (IJ,U)::E’
| _ => let E’’=(IJ,T)::E’ in match U with
Var(_) -> E»?
| _ -> reduce_eqs E’’ [T,U]
and put_class 1 M E = let (ci::I),N = class i E in match N with
Var(_) -> (ci::I,M)::rem_class ci E
| _ => reduce_eqs E [M,N];;

let rat_unify (M,N) =
let inieqs = map initclass (union (vars M) (vars N))
where initclass v = (singleton v,Var(0)) in reduce_eqgs iniegs [M,N];;

(* rat_unify(T1,T2)
(* rat_unify(T1,T3)

[[1; 2],Term ("G",[Var 1])] : rec_egs *)
[[1],Term ("H",[Var 2]); [3],Term ("G",[Var 1]); [2],Var 0] =*)

Remark that we could simplify rat_unify if we assumed all rational terms are defined by a
pair (n,E) with E a set of recursive equations. The right-hand side of an equation would no longer
be a general term, but just a pair (oper,vars):string & num list.

It is possible to interpret the result of rat_unify as a principal unifier for rational terms. The
algebraic theory of rational terms is developed in [4].

Exercise. Write a function acyclic which tests whether a set of recursive equations contains
cycles or not. Use it as a post-processor to rat_unify in order to get a new unification algorithm
for finite terms. Compare with unify above.

2.6 Practical Considerations

The CAML algorithms given above should be regarded as functional specifications. Actual algorithms
used in practice use special data-structures, with destructive operators, in order to optimize these
very basic routines. We shall not discuss efficient implementations nor complexity considerations
here.
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Chapter 3
Logic Programming

As an application of the term structures algorithms, we shall present in this chapter various varia-
tions on the theme of logic programming. The theoretical problem to be solved is the construction
of a term of a given type in a theory of polymorphic operators. Each operator is presented with its
signature, which may be considered as a definite clause, that is a conditional statement universally
quantified:

Op := Concl «— Hyp;...; Hypy.

Given arguments Mji,... M, of respective types Typi,...,Typn, we may form the term M =
Op(M;,. .., M,) iff for some substitution o we have Typ; = o(Hyp;) for i = 1,...,n. In that case,
we say that M is well-formed, and of type o(Concl). So we address here the problem of finding
one (or all) terms whose type is an instance of some given goal type.

Analogously, we may view this problem as searching for an existential proof in a logical infer-
ence system (viewing each operator as a schematic rule of inference). The extracted answer (the
substitution applied to the original goal) is the “result” computed by the proof-synthesis procedure,
seen as the interpreter of a “logic program”, i.e. the set of definite clauses.

The main synthesis paradigm is the Prolog procedure, which proceeds by systematic backtrack-
ing in a depth-first top-down way.

3.1 A mini-Prolog interpreter

This section explains the Prolog [4, 27] proof-synthesis procedure, as a mini-Prolog interpreter in
CAML .

3.1.1 Abstract syntax

A (definite) clause is composed of a term (its conclusion), a list of terms (its hypotheses), and an
integer (the number of variables appearing in all the terms). These variables are assumed to be
bound together at the level of the clause.

type clause == term & (term list) & num;;

3.1.2 Concrete syntax

Parsing returns a clause and its variables dictionary.

type concrete_clause == clause & dict;;

39
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The typical syntax of a definite clause is: Concl <- Hypl; ... Hypn.

Parsing utilities.

let mk_clause ((s,f),(sl,fl)) = let (il,dl,n) = map_to_num (s @ sl)
in let (h,il’) = f il
in let (t,[]) = it_list collect (fun 1 -> [],1) f1 il’
in (h,t,n),dl;;

A goal clause is a list of terms preceded by a question mark. It is used to make queries in
specifications described as definite clauses. Thus the variables appearing in a clause should be
considered existentially bound. A goal clause containing variables x1,...,z, is represented as a
clause: Answer(xl,...,xn) <- goal.

let mk_goal (sl,fl) = let il,D,n = map_to_num sl
in let 1t,[] = it_list collect (fun 1 -> [],1) fl il
in (Term("Answer",map (Var o snd) D),lt,n),D;;

load_syntax "prolog";;
Here is the contents of the prolog.mly file:

%mlescape

Y%token IDENT NUM

%left ’=?

%left 2%’

o

clause : cl {mk_clause($1)}

| °7? tail {mk_goal($2)}

cl : term ’°<’ ’-? tail {$1,$4}

| term {$1,(01,[1D}

tail : term {mk_terml1(([],[1),$1)}
| tail ’;’ term {mk_terml($1,$3)}

term : IDENT {const_or_var($1)}

| NUM {mk_term(string_of_num($1),[1,[1)}

| IDENT terms {mk_term($1,$2)}

| term ’=’ term {mk_term("=",mk_terml(mk_terml(([],[]1),$1),$3))}

| term ’*’ term {mk_term("*",mk_terml(mk_terml(([],[]1),$1),$3))} ;
| 2’ term ’)’ {$2}

terms : ’(’ t_list term ’)’ {mk_terml($2,$3)}

t_list : {01,012}

| t_list term ’,’ {mk_terml($1,$2)}

)
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o

Example of a definite clause:

<<P(x,y)<-Q(x);R(y)>> =

(Term ("P",[Var 2; Var 1]), [Term ("Q", [Var 2]); Term ("R", [Var 1]1)],
2),["x",2; "y",1] : concrete_clause

You may think of the above clause as a logical statement: “For all z and y, we have P(z,y) if
Q(z) and R(y)”. Its “procedural” interpretation is: “In order to show P(z,y), you must show first
Q(z) and then R(y)”.

Example of a goal clause:

<K?7P(A,x)>> =
(Term ("Answer",[Var 1]), [Term ("P",[Term ("A",[]); Var 1])],
1),["x",1] : concrete_clause

You may think of the above clause as a logical interrogation: “Does there exist an x such that
P(A,z)?” or as a procedural query: “Find an z such that P(A,xz)”.

let unparse_clause ((conc,hyps,n),D) =
let U = unparse D in

let U’ x = (print_string ";";U x) in
(U conc;match hyps with
a->0

| (h::t) —> (print_string "<-";U h;map U’ t;print_newline()));;

(x New variables are printed as v1i, v2, ... *)
let gensym n = concat "v" (string_of_num n);;

let unparse_answer D (Term("Answer",1lt)) =
let newvars = (subtract (list_it (union o vars) 1t []) (map snd D)) in
let newD = union D (num_map (pair o gensym) newvars)
in (let unparseD = unparse newD in
map (fun ((name,_),term) -> print_string name;print_string " = ";
unparseD term;print_newline())
(combine(D,1t))); ) ;;

3.1.3 Resolution

Integers for variables allow easy renaming. This renaming is necessary to ensure that variables
pertaining to different clauses are not confused.

let instance n = morphism_ext (fun k -> Var(k+n));;
The resolution rule is here the following. Let C be a definite clause:

C =P—Q1;Q...Qn

and let G be a goal clause:

G =?G1;G2 Gp
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We assume that C has been renamed in such a way as to have no variable in common with G. Let
terms P and G be unifiable, with principal unifier o. We infer by resolution of C' and G the new
goal clause:

7QL; Q.. Qi Gy . G

where everywhere M’ denotes o(M).

(* Resolution *)
(* 2nd arg and result are goals *)
(* resolve : clause -> clause -> clause *)
let resolve (c,h,max) (ans,(goall::goals),n) =
let conc = instance n ¢ and hyps = map (instance n) h in
let subst = substitute (unify(goall,conc)) in
(subst ans, map subst (hyps @ goals),max+n)
? failwith "resolve";;

(* Definite clauses are organized in a theory *)
type theory == clause list;;

(* Example *)

let Append = [Appendl;Append2] (* : theory *)

where Appendl,_ = <<Append(Nil,x,x)>>

and Append2,_ = <<Append(Cons(u,x),y,Cons(u,z)) <- Append(x,y,z)>>;;

3.1.4 Finding all solutions in a depth-first manner

(* The Prolog_all loop *)
(x Takes a theory and a list of goals, and returns a list of answers *)
(* realize_all : theory —-> clause -> term list *)
let realize_all theory = rev o real []

where rec real answers g = match g with

(answer,[],_) -> (answer :: answers)
| _ => (it_list (fun ans cl -> real ans (resolve cl g) 7 ans) answers theory
? answers);;

(* This loop returns the list of all solutions *)
(* Prolog_all : theory -> concrete_clause -> void *)
let Prolog_all theory (goals,D) =
match realize_all theory goals with
[ -> message "No solution"
| answers -> it_list (fun n ans -> print_string "Solution ";print_num n;
print_newline() ;unparse_answer D ans;n+l1) 1 answers;();;

€

Prolog_all Append <<7Append(Nil,x,y)>>;;
Solution 1

x=vl

y =vl
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Prolog_all Append <<?Append(x,y,Cons(A,Cons(B,Nil)))>>;;
Solution 1

x = Nil
y = Cons(A,Cons(B,Nil))
Solution 2

x = Cons(A,Nil)
y = Cons(B,Nil)

Solution 3
x = Cons(A,Cons(B,Nil))
y = Nil

But note how Prolog_all Append <<7Append(x,y,z)>> would loop trying to generate an
infinite list of solutions! This is particularly irritating, since Append is an obviously deterministic
theory whose solution space can be spanned without any backtracking. Let us now program a
deterministic Prolog loop.

3.1.5 A deterministic loop

We assume known the try_find CAML primitive; try_find £ 1 returns f£(1i) for the first i such
that £(11i) succeeds. It is equivalent to:

let rec try_find f = fun [] -> fail
| (h::t) => (try £ h with _ -> try_find £ t);;

(x realize_det : theory -> goals -> term list *)
let realize_det theory = real
where rec real g = match g with
(answer, [],_) -> answer
| _ -> real (try_find (fun cl -> resolve cl g) theory);;

(* Prolog_det : theory -> concrete_clause -> void *)
let Prolog_det theory (goals,D) =
(let answerl = realize_det theory goals in
(message "Solution found";unparse_answer D answerl))
? message "No solution found";;

Prolog_det Append <<7Append(x,y,Cons(A,Cons(B,Nil)))>>;;
Solution found

x = Nil

y = Cons(A,Cons(B,Nil))

Note that Prolog_det is a natural generalization of the CAML fun and match constructs. Instead
of doing a simple matching of linear patterns against constructor trees without variables, we may
here have to do full unification of possibly non-linear terms with actual arguments which are
themselves terms with variables. Tt is this feature which makes Prolog a revolutionary programming
language, since procedure call is not conceived of as simply handing down arguments for a procedure
to compute and return a result. Rather, this is “hand-shaking” between two procedures which
share information in a symmetric way. The fundamental Prolog data-type is the first-order term,
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considered as an “incomplete” record-like object. Use of this data-type allows a free mixture of
symbolic and concrete computations.

The other salient feature of Prolog considered as a programming language is of course its implicit
treatment of non-determinism. Let us now consider a typical non-deterministic theory.

let Zero_or_One = [Ax1;Ax2;Ax3;Ax4] (* : theory *)

where Axl,_ = <<Zero_or_DOne(x) <- Zero(x)>>
and Ax2,_ = <<Zero_or_0One(x) <- One(x)>>
and Ax3,_ = <<Zero(0)>>
and Ax4,_ = <<0ne(1)>>;;

Now we get a failure using the deterministic loop:

Prolog_det Zero_or_One <<7Zero_or_One(1)>>;;
No solution found

So we now build a (non-deterministic) Prolog loop that returns the first solution it finds.

3.1.6 Looking for the first solution

(* The Prolog_1st loop *)
(* Takes a theory and a list of goals, and returns its 1st answer *)
(* realize_1st : theory -> clause -> term *)
let realize_1st theory = real

where rec real g = match g with

(answer, [],_) -> answer

| _ => try_find (fun cl -> real (resolve cl g)) theory;;

(x Note that we have simply commuted try_find and real *)

(* Prolog_1st : theory -> concrete_clause -> void *)
let Prolog_1ist theory (goals,D) =
let answerl = realize_1st theory goals in
(message "Solution found";unparse_answer D answerl)
? message "No solution found";;

And now :

Prolog_1st Zero_or_One <<?Zero_or_One(1)>>;;
Solution found

So now we may get a solution when there are infinitely many, without any assumption on
the theory to being deterministic. Still, we would like to be able to enumerate progressively all
solutions, in a “stream” rather than in a list. Prolog_1st is of no help, since after it returns, all
information is lost about the state of its backtrack.

It is not possible to compute streams directly in our non-lazy CAML . However, it is quite
possible to describe coroutine-like computations with functions returning closures, which are left
un-evaluated. All we need is to refine our Prolog interpreter in such a way that the backtrack
structure is explicit. This way we shall be able to extract a Prolog coroutine that will compute the
“next” solution.
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3.1.7 A Prolog coroutine

A state consists of an answer term, a goal history represented as a list of pairs (goal,th), where th
is the list of all definite clauses from the theory not yet matched to goal, and a variables counter.
A resumption is a stack of states.

type state == term & (term & theory) list & num;;

(* A resumption is a stack of states. *)
type resumption == state list;;

(* depth-first resolution *)
(* next_state : theory -> state -> state *)
let next_state theory (ams, (goall,(c,h,max)::_)::rest,n) =
let conc = instance n c and hyps = map (instance n) h in
let subst = substitute (unify(goall,conc)) in
let first = map (fun M -> (subst M,theory)) hyps
and last = map (fun (g,th) -> (subst g,th)) rest in
(subst ans,first @ last,max+n) ? failwith "next_state";;

(*x start : theory -> clause -> resumption *)
let start theory (term,terms,n) =
singleton(term,map (fun M -> (M,theory)) terms,n);;

(x A Prolog coroutine *)
(* resume : theory —-> resumption -> (term & resumption) *)
let resume theory = let next = next_state theory in resumerec
where rec resumerec = fun
[J -> failwith "No more solution"
| (state::states) -> let answer,stack,n = state in match stack with
[1 -> answer,states (* A solution has been found *)
| ((_,[0)::_) —> resumerec states (* Backtrack *)
| ((goal,th)::rest) —->
let next_states = (answer, (goal,tl th)::rest,n)::states
in resumerec((next state)::next_states ? next_states);;

(x A Prolog loop calling repeatedly the coroutine *)
let Prolog_loop theory (goal,dict) =
let coroutine = resume theory
and print_answer = unparse_answer dict in
let register = ref ((start theory goal):resumption)
and count = ref 1 in
while true do let answer,next = coroutine !register in
(print_string "Solution ";print_num !count;print_newline();
print_answer answer;register:=next;count:=!count+1;()) done
? print_string "Finished";;

Example.
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let Permutations = map fst [

<<Perm(Nil,Nil)>>;
<<Perm(11,Cons(x2,12))<-Pick(11,x2,13) ;Perm(13,12)>>;
<<Pick(Cons(x,1),x,1)>>;
<<Pick(Cons(x,1l),y,Cons(x,1’))<-Pick(1l,y,1’)>>];;
Prolog_loop Permutations <<?Perm(Comns(A,Cons(B,Cons(C,Nil))),p)>>;;
Solution 1

p = Cons(A,Cons(B,Cons(C,Nil)))

Solution 2

p = Cons(A,Cons(C,Cons(B,Nil)))

Solution 3

p = Cons(B,Cons(A,Cons(C,Nil)))

Solution 4

p = Cons(B,Cons(C,Cons(A,Nil)))

Solution 5

p = Cons(C,Cons(A,Cons(B,Nil)))

Solution 6

p = Cons(C,Cons(B,Cons(A,Nil)))

An example of progressive use of the coroutine:

next_perm : (resumption -> (term & resumption))

let next_perm = resume Permutations;;

let goal,dict = <<?Perm(Cons(A,Cons(B,Cons(C,Nil))),p)>>;;
let present = unparse_answer dict;;

let RO = start Permutations goal;;

let P1,R1 = next_perm RO;;

present P1l;; ==> p = Cons(A,Cons(B,Cons(C,Nil)))
let P2,R2 = next_perm R1;;
present P2;; ==> p = Cons(A,Cons(C,Cons(B,Nil)))

But we have still other reasons for non-termination. For instance, consider the simple example
of transitive-reflexive closure:

let Ancestori, _ <<Ancestor(x,x)>>
and Ancestor2,_ = <<Ancestor(g,s)<-Ancestor(g,f);Father(f,s)>>;;

Now
Prolog_1st [Ancestorl;Ancestor2] <<?Ancestor(John,John)>>;;
succeeds, whereas
Prolog_1st [Ancestor2;Ancestorl] <<?Ancestor(John,John)>>;;

loops in the “recursive call” to Ancestor.

The problem lies here in the Prolog choice of iterating “vertically” (recursive calls by resolution)
before iterating “horizontally” (non-deterministic choice of a clause in the theory). In other words,
Prolog has a depth-first search, as opposed to a breadth-first search. This is its main cause of
incompleteness.
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Remark. The Prolog interpreter described above is more general than usual Prolog implemen-
tations. A clause is here any signature jQ ;- P1;P2 ... Pnj; where Q and the Pi’s are general
first-order terms. Thus there is no distinction between predicate and function symbols. Also these
terms may be reduced to a single variable. For instance :

let Kax,_ = <<F(a,F(b,a))>>
and Sax,_ <«<F(F(a,F(b,c)),F(F(a,b),F(a,c)))>>
and MP,_ = <<b<-F(a,b);a>>;;

Note that Kax is the CAML type of K, Sax is the type of S, and MP is the type of application.
You may think of F as the function type-formation operator “-;”, or as (intuitionistic) logical
implication. Thus, the above clauses specify minimal logic:

(* Min_Logic : theory *)
let Min_Logic = [Kax;Sax;MP];;

Let us use our Prolog interpreter to find a (proof) term of type (¢ — a) for some (type) term
a:

Prolog_1st Min_Logic <<7?F(a,a)>>;;
Solution found
a = F(v2,F(v1,v2))

However, the simple-minded depth-first strategy of Prolog loops when asking for a term of
polymorphic type (a — a), that is, “Skolemizing” the variable a into a constant A :

Prolog_1st Min_Logic <<7F(A,A)>>;;
. loops ...

Acknowledgement. The Prolog interpreter routines are based on earlier programs of Ascander
Suarez.

3.2 Definite clauses theorem proving

This section explains a complete theorem prover for definite clauses, and gives a general theorem
explaining the underlying theory. We assume known the Prolog abstract and concrete syntax.

3.2.1 Looking for satisfiability of a goal

The problem we have been encountering with the dependency on the order of the clauses in the
theory is a simple problem of search strategy: we do not have a fair scheduler for the various
non-deterministic choices.

It is not immediate how to derive a fair scheduler from the above algorithms, which are really
geared to depth-first search. For instance, if we exchange the role of first and last in the next_state
function above, we would be able to get a proof of:

Prolog_1st [Ancestor2;Ancestorl] <<7Ancestor(John,John)>>

since the Father subgoal fails before the recursion loops, allowing the clause Ancestor1 to conclude.
But this does not give us a fair scheduler strategy, and we would still loop on goals such as:
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Prolog_1st Min_Logic <<7F(A,A)>>;;

So we reconsider the problem, and we add a stack of goals, in order to implement a fair scheduler
using a level-saturation stategy: The scheduler will consider all non-deterministic choices for the
goals of level n, before considering the goals of level n + 1, which are kept in a separate stack.

(x Takes a theory and a list of goals, and returns its 1st answer *)
(* schedule : theory -> clause -> term *)
let schedule theory goal = schrec [] [goall

where rec schrec stack function
[1 -> if stack = [] then failwith "No solution" else schrec [] stack
| (g::goals) -> match g with
(answer, [1,_) -> answer
| _ -> schrec (it_list (fun q cl -> ((resolve cl g)::q) 7 q) stack theory) goals

b

(* Remark that now it would be trivial to make a coroutine giving the successive
solutions, by returning as result a triple (answer,goals,stack) *)

let search_solution theory (conjecture,dict) =
let answer = schedule theory conjecture

in (message "Solution found";unparse_answer dict answer)
? (message "No solution");;

(* Example
search_solution [Ancestor2;Ancestorl] <<?Ancestor(John,John)>>;;
Solution found

And now we may check proofs in Min_Logic:
search_solution Min_Logic <<7F(A,A)>>;;
Solution found

So we have found a proof of F(A,A). Unfortunately, the “proof” has vanished: it existed only
temporarily in the control structure of the scheduler. This is rather frustrating. Let us now build
a real proof-generator, as a trace of the scheduler. This trace is represented as a list of integers
(the indexes of the clauses in the theory).

3.2.2 Proof construction

type trace == num list;;

(* build_proof : theory -> clause -> (trace & term) *)
let build_proof theory goal = buildrec [] [[],goall
where rec buildrec stack = fun
[J -> if stack = [] then failwith "No solution" else buildrec [] stack
| (proof::goals) -> match proof with
(trace,answer,[],_) -> trace,answer
| (trace,g) ->
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let stack_goals (n,q) cl = n+1,(((n::trace,resolve cl g)::q) 7 q) in
buildrec (snd (it_list stack_goals (1,stack) theory)) goals;;

Example :
let goal,_ = <<?F(A,A)>> in build_proof Min_Logic goal;;
[1; 1; 2; 3; 3],Term ("Answer",[]) : (trace & term)

The trace obtained in case of success is the (reverse) polish notation of a proof tree. In order to
construct this proof tree, we have to look up the arities of the various clauses in the current theory.

(* arity : theory -> num list *)
let arity = map (fun (_,hyps,_) -> length hyps);;

Example
arity Min_Logic = [0; 0; 2]

In order to give a tree structure to our proofs, we must associate names with the clauses of a
theory.

type alphabet == string list;;

Now we build a proof by parsing the trace, given the logic. In general we shall return a list of
proofs, one for each sub-goal.

(x parse_proof : alphabet -> theory -> trace -> tree list *)
let parse_proof operators theory trace =
let arit = nth (arity theory)
and oper = nth operators in parserec [] trace
where rec parserec stack = fun
[T -> stack
| (n::rest) -> let ar = arit n and ope = oper n

in parserec (Tree(ope,rev sons)::trees) rest
where sons,trees = let transfer (1,h::t) = h::1,t in
iterate transfer ar ([],stack);;

Example
parse_proof ["K";"S";"A"] Min_Logic [1; 1; 2; 3; 31;;
==> [Tree ("A",[Tree ("A",[Tree ("S",[1); Tree ("K",[1)1); Tree ("K",[1)1)]

We now combine an alphabet and a theory into a logic.
type logic == (string & clause) list;;
let mk_logic = map (fun (name,cl,_) -> name,cl);;

(* Example *)

let Combinatory_Logic = mk_logic [
"K",<<F(a,F(b,a))>>;
"S",<<F(F(a,F(b,c)),F(F(a,b),F(a,c)))>>;
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"A", <<b<-F(a,b);a>>];;
(*x pretty : tree -> void 1is the pretty-print of the proofs in logic *)

let search_proof logic pretty (conjecture,dict) =
let operators,theory = split logic in
let trace,answer = build_proof theory conjecture
in (unparse_answer dict answer;
let proofs = parse_proof operators theory trace

and _,thms,_ = conjecture
and print_result (proof,thm) =
(pretty proof;print_string " : ";unparse dict thm)

in map print_result (combine(proofs,thms));
print_newline()) ? (message "No proof");;

(* Example: the standard pretty-print of Combinatory Logic *)
let print_combinator tree = print_string (mkopen [] tree)
where rec mkopen stack = function
Tree("A", [f;x]) -> mkopen (x::stack) f
| Tree(c,[]) -> ¢ =~ list_it (funt s => s = " " ~ (mkclose t)) stack ""
and mkclose = function
Tree("A", [£;x]) -> "(" ~ (mkopen [x] £f) = ")"
| Tree(c,[]1) -> c;;

Example:
search_proof Combinatory_Logic print_combinator <<?F(A,A)>>;;
S KK : F(A,R)

3.2.3 Resolution theory and Horn clauses

Let us pause a moment to explain the generality of the method. The initial motivation came from
considering a complete proof procedure for Horn sentences, i.e. for first-order sentences which can
be transformed, through Skolemization (removal of existential quantifiers by introduction of new
function symbols) and normalization to conjunctive normal form, to a conjunction of conditional
propositions:

QINQN..NQy,=>P

where the P’s and @Q;’s are atomic formulas of the form: R(y,...,t,) where R is a predicate (i.e. a
relation symbol) and the t;’s are terms. We also allow the case where P is False. The two cases
obviously correspond to respectively our definite clauses and our goal clauses.

The inference rule that we have programmed so far is what is known in resolution theory as
“selected negative input resolution”, a complete proof method for Horn clauses. Thus, if some
proof of a given goal exists, we are sure to be able to find such a proof using a finite number of
applications of the inference rule. Our fair scheduler strategy ensures that we properly enumerate
deterministically the search space of such a non-deterministic inference rule. Of course, this does
not preclude the fact that we may loop indefinitely in the search of a proof for an unsatisfiable
goal, since Horn clauses satisfiability is an undecidable problem.

The theory of resolution applies more generally to first-order logic. In the general case, a clause
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is a (finite) set of literals, i.e. of atomic formulas given with a sign. We write C = C, « C_.
The resolution rule is an algorithm deriving a clause from two clauses, as follows. Let C' and C’
be two clauses, assumed to be renamed so that they have no variable in commun. Let P C Cy
and N/ C C_ be two non-empty sets of atomic formulas such that P U A’ is unifiable, with
principal unifier 0. Let D, = o(C, U(Cy —P)), and D_ = o(C_ U (C.L — N")). We say that
D = Dy < D_ follows from C and C’ by resolution [24].

Using Skolemization and conjunctive-normalization, any first-order formula can be transformed
into a (finite) set of clauses, and this transformation respects satisfiability [2, 26]. Satisfiability
(i.e. truth in some first-order structure) is equivalent to satisfiability in a Herbrand structure
(whose domain is the set of ground terms and where the function symbols are kept un-interpreted).
Herbrand structures are characterized by the set of ground atomic formulas which are interpreted
as true. By Herbrand’s theorem [14], a set of clauses is unsatisfiable iff some finite set of its
ground instances is unsatisfiable. This result may be interpreted as a completeness theorem for the
resolution rule.

Applications of the resolution rule may thus be interpreted semantically as exploring the search-
space of Herbrand interpretations [11]. An unsatisfiable set of clauses will lead to discovery of a
refutation after a finite number of applications of the resolution rule. A satisfiable set of clauses
may lead to non-termination of the procedure. Such a refutation procedure may of course be turned
into a semi-decision procedure for validity in an arbitrary first-order theory 7T: in order to show
that T+ P, show equivalently that T' A =P is unsatisfiable.

Many refinements of the resolution rule have been studied [2, 23, 26]. Usually full resolution
is replaced by two simpler rules: binary resolution and binary factoring. Several restrictions of
binary resolution are known to be complete. For instance, one may impose one of the clauses to
consist only of positive (resp. negative) literals [25]. For Horn clauses, this corresponds to positive
unit resolution (resp. negative input resolution). It can be shown that factoring (i.e. merging by
unification of literals with the same sign) is not necessary for Horn clauses [13].

Finally, it is usually sufficient to replace clauses by ordered sequences of literals, leading to
complete strategies of selected resolution [20, 21]. This theory validates the procedure called above
search_solution as a correct implementation of “selected negative input” resolution. (The Prolog
depth-first strategy being an incorrect implementation of the same).

Over general clauses, neither input nor unit resolution is complete. Actually, a set of clauses is
refutable by input resolution iff it is refutable by unit resolution iff it is renamable into a set of Horn
clauses [22]. Semantically, this can be explained by a very strong closure property of Horn clauses:
the intersection of two Herbrand models is itself a model. Thus a set of Horn clauses possesses
a minimum Herbrand model. Horn clauses axiomatizations may therefore be seen as systems of
inductive definitions, defining a standard interpretation of the predicate symbols over free term
structures [8, 1]. Algebraists say that Horn axiomatizations define quasi-varieties, whose class of
first-order models forms a category admitting an initial object [15, 9].

Note that, at the propositional level, the distinction between general and Horn satisfiability is
quite spectacular from the complexity classes of the two problems: NP-complete for the general
case [5], linear for the Horn case [7].

All these phenomena reflect the restriction of expressiveness of Horn sentences with respect to
full predicate logic: the non-Horn clause P(A) vV P(B) has incompatible Herbrand models {P(A)}
and {P(B)}. And the query ?P(z) over such an axiomatization can only lead to a non-deterministic
answer t = AV x = B.
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3.2.4 Polymorphic type-checking

However, all these considerations are to a great extent irrelevant to what we are actually doing.
In our term-manipulation algorithms above, no distinction was made between predicate symbols
and function symbols, and between term and atomic formula. We even accepted atomic formulas
reduced to a variable, as in clause A of Combinatory_Logic. The essence of the computation was
to search for a proof tree, with nodes labeled by polymorphic operators. That is, we may regard
each definite clause

C: QNUANQAN..NANQy,=>P

as declaring an operator C of arity n with its signature: Q; is the type of its ¢-th argument, and
P is the type of its result. The operator is polymorphic in that free variables may appear in the
types @Q; and P. This polymorphism is parametric in Reynolds’ terminology, as opposed to ad
hoc polymorphism (overloading). This means that clauses are really schemas, denoting a family of
operators, whose types are all instances of the clause. Type-checking is explained simply in terms
of instantiation.

Let ¥ be the set of clauses in the current theory. We define what it means for a tree 7" to be
consistently typed of type 7 in theory ¥, which we write ¥ =T : 7. The definition is by induction
on the size of T. Assume that C = P « Q1;Q32;...Q, is in X, and that for some substitution o
we have ¥ =T; : 0(Q;) for all 1 <i < n. Then we get ¥ |= C(Ty,...,T,,) : o(P).

Remark that we have now two levels of term structure: terms such as P formed with the original
functor alphabet ® and variables, and ground terms such as T formed from the clause alphabet
Y. We look at the ®-terms as types of the X-trees. A ¥ theorem is a ® term P which possesses a
Y-proof T, ie. L =T : P.

When the clauses of ¥ are (schematic) rules defining some logical inference system, these notions
correspond to the traditional ones. The point of view of considering propositions as types is not
new [16], and it was well-known that combinatory logic is the algebra of proofs of minimal logic
[6]. But our paradigm is completely general over a very simple formalism which encompasses all
Horn-definable theories. And the Prolog point of view corresponds to generalizing proof-checking
to proof synthesis. More generally, we have:

The Principal Type Theorem. Let T be a Y-proof: ¥ =T : M. Then T possesses a principal
type 7, such that ¥ |=T : 7, and for every M such that ¥ =T : M, we have 7 < M.

Proof. Simple induction, using the properties of the principal unifier. Let T = C(T1,...,T),),
with ¥ |= T : M. This means that C : P «— Q1;Q2;...Qn is in ¥, and that M = o(P), with
Y E T; : 0(Q;). By the induction hypothesis, ¥ | T; : 7;, with 7; principal. Thus for some p;
we have 0(Q;) = pi(m). We may assume without loss of generality that the 7; are renamed so
that they have no variable in common, and no variable in common with clause C'. Thus the tuples
< ., Q4y... > and < ..., T;, ... > are simultaneously unifiable, and their principal unifier 6 gives a
tuple < ..., N;,... > such that V; = 6(Q;) = 6(7;). The construction defines 7 = 6(P) having
the required properties.

Now we can explain our proof generator as follows. Let ?Q1;...; @, be a query (goal clause). We
say that this query is satisfiable iff there exist proofs T; such that ¥ |= T; : P, with P, = o(Q;)
for some substitution o. In that case, consider the principal types 7; of each Tj, expressed with
distinct variables not occurring in the @);’s. Let 8 be the principal unifier of tuples < ..., 7;,... > and
< ., Qiy ... >. Then O(Answer(...,xj,...)) is a principal answer to the query, where < ..., z;,... > is
the tuple of all variables occurring in the @;’s. The procedure search_solution returns a principal
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answer if the query is satisfiable. The procedure search_proof returns the corresponding proof
tuple < ...,T;,... > as well. The coroutine extension of these procedures would progressively
generate all principal answers.

Remark. This point of view of proof trees as operator terms over a polymorphic definite clause
alphabet may be extended to general clauses. However, a non-Horn clause must then be interpreted
as the type specification of a non-deterministic operator.
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Chapter 4

Termination

This chapter deals with methods for proving the finiteness of sequences of structures such as trees
and terms, and thus for proving the termination of computations seen as term rewriting. This
version is very preliminary, and consists of notes written by J. J. Lévy.

4.1 Kruskal’s theorem

4.1.1 The tree theorem

The following conjecture of Varojny has been proved by Kruskal [5]. Let ¥ be a finite set of labels
and T be trees labeled by elements of ¥. The embedding relation on T x T is the minimum
quasi-ordering satisfying:

e t < f(..yt,...) where f isin ¥ and ¢ in T,
e f(.y..) < f(.est,...), where t is in T,
e f(..t,...) < f(.yu,...) if t <u where ¢t and u are in T.

Then in any infinite sequence of terms {¢1,%,...}, there are at least two integers ¢ and j such
that ¢; <t; and 7 < j.

Proof: not very constructive. Consider a minimal counterexample {u1,ug, ...} such that the size of
u; is minimal for every i. We start with two remarks.

First, in any infinite sequence {wi,ws, ...} of direct subtrees of the u;’s, there are 7 and j such
that ¢ < j and w; < wj. Thisis proved as follows. Consider the initial sequence {u1,u, ..., w1, ws, ..}
where we just changed uy by its corresponding subtree w; and continued with wsy, ws, .... It cannot
be a counterexample since the size of w; is strictly less than the size of ui. Which elements are
related? It can’t be u; < u; for ¢ < j. It cannot either be u; < wj, since w; < u; for the u; of which
w; is a subtree and then u; < wu; for 2 < I. The only possible solution is w; < w; for some ¢ and j
such that 7 < j.

Second, note that in any of these sequences {wy, ws, ...} of subtrees, there is an infinite ascending
subsequence for <. We saw that w; < w; for some ¢ and j such that i < j. We go on with w;
trying to make an ascending chain. Either this process is infinite and we are done. Either, it stops
at wg and we iterate the argument on the sequence following wy. Again either there is an infinite
ascending chain in it and we are done. Or again we are stuck at some maximal point. And the
iteration goes on ... If the iteration does not terminates, it means that we found an infinite number
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4.1. KRUSKAL’S THEOREM 56

of maximal trees w.r.t to their followers. But these form an infinite subsequence of {wy,ws,...}
and there must be two related trees. So the iteration stops and there is an infinite ascending chain
subsequence of {wy,ws, ...}

Now, since the set 3 of labels is finite, there is an infinite subsequence of {uj,us, ...} labelled
at the top level with the same f. Let {vi,vs,...} be this subsequence. We claim that v; < v; for
some ¢ and j such that 7 < j. Which will lead to a contradiction.

Consider the number n; of direct subtrees of the v;. Either there is a an infinite subsequence of
n; with the same value (say n), or there is an an infinite subsequence strictly increasing (starting
with say n). In both cases we focus on this value n. Let {w;, w2, ...} be the corresponding infinite
subsequence of {v1,vs,...}. Consider the sequence of the leftmost direct substrees. It contains an
infinite ascending subsequence w.r.t. <. We can iterate the argument on the second subtree from
the left until n. Finally we get f(t1,ts,...tn) < f(t],t,...t,,). When the chain of the n;’s is strictly
increasing, we have also f(t1,%2,...tn) < f(#],15,...t;,,...tp). Thus the minimum counterexample
{u1,us,...} cannot exist. And the proof is finished.

4.1.2 Formal statement

There is a theory of well quasi orderings defined by Kruskal in which the tree theorem can be
rephrased very simply.

Definition: A well quasi ordering (w.q.0.) is any relation < such that in any infinite sequence
there is an an infinite ascending subsequence.

An example is the set of positive integers with the usual <. Also, an easy corollary is that w.q.o.
are well founded (i.e. without any infinite strictly descending chain). This definition is similar with
the one imposing only two elements to be related in any infinite sequence, that is 2 and j such
that ¢; <; and 7« < j. We did the argument inside the proof of the tree theorem. In short, if we
consider the set of maximal points with respect to their followers, this set must be finite. Otherwise
the corresponding subsequence will violate the definition. Finally, in the case of the free monoid,
Kruskal’s theorem is known as Higman’s.

Theorem: Well quasi orderings are closed under embedding.

This is the formal way of describing the proof previously done on trees, and obviously it is the
same proof. The main remark is that the equality on finite sets forms a w.q.o.

4.1.3 Functionals on orderings

Given an ordering > on a set T', one can look at orderings on T" (cartesian product) or on T'M
(multisets of T'). There are straightforward ones which preserves well-foundedness.

e Lexicographic for the product: (¢1,t3) > (uy,usp) if either ¢; < uj or t; = uy, and tg > us.

e Multiset ordering: {t1,%9,...tn} > {u1,ua,...up} if either the t;’s are equal to the u;’s except
at least one of the u;’s is missing, or one the u; has been replaced by an arbitrary multiset of
strictly less terms of T

It is easy to prove that both these functionals on orderings keep well foundness. For multisets,
it is an easy consequence of Koenig’s lemma.
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4.2 W.q.o. and rewriting systems

In “The Art of Programming” [4] (p.385), the tree theorem is quoted as exercise 8 [M39] and it
is said “This fact may be used to prove that certains algorithms must terminate”. Dershowitz [2]
made the connexion with termination of term rewriting systems. The rest of the notes reports
mainly his paper.

Remark 1: Any partial ordering < on first order terms is well-founded as soon as it verifies the
following two rules:

ot < fot,...)
e ¢ < wimplies f(...,t,...) < f(...,u,...)

Obvious, since it contains the embedding relation. In fact a stronger form of it can be proved using
quasi-orderings with the same two rules.

Remark 2: Any rewriting system such that ¢ > u for every instantiation of a rewrite rule t —
terminates when > is an ordering verifying the rules of the previous remark.

Finding a more contructive form of these so-called “simplification orderings” in [2] will be the
rest of the notes. There could seem to be a trouble with the universal quantifier on instantiations
of each of the (supposed finite) number of rewrite rules. But clearly one can take advantage of the
subexpression rule.

4.3 Recursive path orderings

The following definition of an ordering on first order terms is due to Dershowitz [2] and is a
significant simplification of an ordering named “recusive path ordering” by Plaisted [9, 10]. The
idea is to give weight to functions symbols in ¥. Intuitively, f > ¢ if the function represented by f
is defined in terms of g like in primitive recursive functions. We can assume Y finite and it is clear
then that < is a w.q.0. on X.

Definition 1: Recursive path ordering (r.p.o.). Let t = f(t1,t2,...,t,) and v = g(uy,ug, ..., up).
Then the r.p.o. t > u induced by > is recursively defined by:

e (1) f>gand t>u; for all 4, or
e (2) t; > u or t; = u for some i, or

e (3) f = g and {t1,ts,...tp,} >nm {u1,us,...up} in the multiset ordering induced by > on
multiset of terms.

Now, it is easy to check that r.p.o is a partial ordering. And it is well founded (using remark
1).
Example 1: (Disjunctive normal forms)

b ﬂ(Oz\/ﬂ) - _'04/\_|,8,

b _'(a/\ﬂ)_)_'av_'/@a

e aA(BVy) = (anP)V(aAy),
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(aVB) Ay = (aAy)V(BA7),
o ——a — q,
e aVoa—aq,
e o No— a,

This system can easily be proved to terminate by ordering {—,A,V} from left to right in a
decreasing chain and considering the r.p.o. induced by this relation on terms.

Example 2: (Free Groups, completed by the Knuth-Bendix technique)
o (x*xy)*kz— x*(y*2),
e Uxz — x,
e I(z)xxz — U,

o I(z)* (zxy) =y,

I(U)—-U,

e zxU — z,

. 1((z) -z,

e zxI(z) = U,

o zx(I(x)*xy) — v,

o I(zxy) — I(y) * I(z).

Taking {I,*,U} ordered by > from left to right seems to induce a valid r.p.o. except for
the associativity rule which needs some lexicographic property instead of the multiset ordering.
And the multiset ordering has never been used here. More generally, some function symbols are
recursively defined by lexicographic ordering on their arguments and other behave better with the
multiset way. So given an ordering > on the Cartesian product 7;, or on multisets 7'M, one wants
to associate an ordering O(>) on the corresponding space. As O may depend on the top function
symbol and on special values of arguments, it is easier to take O as being a functional of ordering
on terms to orderings to terms, with the idea that it could be multiset of lexicographic orderings
on the arguments. Also, if we have in mind that O could be the lexicographic ordering, then we

have to ensure that the arguments skept by the lexicographic order should not dominate the left

hand side. So O should verifies:

e Axiom 1: O preserves transitivity,
e Axiom 2: O preserves irreflexivity,
e Axiom 3: If t > u, then f(...,t,...)00(>)f(..., u, ...),

e Axiom 4: O is a continuous function on relations.
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All these axioms are used in the following definition. Axiom 3 makes the definition to be
monotonic on terms. Axiom 4, which may look curious, but which is true of any relation you may
think of, means that we can make an easy inductive definition.

Definition 2: Recursive path ordering (revision 1) [3]. Let t = f(t1, 12, ..., t,) and u = g(ug, ug, ..., up)-
Then the r.p.o. ¢ > u induced by > is recursively defined by:

(1) f > g and t > u; for all ¢, or
(2) t; > u or t; = u for some i, or
(3) f =g, and tO(>)u and t > u; for all i.

We prove that this r.p.o is an ordering containing the embedding relation. First we remark
that the continuity of O allows to define the r.p.o as the union of >, for all n, where ¢t >, u is
recursively defined, when ¢t = f(¢1,t9, ..., tx) and v = g(uq, ug, ..., ug ), by:

(1) f > g and t >,, u; for all 4, or
(2,,) t; >n u or t; = u for some 7, or
(3n) f=g9,t0(>,_1)u, and t >, u; for all 4.

Proof for transitivity. By induction on < n, |t],|ul, |v] >.

If n = 0, the empty relation is transitive. Suppose >,, transitive. Let ¢ >, u >, v. We have 9
cases to consider to prove t >, v.

Case (1, —1,): f > g > h. Thus f > g. Also t >, u >, v; for all . So by induction, t >, v;,
and rule (1,) gives t >, v.

Case (1, — 2,): t >, u; for some u;, and u; >, v or u; = v. So by induction ¢ >, v.

Case (1, —3,): f > g = h. Thus f = h. Also, as in case (1,, — 1), induction gives ¢t >,, v; for
all 7 and again ¢ >, v by rule (1,,).

Case (2, — x): t; >, u or t; = u for some i. Thus by induction ¢; >, v and by rule (2,,) t >, v.

Case (3, —1,): f =g > h. Thus f > h. Then t >, u >, v; for all i. Thus ¢ >, v; by rule (1,,).

Case (3, — 2y): t >, t; for all &. But ¢; >, u or t; = u for some i. This implies ¢ >, u by
induction.

Case (3, —3,): f =g =h. And tO(>,,_1)uO(>,_1)v. By induction on n, we know that >, 1
is transitive. Moreover O preserves transitivity. Thus tO(>,—1)v. Now, t >, u >, v; for all 4.
Thus again by induction ¢ >, v;. So by rule (3,), t >, v.

Proof for irreflexivity. By induction on < n, [t| >.

If n = 0, the empty relation is clearly irreflexive. Suppose by induction that >, is irreflexive,
then we can’t have >, by rule (1,,), since > is irreflexive. If by rule (2,), we have t; >, t. Then, as
t >, t; also by rule (2,), and as transitivity (just proved) is true for >,. Then ¢; >, t;. Impossible
by induction. If ¢ >, ¢t by rule (3,), then tO(>,_1)t. But >, 1 is irreflexive and O is supposed to
preserve irreflexivity. Contradiction.

Proof for well-foundedness. We show that > is a simplification ordering.
First, ¢ > t; for any subexpression t; of t. Second, let ¢ > u. In order to prove f(...,t,...) >
f(-yuy...), we have to use rule (3). And the monotonicity axiom on O gives the solution.

Example 2 (groups revisited). We just take the lexicographic ordering from left to right on .

Example 3 (Ackerman’s function).
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e A(0,z) — ...,
e A(s(x),0) — ...,

o A(s(z),s(y)) — Alz, A(s(x),y))
Example 4:
o fl9(z),y,y) — 9(f(z, z,y)),

4.4 Extended recursive path orderings

The principle of the extension is twofold: first we want to treat accurately our first extension. (In
fact, the careful reader can see that Definition 2 is not an extension of the one in [2].) Second, we
would like to take advantage of some semantic information like some well understood well-founded
ordering such as the traditional order on integers as in the following example:

e fact(sz) — z * fact(p(sx))
e p(sz) — x ...

So the idea will be to capture with ~ and > both the previous order on definitions of symbols
and the natural interpretation (at the semantic level) of the rewrite rules. First, we remark that
the embedding relation induced by a w.q.o. > is the least q.o. such that:

o f..t,...)>1,

o t = f(ti,ta,....tn) > g(ur,ug,...,up) = wif t > wand ty, > u; for 1 <i <pand1 <k <
k2<...<kp§n.

So the embedding with respect to a w.q.0o. > will also be a w.q.o. by the same proof as the
one of the tree theorem. Thus we may restart the r.p.o. definition but w.r.t. to a given >». We
assume that > is a w.q.o., that ~ is its associated equivalence, and > the associated strict partial
ordering. In the following, we will need this tedious list of axioms:

e Axiom 1: O preserves strict orderings,

e Axiom 2: O is a continuous function on relations.

e Axiom 3: FE preserves equivalences,

e Axiom 4: FE is a continuous functions on relations,

e Axiom 5: >= contained in > implies O(>)E(=) contained in O(>),

e Axiom 6: => contained in > implies E(=)O(>) contained in O(>),

e Axiom 7: f(ti,ty,...t,)E(=)g(u1,u, ...up) implies that for all u;, there is ¢; such that t; = u;.
e Axiom 8: f(t1,ta,...tn)E(=)g(u1, u, ...up) implies that for all ¢;, there is u; such that ¢; = uj.

e Axiom 9: If t = f(ti,t2,..tn) ~ u = g(ui,uy,...up) and t;; > u; for 1 < 7 < p and
1<k <..<kp<n, then tO(>)u or tE(=)u.
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e Axiom 10: If ¢ > u, then f(...,¢,..)0(>)f(...,u,...),

e Axiom 11: If t — u, then f(...,t,...) = f(...,u,...),

Definition 3: Recursive path ordering (revision 2) [3].
Let t = f(t1,t,....,tn) and u = g(uy,ug,...,up). Then the r.p.o. ¢ > u induced by > and ~ is
recursively defined by:

(1) t > w and t > u; for all ¢, or

(2) t; > u or t; = u for some i, or

(3) t ~u, and tO(>)u and ¢t > u; for all <.
and

(4) t=wuiff t ¥~ uw and tE(=)u, or t = u.

The following proofs are done by parallel induction on < n, [t|+|u|+ |v| >. Also t;, u; and v; stand
for direct subterms of ¢, u and v.

Proof of transitivity. If n = 0, the empty relation is transitive. Suppose >,_ transitive. Let
t >, u >, v. We have 16 cases to consider to prove t >, v.

Case (1, — 1,): t > u > v. Thus t > v. Also t >, u >, v; for all <. So by induction, ¢t >, v;,
and rule (1,,) gives t >, v.

Case (1, — 2,): t >, u; for some u;, and u; >, v or u; =, v. So by induction one has t >,, v.

Case (1, —3,): t > u ~wv. Thus t > v. Also, as in case (1, — 1), induction gives ¢ >, v; for
all 7 and again ¢ >, v by rule (1,).

Case (1, —4,): t > u~wv. Thust > v. Also t >, u; for all i. Thus by axiom 7, there is v; such
that u; =, v;. By induction ¢ >, v; for all i. And by rule (1,), one gets u >, v.

Case (2, — *,): t; >, u or t; =, u for some i. Thus by induction on left compatibility of =,
one has t; >, v and by t >,, v by rule (2,).

Case (3, — 1,): t ~ u > v. Thus t > v by left compatibility of ~. Then ¢t >, u >, v; for all 7.
Thus ¢t >, v; by rule (1,).

Case (3, — 2,): t >p t; for all . But ¢; >, u or t; =, u for some i. This implies ¢ >, u by
induction.

Case (3, —3p): t ~ u ~v. And tO(>,_1)uO(>n_1)v. By induction on n, we know that >,
is transitive. Moreover O preserves transitivity. Thus tO(>,)v. Now, t >, u >, v; for all .. Thus
again by induction t >, v;.

Case (3, —4,): t @~ u ~ v. Thus u ~ v. Also tO(>,_1)uE(=,-1)v. Thus by axiom 5,
tO(>n—1)v. Also u >, v; for all <. So by induction ¢t >, v; and ¢t >, v by rule (3,).

Case (4, — 1,): t @~ u > v. Thus ¢t > v. Also we have u >, v; for all i. Then ¢t >, v; by
induction. And ¢ >, v by rule (1,).

Case (4, — 2,,): t = u and u; =, v or u; >, v. By axiom 8, one has t; = u; for some j. By
induction u; =, v, and u >, v by rule (2,). Otherwise, still by induction u; >, v, and v > v by
rule (2,).

Case (4, — 3,,): t ¥~ u ~v. Thus t ~v. Also, tE(=,-1)u and uO(>,_1)v. Thus by axiom 6,
tO(>n—1)v. As u >, v; for all 7. Then by induction ¢ > v; for all ¢, and ¢ > v by rule (1,).

Case (4, —4p): t @~ u ~ v. Thus t ~ v. Also tE(=,_1)uE(=,-1)v. Thus as E preserves
transitivity by Axiom 3, tE(=, 1)v. Thus t =, v by rule (4,).
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Proof of reflexivity of =,. Obvious since the equality is contained in =.

Proof of irreflexivity of >,,.

If n = 0, the empty relation is clearly irreflexive. Otherwise:

Case (1,): Impossible since > is irreflexive.

Case (2,): We have t; =, t or t; >, t. Then also, t >, t; by rule (2,,) since t; =, t; by reflexivity
of =,. Thus t; >, t; by transitivity. Impossible by induction.

Case (3,): We have tO(>,_1)t. But >, _; is irreflexive and O is supposed to preserve irreflex-
ivity by axiom 1. Contradiction.

Proof of symmetry of =,. If n = 0, then =( is the standard equality, which is symmetric.
Otherwise we have t ~ u and tE(=,,_1)u. By induction and by use of axiom 3, one gets uE(=,,_1)v.
Also u ~v. And t =, u by rule (2,).

So we have proved that > is a strict ordering and = a compatible equivalence relation. For this, we
needed Axioms (1-8). All of these are rather natural, because they mean preservation of orderings,
equivalences, and left-right compatibility. Trouble is with axioms 7-8. They mean more or less
that F is not far from the standard equality, but it could be permutations of subterms in the case
of the multiset orderings. Axiom 9 reflects the embedding property that we will discuss on. One
has just to remember that in general it is applied with f = g.

Proof of well-foundedness of >.

We show that > is contained in the embedding defined by >. First the subexpression property is
trivially true. Second, suppose that t;, > u; for all 1 < ¢ < p where 1 < ky < ky < ...k, < n and
let t = f(t1,t2,...,tn), v = g(u1,us,...,up), t = u. Then we remark first that ¢ > t;, and t, > u;
for 1 <2 < p. Thus t > u; for all i. Now, we have two cases:

e ¢t > u and ¢t > u follows by rule (1), or
e ¢~ u. But axiom 9 gives t > u by rule (3) or (4).

So, if > is w.q.0., then > is a w.q.0o. Now if > is only a well-founded partial ordering, one can
complete it into a total well-founded ordering which is then a w.q.o. (cf. Birkhoff). Moreover, the
r.p.o defined by such a well founded partial > is contained in the r.p.o induced by the larger .
And we can still make this new order compatible with ~ by only ordering the quotient set induced

by ~. Thus the initial r.p.o. is contained in a w.q.o. which is well-founded. So the initial r.p.o is
well founded.

Proof of monotonicity of > A —.

It is sufficient to prove ¢ > u for all instantiations of the rewrite rules. For this, we need to
show that the intersection of > and — is monotonous. So suppose that t > u and ¢ — u. First
flot, ) = f(.r, u,...) since t — u by axiom 11. Now, we can use rules (1) or (3) by use of axioms
9 and 10 (as done in the well-foundedness proof).

Completeness of the method.

Just take ¢t > u iff ¢ — v and u is a subexpresion of v. Write in short ¢ — C[u]. Then clearly
if — is terminating, then > is well founded. Now, if ¢ — C[u], we have ¢t > u by induction on |u|
and using the rules (1) and (2). Thus in the case of the empty contex C|[], we have ¢t > u if t — u.

Example 5.
e fact(sxz) — x * fact(p(sz))
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e p(sz) = x
° ...
Then we can define ¢ > v and t ~ u by:
e fact(t) = uxwv for all t, u, v,
e fact(t) > p(u) for all ¢, u,
o fact(t) > fact(u) if N =t > u where N is the set of integers.
e fact(t) ~ fact(u) f N Et=u
u for all ¢, and w if the top function symbol is in {*,p, s}.

Clearly, > is well-founded and the system checks the r.p.o. when E and O are the identity functional
on direct subterms orderings.

4.5 Conclusion

The r.p.o. method as described in [2] is very powerful. However it is not clear whether it could be
applied to proving the termination of typed lambda calculus. Furthermore, the method seems to fit
the case of conditional rewriting systems (as for defining the operational semantics of programming
languages having for instance conditional expressions or based on an inductive definition on the
structure of terms). Recently, L. Puel [11, 12] proposed a generalisation by using the notion of
the so-called “unavoidable sets”. Also we should mention that inside the REVE system, there is
another notion of r.p.o. in the manner of Plaisted [6, 7].
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Chapter 5

Equational Reasoning by Canonical
Simplification

We consider in this chapter the theory of equational axiomatizations. The main paradigm is to try
and replace equational non-deterministic deductions by deterministic computations by rewrite rules.
Rewrite rules are oriented equations, and when a set of such rules is confluent (deterministic) and
neetherian (terminating) it may be used as a decision procedure for the corresponding equational
presentation. We present the Knuth-Bendix decision procedure for verifying confluence of a finite
set of first-order term rewrite rules. Finally we explain the Knuth-Bendix procedure for attempting
the completion of a set of rules to a confluent one. Additional material on equational theories and
rewrite rules may be found in the author’s survey [11].

5.1 Equational Logic

We first remark that equational logic inference rules can be considered as definite clauses, and thus
that it is possible in principle to search for equational proofs using the general mechanism.

(* The parser knows that = and * are infix functors x*)
let Equational_Logic = mk_logic [
"Refl",<<x=x>>;
(x  "Sym",<<x=y <~ y=x>>; *)
"Trans",<<x=z <- x=y; y=z>> ];;
let Group_theory = Equational_Logic @ mk_logic [
"Ass", << (xxy) *z=x* (y*z)>>;
"Id1",<<1*x=x>>;
"Tnvl",<<I(x)*x=1>>;
"Congr*" ,<<x*y=u*v <- x=u; y=v>>;
"CongrI",<<I(x)=I(y) <- x=y>>];;
*)

let unparse tr = unparserec tr;print_newline()
where rec unparserec (Tree (ope,sons)) =

print_string ope;

match sons with

65
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>0
| (t :: 1t) -> print_string "(";
unparserec t;
map (fun t -> print_string ",";unparserec t) lt;
print_string ")";;
search_proof Group_theory unparse <<7(A*1)*B=A*B>>;;
==> Trans(Ass,Congr*(Refl,Idl))

This is however an absurdly costly way of doing equational proofs. The next idea is to consider
equations as oriented rewrite rules. We assume familiarity with the basic notions of equational
logic and term rewriting systems [8, 11].

5.2 Term rewriting

(* cross between map and it_list *)

(* num_map : (num -> ’a -> ’b) -> ’a list -> ’b list *)

let num_map f list = let consf (i,1) 1i = (i+1,(f i 1i)::1) in
rev (snd (it_list consf (1,[]) list));;

(* Example

num_map pair ["a";"b";"c"];;

==> [1,"a"; 2,"b"; 3,"c"] : (num # string) list

*)
(* We assume "=" is a binary functor, written concretely in infix notation *)
(* Terms whose main functor is "=" are called equations *)

load_syntax "eq";;

(* Example
<<F(x)=x>> = Term ("=", [Term ("F",[Var 1]); Var 11),["x",1],1 : concrete_term
*)

type term_pair == term & term;;

(* standardizes an equation so its variables are 1,2,... *)
let mk_rule M N = let all_vars = union (vars M) (vars N) in

let k,subst = it_list (fun (i,sigma) v -> (i+1,(v,Var(i))::sigma)) (1,[]1) all_vars

in (k-1, substitute subst M, substitute subst N);;

(* Rewrite rules are structures (n,k,L,R) where L and R are terms, k is the
number of distinct variables in L and R, and n is an identification number x*)

type rule == (num & num & term_pair);;

(* We need to print terms with variables independently from input terms
obtained by parsing. We give arbitrary names v1,v2,... to their variables. *)

let INFIXES = ref ["=";"x"];;

let rec pretty_term = fun

(Var n) -> print_string ("v" ° string_of_num n)
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| (Term (oper,sons)) -> if mem oper !INFIXES then
(pretty_close (hd sons);print_string oper;pretty_close (hd (tl sons)))
else (print_string oper;
match sons with
a->0
| (t :: 1t) -> print_string "(";
pretty_term t;
map (fun t -> print_string ",";pretty_term t) 1t;
print_string ")")
and pretty_close M = match M with
Var(n) -> print_string ("v" ~ string_of_num n)
| Term(oper,sons) -> if mem oper !INFIXES then
(print_string "(";pretty_term M; print_string ")")
else pretty_term M;;

let pretty_rule (k,n,M,N) = print_num k;

print_string " ; pretty_term M; print_string " = "; pretty_term N;

print_newline();;

(* Top-level rewriting. Let eq:L=R be an equation, M be a term such that L<=M.
With sigma = matching L M, we define the image of M by eq as sigma(R) *)
let reduce L M = substitute (matching L M);;

let top_rewrite (L,R) M = reduce L M R;;

(* One step of rewriting in leftmost-outermost strategy *)
(* fails if no redex is found *)
let rewritel (L,R) = rewrec
where rec rewrec M = reduce L M R
? let (Term(f,sons)) = M in Term(f,tryrec sons)
where rec tryrec (son::rest) = (let son’=rewrec son in son’::rest)
? son::tryrec rest;;

(* A more efficient version of can (rewritel (L,R)) for R arbitrary *)
let reducible L = redrec
where rec redrec M = (matching L M;true)
? match M with Term(_,sons) —> exists redrec sons
| _ => false;;

(* Iterating rewritel. Returns a normal form. This may loop forever *)
let rewrite_all eq M = rew_loop M
where rec rew_loop M = rew_loop(rewritel eq M) ? M;;

(* Remark that we are obliged to go back to the top of the term after
each step, since rewriting may create a new redex arbitrary high
above the current one. Consider for instance eq = <<F(x,x)=x>>, and
M = <<F(G(G(...(G(A))...)),G(G(...(G(F(A,A)))...)))>>. If the left-hand
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side L of eq is linear, this phenomenon cannot occur, and a new redex may
only occur above a reduct at a distance bounded by its height. *)

(* Let us now consider a set of rewrite rules *)
type rules == rule list;;

let pretty_rules = map pretty_rule;;

(* mk_rules : concrete_term list -> rules *)
let mk_rules = num_map (fun n (Term("=",[1;r]),_,k) -> (n,k,1,r));;

(* Example
let Group_rules = mk_rules [
<LUkx=x>>;

<<TI (x)*x=U>>;
<L (x*y) k*Z=x% (y*z) >>:] M
*)

(* mreduce : rules -> term -> term %)
let mreduce rules M = let redex (_,_,L,R) = reduce L M R in
try_find redex rules;;

(* One step of rewriting in leftmost-outermost strategy, with multiple rules *)
(* fails if no redex is found *)
(* mrewritel : rules -> term -> term x*)
let mrewritel rules = rewrec
where rec rewrec M = mreduce rules M

? let (Term(f,sons)) = M in Term(f,tryrec sons)

where rec tryrec (son::rest) = (let son’=rewrec son in son’::rest)

? son::tryrec rest;;

(* Iterating rewritel. Returns a normal form. May loop forever *)
(* mrewrite_all : rules -> term -> term *)

let mrewrite_all rules M = rew_loop M

where rec rew_loop M = rew_loop(mrewritel rules M) 7 M;;

(*

pretty_term (mrewrite_all Group_rules M where M,_=<<Ax(I(B)*B)>>);;
==> A*U

*)

(* Inside-out rewriting *)
(* mrewriteio : rules -> term -> term x*)
let mrewriteio rules = rewriorec
where rec rewriorec = function
Term(f,sons) -> let M = Term(f,map rewriorec sons) in
(let N=mreduce rules M in rewriorec N)7? M
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| x -> x;;

(* Remark that mrewriteio may loop while mrewrite_all terminates.

For instance, comsider F(A) with [F(x)=B;A=A].

Also, mrewrite_all may loop while other sequences of rewriting terminates.
For instance, comnsider F(A,B) with [A=A;B=C;F(x,C)=D] *)

5.3 Local confluence

We recall Newman’s lemma:
Newman’s lemma. A Neeterian relation is confluent iff it is locally confluent [16].
We check local confluence with critical pairs analysis, along the lines of the Knuth-Bendix

method [14, §].

5.3.1 Superposition

(x A1l (u,sig) such that N/u (&var) unifies with M, with principal unifier sig *)
(* super : term -> term -> (num list & subst) list *)
let super M = suprec
where rec suprec N =
let insides = match N with
Term(_,sons) -> (fst(it_list collate ([],1) sons)
where collate (pairs,n) son =
(pairs @ map (fun (u,sig) -> (n::u,sig)) (suprec somn)),n+1)

| - > [
in ((let (Term(_))=N and sig = unify(M,N) in ([],sig)::insides) ? insides);;
(* Ex
let M,_ = <<F(A,B)>>
and N,_ = <<H(F(4,x),F(x,y))>> in super M N;;

==> [[1],[2,Term ("B",[1)]; x <- B
[2],[2,Term ("A",[1); 1,Term ("B",[1)]] x<-A y<-B
*)

(x A1l (u,sig), u&[], such that N/u unifies with M x)
(* super_strict : term -> term -> (num list & subst) list *)
let super_strict M = function
Term(_,sons) -> (fst(it_list collate ([],1) sons)
where collate (pairs,n) son =
(pairs @ map (fun (u,sig) -> (n::u,sig)) (super M son)),n+1)
I - => [;;

5.3.2 Critical pairs

(* Critical pairs of L1=R1 with L2=R2 x*)
(* critical_pairs : term_pair -> term_pair -> term_pair list *)
let critical_pairs (L1,R1) (L2,R2) =
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let mk_pair (u,sig) = substitute sig (replace L2 u R1),substitute sig R2
in map mk_pair (super L1 L2);;

(* Strict critical pairs of L1=R1 with L2=R2 x*)

(* strict_critical_pairs : term_pair -> term_pair -> term_pair list *)
let strict_critical_pairs (L1,R1) (L2,R2) =

let mk_pair (u,sig) = substitute sig (replace L2 u R1),substitute sig R2
in map mk_pair (super_strict L1 L2);;

(* A1l critical pairs of eql with eq2 *)
let mutual_critical_pairs eql eq2 =
(strict_critical_pairs eql eq2) @ (critical_pairs eq2 eql);;

(* rename : num -> term_pair -> term_pair *)
let rename n = distr_pair (instance n);;

(* Returns all critical pairs between a rule and a list of rules x)
(* all_critical_pairs : rule -> rules -> (num & term_pair) list *)
let all_critical_pairs (name,n,eq) rules =
let self = strict_critical_pairs eq (rename n eq) in
let init = if null self then [] else [name,self]
in list_it crit rules init
where crit (name’,_,eql) list =
let eq’ = rename n eql in
let pairs = (mutual_critical_pairs eq eq’) in
if null pairs then list else (name’,pairs)::list;;

(* all_critical_pairs (4,n,l,r) Group_rules
where (Term("=",[1;r]),_,n)=<<x*U=x>> =
[(1, [Term("U", [1),Term("U", [1)1);
(2, [Term("U", [1),Term("I", [Term("U", [1)])1);
@3,
[Term("*", [Var(4); Var(2)]),
Term("*", [Var(4); Term("*", [Term("U",[1); Var(2)1)1);
Term("*x", [Var(4); Term("x",[Var(3); Term("U",[1)1)1),
Term("*", [Var(4); Var(3)]1)1)]
*)
(*x Generate failure message *)
let unresolved (M,N,n1,n2) =
pretty_term M; print_string " = ";pretty_term N;print_newline();
let R1 = string_of_num nil
and R2 = string_of_num n2 in
failwith "Irreducible consequence of " ~ R1 = " & " =~ R2;;

5.3.3 Local confluence

(* locally_confluent : rules -> bool *) (* Answers true or fails *)
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let locally_confluent rules =
let normal_form = mrewrite_all rules in
let enter_rule previous rule =

71

(for_all check_criticals (all_critical_pairs rule previous);rule::previous)

where check_criticals (n,pairs) =
for_all check_pair pairs
where check_pair (M,N) =

let M’ = normal_form M and N’

normal_form N in

(M’=N’) or unresolved(M’,N’,n,fst rule)

in (it_list enter_rule [] rules;true);;

(* Example
locally_confluent Group_rules;;
vl = I(v2)*(v2*vl)

Evaluation Failed: Irreducible consequence of 2 & 3

Another example:

let Twicel = mk_rules [<<G(x)=F(F(x))>>]
and Twice2 = mk_rules [K<F(F(x))=G(x)>>];;
locally_confluent Twicel;;

==> true

locally_confluent TwiceZ2;;

==> F(G(v1)) = G(F(v1))

Evaluation Failed: Irreducible consequence of 1 & 1

let Twice2_completed = mk_rules [<K<F(F(x))=G(x)>>;<<F(G(x))=G(F(x))>>];;

locally_confluent Twice2_completed;;
==> true (0.11s)

It is also possible to complete Group_rules to a locally confluent set of rules:

let Group_completed = mk_rules [
<LKU*x=x>>;
<<I(x)*x=U>>;
<< (x*y) *z=x* (y*z)>>;
<<Lx*xU=x>>;
<<x*I(x)=U>>;
<KI(I(x))=x>>;
<<I(U)=U>>;
<<x* (I(x) *y)=y>>;
<KLI(x)*(x*xy)=y>>;
<<I (x*y)=I(y)*I(x)>>];;

mrewrite_all Group_completed M where M,_=<<(A*B)*I(B)>>;;

==> Term ("A",[]) : term (0.06s)

locally_confluent Group_completed;;
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==> true

We shall see below how to generate such complete sets mechanically.

5.4 Checking termination

The test of local confluence above was guaranteed to terminate only when the given set of rules is
Noetherian. In that case, it provides a decision procedure for confluence, using Newman’s lemma.
Let us now show how one can check termination mechanically, using the recursive path ordering
algorithm. Of course, this gives a sufficient but non necessary criterion for termination, the problem

being undecidable in general. The theoretical justification of the algorithms below was given in the
last chapter.

(* Recursive path ordering, after N. Dershowitz, S. Kamin and J.J. Levy *)
type extension = Multiset | Lexico;;
type ordering = Greater | Equal | NotGE;;

let ge_ord order pair = not (order pair = NotGE)

and gt_ord order pair = (order pair = Greater)

(order pair = Equal);;

and eq_ord order pair

let rem_eq equiv = remrec where rec remrec x = fun
[J -> fail
| (y::1) => if equiv (x,y) then 1 else y::remrec x 1;;

let diff_eq equiv (x,y) =
let rec diffrec (x,y) = match x with
0 -> x,y)
| (h::t) -> diffrec (t,rem_eq equiv h y)
? (h::x?,y’) where (x’,y’) = diffrec (t,y)
in let lx=length x and ly=length y in
diffrec(if 1x>1ly then (y,x) else (x,y));;

(* multiset extension of order *)
let mult_ext order (Term(_,sonsl),Term(_,sons2)) =
match diff_eq (eq_ord order) (somnsl,sons2) with
([1,01) -> Equal
| (11,12) —> if for_all (fun N -> exists (fun M -> order (M,N) = Greater) 11) 12
then Greater else NotGE;;

(* lexicographic extension of order *)
let lex_ext order (M,N) = let (Term(_,sons1))=M and (Term(_,sons2))=N
in lexrec(sonsl,sons2) where rec lexrec = fun
(d , [0 -> Equal
| ([T , - ) —> NotGE
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| ¢ _, [1) -> Greater
| ((x1::11),(x2::12)) -> match order (x1,x2) with
Greater -> if for_all (fun N’ -> gt_ord order (M,N’)) 12
then Greater else NotGE
| Equal -> lexrec (11,12)
| NotGE -> if exists (fun M’ -> ge_ord order (M’,N)) 11
then Greater else NotGE;;

(* recursive path ordering *)
(x rpo : (string -> string -> ordering) -> (string -> extension) -> term_pair -> ordering *)
let rpo op_order ext = rporec where rec rporec (M,N) = match M with
Var(m) -> if N=Var(m) then Equal else NotGE
| Term(opl,sonsl) -> match N with
Var(n) -> if occurs n M then Greater else NotGE
| Term(op2,sons2) -> match (op_order opl op2) with
Greater -> if for_all (fun N’ -> gt_ord rporec (M,N’)) sons2
then Greater else NotGE
| Equal -> (match (ext opl) with
Multiset —> mult_ext
| Lexico -> lex_ext) rporec (M,N)
| NotGE -> if exists (fun M’ -> ge_ord rporec (M’,N)) sonsl
then Greater else NotGE;;

(* checking a set of rules is Noetherian with recursive path ordering method *)
let rpo_noetherian op_order ext =
for_all (fun (_,_,pair) -> ((rpo op_order ext pair) = Greater) or
(let M,N=pair in pretty_term M; print_string " not > ";
pretty_term N; print_newline(); fail));;

(x Exemple

(x I > % >TU %)

let Group_order opl op2 =
if opl=op2 then Equal
if (op1="I") or (op2="U") then Greater
else NotGE;;

rpo_noetherian Group_order (K Lexico) Group_completed;;
==> true (0.05s)

let Disj_nf_rules = mk_rules [

<<Not(Not(p)) = p>>;
<<Not(0r(p,q)) = And(Not(p),Not(q))>>;
<<Not(And(p,q)) = Or(Not(p),Not(q))>>;
<<And(p,0r(q,r)) = Or(And(p,q),And(p,r))>>;

<<And(0r(q,r),p) = Or(And(q,p),And(r,p))>>]

(*x Not > And > Or *)
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and Disj_nf_order opl op2 =
if opl=op2 then Equal
if (op1l="Not") or (op2="0r") then Greater
else NotGE;;

rpo_noetherian Disj_nf_order (K Multiset) Disj_nf_rules;;
==> true (0.10s)

Note that the Lexico extension would work as well for this example.

5.5 Knuth-Bendix Completion

We present in this section the Knuth-Bendix completion procedure. The idea is to use the failure
cases of local confluence as interesting derived lemmas. These equations are added as supplementary
rewrite rules in the hope to complete the non-confluent system to a confluent one.

5.5.1 Completion without deletions

(* checks that rules are numbered in sequence and returns their number *)
let check_rules = it_list (fun n (k,_) —-> if k=n+1 then k
else failwith "Rule numbers not in sequence") 0;;

(* Generate failure message *)

let non_orientable (M,N) =
pretty_term M; print_string " = "; pretty_term N; print_newline();
"Non orientable equation";;

(* rules is the current partial complete set, n is its length, the pair
(k,1) with k<=1<=n gives the last critical pairs computed.
Next argument is list of queued equations *)
(* completion : (term_pair -> bool) -> num -> rules -> (num & num) -> term_pair list -> rule
let completion greater = completerec
where rec completerec n rules =
let normal_form = mrewrite_all rules
and get_rule k = assoc k rules in process
where rec process (k,1) = processkl
where rec processkl = fun
[T -> if k<1 then next_criticals (k+1,1)
if 1<n then next_criticals (1,1+1)
else rules (* successful completion *)
| ((M,N)::crits) -> let M’ = normal_form M and N’ = normal_form N in
if M’=N’ then processkl crits
else let left,right =
if greater(M’,N’) then (M’,N’)
if greater(N’,M’) then (N’,M’)
else failwith (non_orientable(M’,N’)) (* completion fails *)
in let new_rule = n+l,mk_rule left right
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in pretty_rule new_rule;
completerec (n+l1) (new_rule::rules) (k,l) crits
and next_criticals (k,1) =
let pairs = if k=1 then let (v,eq) = get_rule k in
strict_critical_pairs eq (rename v eq)
else let (v,ek) = get_rule k and (_,el) = get_rule 1
in mutual_critical_pairs ek (rename v el)
in process (k,1l) pairs;;

let pretty_complete completed_rules =
print_newline();
message "Canonical set found :";
pretty_rules (rev completed_rules);();;

(* complete_rules is assumed locally confluent, and checked Noetherian with
ordering greater, rules is any list of rules %)
let complete greater complete_rules rules =
let n = check_rules complete_rules
and egs = map (fun (_,_,pair) -> pair) rules in
let completed_rules = completion greater n complete_rules (n,n) egs in
pretty_complete completed_rules;;

(* Example

let greater pair = (rpo Group_order (K Lexico) pair = Greater) in
complete greater [] Group_rules;; ==>
1 : Uxvl = vi

2 : I(vDx*vl =10

3 1 (v1*xv2)*v3 = vix(v2*v3)

4 : I(v)*(vi*xv2) = v2

5 : I(UWx*vl = vi1

6 : I(I(v1))*U = vi

7 : I(vi*xv2)*(vi*x(v2*v3)) = v3

8 : I(I(v1))*v2 = vi*v2

15 : vi*I(vl) =0

16 : vix(I(v1i)*v2) = v2
17 : vixU = vi

18 : I(I(vl)) = vi1

And we see that there is a lot of redundancy in the generated rules. The next idea is to keep
the partial complete set in reduced form. That is, every rule M = N is such that N is irreducible,
and M is irreducible by any other rule in the set. Reduced rules are re-introduced as equations,
since their orientation may change after reduction (at least if the left-hand side is reduced). When
a critical pair is selected, we check that its two parents are still active.
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5.5.2 Completion with deletions

let deletion_message (k,_) = print_string "Rule ";print_num k;
message " deleted";;

(* Knuth-Bendix completion procedure *)

(* kb_completionl : (term_pair -> bool) -> num -> rules -> (num & num) -> term_pair list ->

let kb_completionl greater = kbrec
where rec kbrec n rules =
let normal_form = mrewrite_all rules
and get_rule k = assoc k rules in process
where rec process (k,1) = (processkl
where rec processkl = fun
[T -> if k<1 then next_criticals (k+1,1)
if 1<n then next_criticals (1,1+1)
else rules (* successful completion *)
| ((M,N)::eqs) -> let M’ = normal_form M and N’ = normal_form N in
if M’=N’ then processkl egs
else let left,right =
if greater(M’,N’) then (M’,N’)
if greater(N’,M’) then (N’,M’)
else failwith (non_orientable(M’,N’)) (* completion fails *)
in let new_rule = n+l,mk_rule left right
in pretty_rule new_rule;
let left_reducible (_,_,L,_) = reducible left L in
let redl,irredl = partition left_reducible rules in
map deletion_message redl;
let irreds = map right_reduce irredl
where right_reduce (m,_,L,R) = m,
mk_rule L (mrewrite_all (new_rule::rules) R)
in let new_eqs = map (fun (_,_,pair) -> pair) redl in
kbrec (n+1) (new_rule::irreds) (k,l) (egs @ new_egs))
and next_criticals (k,1) =
try (let v,el = get_rule 1 in
if k=1 then process (k,l) (strict_critical_pairs el (rename v el))
else try (let _,ek = get_rule k in
process (k,1l) (mutual_critical_pairs el (rename v ek)))
with failure "find" (*rule k deleted*) -> next_criticals (k+1,1))
with failure "find" (*rule 1 deleted*) -> next_criticals (1,1+1);;

(* complete_rules is assumed locally confluent, and checked Noetherian with
ordering greater, rules is any list of rules *)
let kb_completel greater complete_rules rules =
let n = check_rules complete_rules
and eqs = map (fun (_,_,pair) -> pair) rules in
let completed_rules = kb_completionl greater n complete_rules (n,n) egs in
pretty_complete completed_rules;;
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(* And now:

let greater pair = (rpo Group_order (K Lexico) pair = Greater) in

kb_completel greater [] Group_rules;; ==>
1 : Uxvl = vl

2 : I(vl)*vl =T

3 : (vi*xv2)*v3 = vix(v2*xv3)

4 : I(vD)*(vixv2) = v2

5 : I(Mx*vl = v1

6 : I(I(v1))*U = v1

7 : I(vi*xv2)*(vi*x(v2*v3)) = v3

8 : I(I(v1))*v2 = vi*xv2

Rule 6 deleted

9 : vixU = vi

10 @ I(I(vixv2)*vl) = v2

11 : I(vixI(v2))*vl = v2

12 I(vix(v2*v3))*x(vi*(v2x(v3*v4))) = v4
13 : I(vi*xI(v2))*(v1i*v3) = v2%v3
14 : vixI(v1) = U

15 : vix(I(v1)*v2) = v2

16 : I(U) = U

Rule 5 deleted

17 : I(I(v1)) = v1

Rule 8 deleted

18 : vix(I(v2xv1l)*v2) = U

24 : vIxI(I(v2)*vl) = v2
I(vixvd)*vl = I(v3*v4)*v3
Evaluation Failed : Non orientable equation

The completion has generated the equation I(x *y) * x = I(z * y) * z before the rule I(z *xy) =
I(y) % I(x), and thus failed.

So the next idea is to defer such non-orientable equations until all critical pairs have been
generated, in the hope that they will ultimately get simplified by new rules. Thus we add a new
argument “failures” to stack these troublesome equations.

5.5.3 Completion with delayed failures

(* Improved Knuth-Bendix completion procedure *)
(* kb_completion : (term_pair -> bool) -> num -> rules -> term_pair list -> (num & num) -> 1t
let kb_completion greater = kbrec
where rec kbrec n rules =
let normal_form = mrewrite_all rules
and get_rule k = assoc k rules in process
where rec process failures = processf
where rec processf (k,1) = (processkl
where rec processkl = fun
[1 -> if k<1 then next_criticals (k+1,1)
if 1<n then next_criticals (1,1+1)
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if null failures then rules (* successful completion *)
else (message "Non-orientable equations :";
map non_orientable failures;fail)
| ((M,N)::eqs) -> let M’ = normal_form M
and N’ = normal_form N
and enter_rule(left,right) =
let new_rule = n+l,mk_rule left right
in pretty_rule new_rule;
let left_reducible (_,_,L,_) = reducible left L in
let redl,irredl = partition left_reducible rules in
map deletion_message redl;
let irreds = (map right_reduce irredl
where right_reduce (m,_,L,R) =
m,mk_rule L (mrewrite_all (new_rule::rules) R))
and eqs’ = map (fun (_,_,pair) -> pair) redl in
kbrec (n+1) (new_rule::irreds) [] (k,1) (eqs @ eqs’ @ failures)
in if M’=N’ then processkl egs
if greater(M’,N’) then enter_rule(M’,N’)
if greater(N’,M’) then enter_rule(N’,M’)
else process ((M’,N’)::failures) (k,1l) egs)
and next_criticals (k,1l) =
try (let v,el = get_rule 1 in
if k=1 then processf (k,1l) (strict_critical_pairs el (rename v el))
else try (let _,ek = get_rule k in
processf (k,1) (mutual_critical_pairs el (rename v ek)))
with failure "find" (*rule k deleted*) -> next_criticals (k+1,1))
with failure "find" (*rule 1 deleted*) -> mnext_criticals (1,1+1);;

(* complete_rules is assumed locally confluent, and checked Noetherian with
ordering greater, rules is any list of rules *)
let kb_complete greater complete_rules rules =
let n = check_rules complete_rules
and egs = map (fun (_,_,pair) -> pair) rules in
let completed_rules = kb_completion greater n complete_rules [] (n,n) eqgs in
message "Canonical set found :";
pretty_rules (rev completed_rules);();;

(* Now:

let greater pair = (rpo Group_order (K Lexico) pair = Greater) in
kb_complete greater [] Group_rules;; ==>

1 : Uxvl = v1

2 I(vl)*vl =T

3 : (vi*xv2)*v3 = vix(v2*xv3)

4 : I(vi)*(vikxv2) = v2

5 : I(U)*vl = vi

6 : I(I(v1))*U = v1

7 : I(vi*xv2)*x(vi*x(v2*xv3)) = v3
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8 : I(I(v1))*v2 = vi*xv2

Rule 6 deleted

9 : vixU = vi

10 : I(I(vi*xv2)*vl) = v2

11 @ I(vixI(v2))*vl = v2

12 @ I(vix(v2*xv3))*x(vi*x(v2*x(v3*v4))) = v4
13 : I(vi*xI(v2))*(vi*xv3) = v2*v3

14 : vixI(vl) = U

15 : vix(I(v1)*v2) = v2

16 : I(U) =T

Rule 5 deleted

17 : I(I(v1)) = v1

Rule 8 deleted

18 : vi*x(I(v2*v1)*v2) =T

19 : I(I(vix(v2*xv3))*(vi*v2)) = v3

20 : vi*(I(v2*v1)*(v2*v3)) = v3

21 : I(I(v1)*I(v2)) = v2xvl

22 : I(vi*I(v2*vl)) = v2

23 : I(vi*x(v2*I(v3)))*(vi*xv2) = v3

24 : vixI(I(v2)*vl) = v2

25 : I(vi*(I(v2*v3)*v2))*vl = v3

26 : I(vikx(v2x(v3*xv4)))*(vi*x(v2*(v3*(v4*v5)))) = vb
27 : I(vi*x(v2*I(v3)))*(vi*x(v2*v4)) = v3*v4
28 : I(v1x(I(v2*xv3)*v2))*(vixvd) = v3*xvéd
29 : vi*x(I(v2*(v3*v1))*(v2*(v3*v4))) = v4
30 : vi*(I(I(v2)*v1)*v3) = v2*v3

31 : vix(v2*I(vi*xv2)) =T

32 : I(vixv2)*vl = I(v2)

Rule 28 deleted

Rule 25 deleted

Rule 18 deleted

Rule 11 deleted

Rule 10 deleted

33 : I(vi*x(v2*v3))*(vi*v2) = I(v3)

Rule 23 deleted

Rule 19 deleted

34 : I(vixI(v2)) = v2*xI(vl)

Rule 22 deleted

Rule 21 deleted

Rule 13 deleted

35 : vik(v2x(I(vi*xv2)*v3)) = v3

36 : I(vi*xv2)*(vi*xv3) = I(v2)*v3

Rule 33 deleted

Rule 29 deleted

Rule 27 deleted

Rule 26 deleted

Rule 20 deleted
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Rule 12 deleted

Rule 7 deleted

37 : vik(v2*xI(I(v3)*(vi*xv2))) = v3
38 : I(I(vi)*v2) = I(v2)*vl

Rule 37 deleted

Rule 30 deleted

Rule 24 deleted

39 : vikx(v2x(v3*xI(vi*(v2*v3)))) = U
40 : vixI(v2*xvl) = I(v2)

Rule 31 deleted

41 : I(vixv2) = I(v2)*I(vl)

Rule 40 deleted

Rule 39 deleted

Rule 38 deleted

Rule 36 deleted

Rule 35 deleted

Rule 34 deleted

Rule 32 deleted

Canonical set found :

: Uxvl = vi

: I(vD*vl =T

(vixv2)*v3 = vix(v2*v3)
I(v1)*(vi*xv2) = v2

: vixU = v1

14 : vixI(v1) = U

15 : vix(I(v1)*v2) = v2

16 : I(U) = U
17 : I(I(v1))
41 : I(vi*v2)

[Co T VV I S I

vi
I(v2)*I(vl)

5.5.4 Discussion

Note that our choice of examining critical pairs in a very specific order is arbitrary. We could
use other selection criteria, as long as they are fair, i.e. every critical pair should be eventually
examined. This could significantly improve the performance of the procedure, by selecting early
interesting consequences which may quickly simplify previous rules and critical pairs. Realistic
implementations of the Knuth-Bendix completion procedure use sophisticated heuristics for this
selection. Also, critical pairs could be generated one at a time, but the data structure permitting
such incremental computation would be rather complicated.

Under a fairness assumption, it can be shown that the Knuth-Bendix completion procedure
is a semi-decision procedure, for all systems for which we can decide orientation of the generated
equations. That is, maybe at some point we shall fail to give an orientation to an equation, in which
case the procedure fails without conclusion (all one may conclude is that all equations are equational
consequences of the given equations). Otherwise, there are two cases. Either the procedure will
loop, generating an infinite set of equations (but then every equational consequence of the given
equations will be rewritten to a tautology M = M at some point). Or else the procedure will stop,
and the resulting set of equations is canonical, i.e. it is a Noetherian and confluent set of rewrite
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rules which may be used to decide any equation of the original equational theory.

If one wants to keep track of proofs we must keep a trace of superpositions and rewritings.
Actually all operations are reductions and narrowings (substitution followed by reduction), and
thus a history of a rule consists in a number, a substitution, and two sequences of rewritings, one
on the left and the other on the right, represented as lists of pairs (rule,occurrence).

Remark: The Knuth-Bendix completion is a costly process, but it should be considered a
compilation process done once and for all. The whole procedure may be seen as a very general way
of compiling a (decidable) equational theory into an algorithm of reduction to canonical form.

Numerous generalizations of the Knuth-Bendix completion procedure have been proposed.
First, it is possible to generalize the method to deal with rewriting on congruence classes of terms
modulo some congruence. This way, permutative axioms such as commutativity can be accomo-
dated [18, 13]. Numerous canonical systems for decidable varieties have been found mechanically
with these methods [12]. It is also possible to extend the completion to derive proofs in the initial
algebra of equational presentations, as opposed to ordinary equational proofs, valid in the variety of
all algebras which are models of the axioms. Such “induction-less” induction proofs are described
in [10]. Finally, the method applies to decide word problems in finitely presented algebras, as shown
for instance in [2, 1, 15].
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Chapter 6

Sequential computations

These notes sketch the theory of computation by rewrite rules.

6.1 Trading termination against linearity

The confluence of term-rewriting systems obeying the Knuth-Bendix test was based on Newman’s
lemma:

Newman’s lemma. A Noetherian relation is confluent iff it is locally confluent.
and on a closure property of critical pairs:

The critical pairs lemma. A rewriting system is locally confluent iff its critical pairs are locally
confluent (with the obvious definition of a pair (M, N) being locally confluent iff there is a common
reduct P of M and N).

If a term rewriting system is not Neetherian, that is if some term admits an infinite rewriting
sequence, then local confluence is not enough to show its confluence. For instance, consider:

Example 1 (Hindley)

A— B
A— C
B— A
B — D.

We get counter-examples even if we forbid cycles in the rewriting relation:

Example 2 (Newman-Huet)

F(z,z) — A
C — G(O)
F(z,G(z)) - B

since the term F(C,C) possesses two distinct normal forms A and B. Note that the system
above has no critical pair, since F(z,z) and F(z,G(z)) are not unifiable.

83
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It seems that the trouble with the term-rewriting system above arises from the existence of
non-linear left-hand sides. We may wonder whether one non-linear left-hand is not sufficient to
get a counter-example. Indeed this has been shown by Klop [15]. Here is his counter-example,
simplified by Barendregt:

Example 3 (Klop-Barendregt)

F(z,z) — A
c - GO
G(z) — F(z,G(x))

since the term G(C) rewrites to A and G(A), but these two terms have no common reduct (Exer-
cise).

Let us call left-linear (resp. right-linear) a system such that every left-hand side (resp. every right-
hand side) is linear. For linear systems, we have better hopes to show confluence without insisting
on termination. For instance, we may hope to use a strong covering of derivation diagrams:

Definition. A relation — is strongly confluent iff for all z,y,z, ¢ — y and © — z implies there is
u such that y — v and z — w.

Strong confluence may seem to be a very strong requirement. Actually, it leads to a completely
general method, where one shows the confluence of — by showing the strong confluence of some
other relation having the same reflexive-transitive closure as — (the method being general since
confluence of — is strong confluence of —*). This method is the basis of classical proofs of confluence
in the A-calculus. See the Tait-Martin Lof method in Barendregt’s book [1].

Let us now try and apply directly this method to the reflexive closure of rewriting. We say that
a pair (M, N) of terms is strongly confluent in the term rewriting system R iff there is a P such
that M —¢ P and N —¢ P, with —¢ the reflexive closure of — .

Proposition 1. If R is left-linear, right-linear, and if all its critical pairs are strongly confluent,
then R is confluent.

The proof of this proposition may be found in [12]. Note that right-linearity does not suffice,
as shown by Example 2 above. Similarly, left-linearity is not enough:

Example 4 (Lévy)

( F(A,A) — G(B,B)
A — A
F(A',z) —» F(z,z)
F(z,A") —» F(z,z)
G(B,B) — F(A,A)
B — B
G(B',z) — G(z,)
G(z,B') - G(z,z)

\

since F(A', A’) and G(B', B') are interconvertible, but not confluent.

Still, it would be very desirable to find sufficient conditions for a term rewriting system to be
confluent that do not depend on right linearity, a rather unnatural condition. We shall do this by
strengthening the closure condition. Let us first define the parallel-disjoint rewriting relation =g
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associated with a term-rewriting system R. We recall that a relation = is term compatible if and
only if it is reflexive and verifies:

My = Ny My=N,...M, = N,
F(Ml,MQMn)éF(Nl,NQNn)

for every operator F' of arity n.
Definition. =5 is the smallest term compatible relation containing —x.

It is easy to show that M =g N iff N is obtained from M by the simultaneous replacement of
a set of mutually disjoint redexes, and thus that =% has the same reflexive-transitive closure as
—R-

Now we may state:

Proposition 2. If R is a left-linear term-rewriting system such that M =% N for every critical
pair (M, N), then R is confluent.

The proof, which shows that =% is strongly confluent under the given conditions, appears in
[12]. Remark that it is crucial here that critical pairs are defined precisely as ordered pairs, since
the condition is not symmetric.

6.2 Regular rewriting systems

Proposition 2 above can be used to show the confluence of various rewriting systems used as com-
putational paradigms. For instance, combinatory reduction is a left-linear term-rewriting system
without critical pairs:

Combinatory reduction

{ A(A(K,z),y) — x
A(A(A(S,2),y),2) — A(A(z, 2), A(y, 2)).

Note that right-linearity cannot be imposed upon a combinatorially-complete set of combinators.
By contrast, it is necessary to impose left-linearity if one wants nice computational properties. We
saw that matching was linear in the size of the pattern for left-linear rules, and that reduction
to normal form was complicated in the presence of non-linear left-hand sides, since a redex could
appear at an arbitrary distance above the last reduction. We may also wonder whether term-
rewriting systems with critical pairs are meaningful from a computational point of view, since
combinatory reduction (for any set of combinators) is non-ambiguous. It is intuitively obvious that
the absence of critical pairs should allow better deterministic computations. Let us try to make
precise this intuition.

Definition. Let R be a term-rewriting system, M be any term. We say that a R-redex in M is
any occurrence u in D(M) such that A\, < M/u for some rule Ry : A\, — pr in R. We denote by
R(M) the set of R-redexes of M. If R(M) = 0 we say that M is an R-normal term.

A redex determines a possible R-reduction: if u € R(M), we get M —x N, with N = M [u <
o(px)], where the substitution o is uniquely determined by the condition M/u = o(A;). When
R is understood from the context, we write M —, N to indicate that M rewrites at redex u to
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N, using rule k. If R has no critical pairs, k is uniquely determined, and thus a reduction step, or
elementary derivation, is uniquely determined by its redex u, and we write simply M —, N.

Definition. Let a : M —, 1 N be an elementary R-derivation, and v € D(M). We define the set
v\a of residuals of v by a as the set of occurrences of N defined as follows:

{v} if v|u or v < u;
v\a = {u@Quw' Qv | pp/w' =z} if v = uQwWQV' with A\ /w =z € V;
0 otherwise.

Every occurrence w in N has been either created by the reduction step, if it is inside the right
hand side pg, or else it belongs to the residual set of exactly one occurrence of M. Intuitively, the
residual map indicates how the new term NN shares subterms with the old term M.

When u is a redex, its residuals indicate where we should expect to find a corresponding redex
in the reduced term N: it may have stayed undisturbed, it may have been duplicated, or it may
have vanished. Note that in this case, when there are no critical pairs, the case “otherwise” above
can only occur when u = v.

Example. Let R = {F(z,y) — G(z,z)}, M = G(A,F(B,C)), v = [2] and thus N =
G(A,G(B, B)). The residual map is given by:

0~ {01}

[1] — {[11}

[2] — {}
[2;11—{[2;1], [2;2]1}
[2;2]— {}

Definition. A term rewriting system R is regular iff it is left-linear and does not possess critical
pairs.

Fact. If R is regular, then for any a : M — N, the residuals of any redex of M by a are redexes
of N.

Note that both conditions of left-linearity and absence of critical pairs are needed in order to
have this very important preservation property. This fact shows that regular systems are compu-
tationally sensible.

Remark. If we consider A-calculus with the 8 and the 7 rules (we shall see later in the course
how to consider these rules as term rewritings), then we do not get a regular system according to
our definition, since we have a critical pair between these two rules. However, this critical pair is
trivial, in the sense of being a pair of identical terms, and may thus be safely ignored. Still, this
complicates the theory of A-reduction, and generally the 7 rule is dealt with separately, since it
may be shown that the n-conversions may be delayed after all S-reductions.

Redexes of N which are not residuals of a redex of M are said to be created by reduction a. There
are three cases of created redexes in regular systems, illustrated by the following examples:
Downward creation. R = {F(z) — H(G(z)),G(A) — B}, reduction F(A) — H(G(A)). Here
redex [] creates redex [1] downwards.

Upward creation. R = {F(z) — G(z), H({G(z)) — K(z)}, reduction H(F(A)) — H(G(A)).
Here redex [1] creates redex [] upwards.

Collapse creation. R = {F(G(z)) — H(z),K(z) — z}, reduction F(K(G(A))) — F(G(A)).
Here redex [1] creates redex [] both upwards and downwards, by “collapse and glueing”.
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In the systems that we consider now, we do not assume finite termination of rewritings anymore.
However, any infinite sequence of rewritings must involve an infinite number of redex creations,
since sequences of reductions of residuals only always terminate:

The finite developments theorem. Every sequence of reductions of residuals of a fixed set of
redexes must terminate.

Proof hint. Order the original redexes by the prefix ordering, and consider the multiset extension
of this ordering.

We saw (Proposition 2) that a regular system is always confluent. Actually, a much stronger
structural property of its derivation spaces is true, which is the object of the next section.

6.3 The parallel moves theorem

From now on, we assume that we are studying a given regular term rewriting system R. In order
to study the algebra of derivations with R, we consider the category defined by parallel rewritings.

First, we extend the notation a : M —, N to parallel (disjoint) reduction, defining one step of
parallel reduction of a set U = {u1,...,u,} of mutually disjoint redexes A : M = N as the result
of effecting the successive n reductions of the individual redexes in any order. We remark that the
set of residuals of a set of mutually disjoint redexes is itself a set of mutually disjoint redexes.

6.3.1 The derivations category

We consider the category whose objects are the terms, and the arrows A : M =* N the sequences
of elementary parallel reductions. We call derivation such a parallel reduction sequence. The
identity Id : M =* M is the empty sequence, and composition is simply the concatenation of
sequences, written as A;B : M =* P when A : M =* N and B : N =* P. A derivation is
uniquely determined by its source term (i.e. its domain), and by the sequence [U;...; U] of the
contracted redexes. In other words, the derivation category is the free category generated by the
elementary parallel derivations.

We extend the notion of residual to derivations as follows. First we extend residuals to several
steps of reduction, by defining v\(a;b) as J{w\b | w € v\a}. This defines the residuals of an
occurrence by elementary derivations, and we extend similarly to any derivation, as follows. Let

v€D(M),and A: M =* N. We define v\ A by induction on |Al:

{ wNd = {v}
v\(4; B) = U{w\B | w € v\A}.

Now we extend the residual map to projections of co-initial derivations. We write Der(M) for
the set of derivations starting from term M. Let A and B be two derivations in Der(M), with
A: M =* N, and B : M =y P elementary. We define the residual B\A of B by A as the
elementary derivation starting from N and contracting all redexes in [J{u\A | « € U}. Finally, we
define the sum A + B of derivations A and B as the derivation A+ B = A;(B\A). We are now

able to refine Proposition 2 above.

6.3.2 Parallel moves

The parallel moves theorem. Let A and B be two elementary derivations in Der(M). Then

A+ B and B + A are co-terminal, and for every u € R(M) we have u\(A + B) = u\(B+ A).
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Proof: Exercise. Actually the theorem is true for an arbitrary occurrence u € D(M), but we
shall use it below only when u is a redex.

Corollary. The relation = is strongly confluent, and thus R is confluent. Thus, every term M
admits at most one normal reduct, i.e. an R-normal term N such that M —* N.

Example Let R = {F(z) — G(z,z) , H — K},
G(P(F(H)), H) =17 11, GG(F(H), P, K), and
G(P(F(H)), H) = [y 127 GUF(F(K))), K). We get:
P GG, PO Ll fua]y GG(P(K), F(K)), K),
A\B: G(F(F(K)),K) =011} G(G(F(K),F(K)),K), and the common residual set of redex [1;1]
in term G(F(F(H)),H) by A+ B and B+ Ais {[1;11, [1;2]1}.

The parallel moves theorem allows us to extend the residual relation to arbitrary derivations, as
follows.

Definition. Let A, B € Der(M), with B elementary: B : M = N. We define A\ B by induction
on |Al:

Id\B = Idy
(A1; A2)\B = (A1\B); (A2\(B\A1))

Remark that Aj\(B\A;) is well defined by induction, since B\ A; is elementary, and that its
composition with A;\B makes sense, by the theorem above. Now, for A, B two arbitrary co-initial
derivations, we define a derivation A\B composable with B by the following induction on |B|:

AId =4
A\(B1; B2) = (A\B1)\B>

We extend the notation A + B = A;(B\A) to co-initial derivations of any length, and we
extend without difficulty the parallel moves theorem:

The generalized parallel moves theorem. Let A and B be two arbitrary derivations in
Der(M). Then A+ B and B + A are co-terminal, and for every u € R(M) we have u\(A +
B) = u\(B+ A).

Actually, we may even generalize the preservation of residuals to an arbitrary derivation C starting

from M:

The cube theorem.
Let A,B and C be three co-initial derivations. Then C\(4 + B) = C\(B + A).
Proof hint: induction on |A| + |B| + |C|.
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If we now define, for two co-initial derivations A and B, the permutation equivalence as A = B

iff for any C' co-initial with A and B we have C\A = C\B, we get:
Corollary 1. A+ B =B + A.

Corollary 2. (A+B)+C=A+ (B+C).

It is now fairly straightforward to show that = is a congruence respectively to operations \,+,
and ;. Also for every A we get A\A = Id, Id+ A = A, and A+ A = A. The only derivations
equivalent to Id are the ones that contract at every step an empty set of redexes.

Now, we may define a partial ordering = of dominance between co-initial derivations, by:
A C Biff A+ B = B. Intuitively, B dominates A if it does at least as much computation, in
an implementation where residuals are shared (for instance, over a dag structure). The preceding
results show that the set of derivations starting from a common term, and ordered by the dominance
ordering C, is an upper semi-lattice with 4+ as its L.u.b. This can be cast elegantly in a categorical
framework:

Definition. The computation category associated with the regular term rewriting system R is its
derivation category, quotiented by the permutation equivalence. That is, it admits as objects the
terms, and as arrows from M to N the permutation class of parallel derivations from M to V.

The computation theorem. The computation category admits pushouts.

Caution! The lattice structure given by the parallel moves theorem is on derivations, and not
on terms. For instance, if we consider the system R consisting solely of the rules I(z) — z and
J(z) — z, the following derivations diagram shows that the terms I(J(K)) and J(I(K)) do not
possess a lL.u.b.

J(I(K)))

I
Q\//

J(K) K)

N

K

Note that this phenomenon may be traced to the existence of two non-equivalent derivations be-
tween I(I(K)) and I(K). This shows that the categorical viewpoint is the right one here: we need
to talk in terms of arrows, not just relations between terms. And now the confluence diagrams
can be replaced by more informative commuting diagrams expressing permutation equivalences of
derivations. For instance, in the diagram above, certain sub-diagrams are confluent only for un-
important syntactic coincidences (due to the double occurrence of I in I(J(I(K)))), but the others
are commuting diagrams expressing a strong equivalence of computations. Exercise: partition these
sub-diagrams into the commuting and non-commuting ones.

This theory of derivations was first developed by J. J. Lévy in the framework of A-calculus [17]. It
was then adapted to recursive program schemas computations in [3], and to the present framework of
regular term rewriting systems in [13]. Klop investigated a more general framework of combinatory
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reduction systems, which allows binding operators and provides a general theory encompassing
A-calculus, in his dissertation [15].

6.4 Standardization

First we remark that all the results of the preceding section can be applied to sequences of rewritings,
confusing a reduction a : M —,, N with the elementary derivation A : M =,; N.

We shall now show that every derivation is equivalent to a certain derivation which computes
redexes in an outside-in manner. We shall call such derivations standard. A similar situation
happens in A-calculus. However, contrarily to the A-calculus situation, the leftmost outermost
reductions do not usually lead to standard derivations in regular term rewriting systems. For
instance, with R = {F(z,K) — K,H — K,Z — Z}, the standard derivation starting from the
term F(Z, H) is:

F(Z,H) -y F(Z,K) — ] K, whereas the left-most outermost rule leads to an infinite derivation
F(Z,H) =[] F(Z,H)— ---

6.4.1 Preservation of occurrences by derivations

Definition. Let u € R(M), A — p € R the rule applicable at u: A < M/u (it is unique, since
we assume there are no critical pairs). The occurrences of M below u are partitioned between the
occurrences internal to A, and the ones which pertain to the substitution part; let us denote these
two sets respectively £(M,u) and S(M,u).

We may assume that R is not reduced to the trivial set {z — ---}, and thus we get u € L(M,u),
and Vv € S(M,u) u < v. Now if u < v € R(M), the absence of critical pairs imposes v € S(M,u).
Furthermore, for every derivation A : M =y N with v € V, we get u\A = {u}. Also whenever
u,v € R(M), with L(M,u) NS(M,v) # 0, we have u € S(M,v).

Now let A be a derivation starting from M, and contracting successively the redex sets Uy, ..., U,.
For any u € D(M), we say that A preserves u iff A never contracts a redex above u, i.e. Vi <n
Zv € U; v < u. The following technical lemmas are easy to establish:

Lemma 1. Let A € Der(M), preserving v. For each u € R(M) such that u < v we have

u\A = {u}.
Lemma 2. Let A and B be co-initial, both preserving u. Then A\B preserves u.

Lemma 3. Let A and B be co-initial, with A C B. Every occurrence preserved by B is preserved
by A too.

Remark. Occurrences play two roles in the theory. They may be used to talk about subterms,
like in the notation M/u. They may also be used to talk about contexts, like in the notation
M [u < NJ]. Here the notion of preservation concerns the context, and thus if A preserves u it
does not mean that A preserves the symbol M (u), but rather the context M [u].

We are now ready to present the important definition of an occurrence being external for a deriva-
tion.
6.4.2 External occurrences

Definition. Let A € Der(M), and v € D(M). We say that u is external for A, and write
u € X(A), iff:
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e either A preserves u
e or else we can decompose A as Aj; Ag; Az such that Jv < u:

— A; preserves u,
— Ay : P=y Q withv € V and u € L(P,v),
— and v € X(A43).
Remark that in the second case, the decomposition of A and the occurrence v are unique.

Intuitively, u € X(A) iff A does not contract at any step a redex above u, and to which u does not
contribute (where u contributes to v € R(M) iff u € L(M,v)).

Example. With R = {F(z,K) — z,H — K}, and A : F(K,H) = F(K,K) = K, we get
X(A) ={0, 21}

Now let A be a derivation starting from M, and contracting successively the redex sets Uy, ..., U,.
For any u € R(M), we say that u is a redex pertaining to A, and write u € R(A), iff for some i < n
some residual of u by the first n — 1 steps of A is in U,,. Finally, we define the external redexes

pertaining to A, as: £(A) = R(A) N X(A).

We now extend the technical lemmas above to external redexes.

Lemma 4. Let A € Der(M), and u € R(M). If X(A) NS(M,u) # 0, we have u\A = {u}.
Lemma 5. Let A and B be two co-initial derivations. If B preserves u € X'(A), then u € X(A\B).
Lemma 6. Let A and B be two co-initial derivations, with A T B. We have X(B) C X (A).
Corollary. A = B implies X(A) = X(B).

External redexes are their own residuals, until they are contracted:

Lemma 7. Let A € Der(M), and u be a redex of M external for A: u € X(A) N R(M). Then
either u € R(A) and then u\A = 0, or else u\A = {u}.

Corollary. A = B implies £(A) = £(B).
Lemma 8. X(A) is closed by the prefix ordering <: u € X(A) implies v € X(A) for all v < u.

Lemma 9. £(A) = 0 implies A = Id.
Proof. Induction on |A|. Trivial for A = Id. Otherwise, let A = Aj; Ay with A; : M =y N. If
Ay = 1d, then E(A) = U # (). Otherwise, consider v € £(As), which exists by induction hypothesis.
There are two cases:
1. There exists u € U such that u < v. Then u € X(A3) by lemma 8, and thus u € X'(A) since A,
preserves u. Therefore u € £(A).
2. Otherwise, v is preserved by Aj, and thus v € X(A). Again two cases:

(i) There exists u € U N L(M,v). Then u € X(A), and therefore u € £(A).

(ii) Otherwise v € R(A), and therefore v € £(A).

6.4.3 Outside-in and standard derivations

We are now ready to use £(A) to construct an outside-in equivalent to A. The termination of the
construction is based on the following notion.
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Definition. We say that derivation B is a strict outside-in suffix of A, written A > B, iff A # Id,
and B = A\b where b is the elementary derivation contracting some u € £(A).

Lemma 10. > is a Neetherian relation.

Proof. Consider A : M =y, =y, --- =v,, with A # Id. Let uw € £(A), b: M —,. According
to lemma 7, u is preserved by A until it is contracted, say at step k. Therefore A\b will contract
Ur — {u} at its k — th step, and from there on will be identical to A. Thus A\b is less than A4 in
the lexicographic ordering (|U,|, |Up—1],-..,|U1])-

We are now ready for the main definition of this section.
Definition. The derivation A is said to be outside-in iff

e either A =1Id

o or else A = Aj; Ay, where A; is the elementary derivation contracting an external redex
pertaining to A, and A, is outside-in.

We can now give an algorithm normalizing a derivation A to an outside-in equivalent B as
follows. If A = Id, let B = Id. Otherwise, pick some u € £(A). We define B as composed of the
elementary derivation b contracting u, followed by an outside-in equivalent of A\b. Lemma 10 tells
us that the construction will terminate, by Noetherian induction. By construction, we have B C A.
But then, according to Lemma 9, the construction can stop only when A C B, and thus we get
B = A.

In order to get a canonical element, we may choose the leftmost u at every stage:

Definition. A derivation A is said to be standard iff A is outside-in, and at every stage the redex
u is the lefmost in £(A).

We may now conclude:
Standardization theorem. Every derivation class possesses a unique standard element.

In other words, the computation category is isomorphic to the category of standard derivations.
Of course, the leftmost condition is not important here, any choice function on £(A) would do.

Exercise. Let R = {F(z,K) — G(z,z),H — K}. Draw all derivations starting from F(H, H).
Which of all sub-derivations are standard?

6.4.4 Normal derivations

The results above do not tell us how to compute in a standard way, since £(A) may depend on the
whole of A, not just on its starting term. We shall now relativize the notions above to an initial
term, in order to define a notion of outside-in computation rule, generalizing the normal order
evaluation rule of recursive program schemes.

Definition. The set of external occurrences of a term M is defined as: X(M) = Nacper(m) X (4).
Also, we define the external redexes of M as: E(M) =R(M)N X(M).

We need one more technical definition. A derivation is said to be internal iff it never reduces a
redex at the top occurrence. An elementary derivation is top iff it reduces a top redex. Every
derivation is internal, or else of the form A = A;; Ay; A3 with A; internal and Ay top. It follows
directly from the definitions that in that case X'(A) = X(A1; A2).
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Lemma 11. £(M) = @ iff M is a normal term.
Proof. If M is normal, R(M) = 0, and thus £(M) = 0. If M is not normal, we prove by induction
on |M| that £(M) # 0. There are two cases.
1. Every derivation in Der(M) is internal. Thus M = F(My,...,M,) and for some 7 the term
M; is not normal. By the induction hypothesis there exists u; in £(M;), and therefore i-u; € E(M).
2. There is some A = A;; Ay starting from M, with A; internal and As top. Now take any
B starting from M. We get X(A + B) = X(A) by the remark above, and thus X(A4) C X(B) by
lemma 6, which shows that £(A4) C £(M). Since A # Id, we get £(M) # 0 by lemma 9.

We may now define the notion of a normal derivation N' (M) starting from a term M:
e If M is a normal term, then N (M) = Idyy.
e Otherwise, let u be leftmost in E(M), A: M —, N. Then N (M) = A;N(N).

We may now state a relativized version of the standardization theorem:

Normal derivation theorem. If M reduces to a normal term N, the normal derivation starting
from M will end in Nj it is the standard in the class of all derivations from M to N.

It is possible to explain the above results as justifying the existence of a call by need computation
rule. Let us call needed redex of a term M reducing to a normal term N any redex relevant to
every derivation from M to IV, or equivalently to some outside-in derivation from M to N. The
results above show that the external redexes are needed. Of course, there may be other needed
redexes; for instance, it is easy to show that if for every rule A — p of R we have V(p) = V(}),
then every redex is needed. Any interpreter which is fair for needed redexes, in the sense that it
will not postpone forever the contraction of its residuals, is correct in the sense that it will lead to
the normal form, if it exists. However, we do not have any effective general way of computing a
needed redex. In particular, we do not have an effective way of computing an element in £(M).
This problem will be attacked in the next section.

6.5 Sequentiality

6.5.1 Inherently parallel systems

Certain rewriting systems need parallel evaluation. For instance, consider the “parallel or” defini-
tion:

Parallel or

zV True — True

{ TrueV z — True

In order to compute M V N, we must evaluate in parallel M and NNV, since it will be undecidable
in general (there may be many other rules) whether M or N may reduce to the constant True.
Furthermore, in the case where M and N both reduce to T'rue, there is no needed redex in M v N
in the sense of the last section. This is because the system above is not regular, since there is a
critical pair. We know from the previous theory that in a regular system there always exists a
needed redex. The problem is how to compute a needed redex without doing a lot of look-ahead
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(like computing a normal term using all possible derivations, and then normalizing to a standard
one if one is found!)

The next example, due to G.G. Berry [2], will illustrate the problem.

Gustave’s algorithm

F(True, False,z) — True
F(z,True,False) — True
F(False,z,True) — True

Note that this example is regular. Thus in any term M = F(Mj, My, M3) there must exist a
needed redex. But it is undecidable in general (i.e. in the presence of other rules) if M; reduces to
True or False, and thus it seems impossible to compute Gustave’s algorithm without some kind of
parallel evaluation, which will in general do some un-needed computation. For instance, if you start
computing the first argument, you may run into a non-terminating computation, whereas it may be
the case that My —* True, M3 —* False, and thus M —* True. We must find a characterization
of such pathological examples, in order to be able to construct sequential evaluators for a restricted
class of regular systems.

6.5.2 (-terms

We need to develop a minimum of theory to explain how to compute trees and terms by approxi-
mation. Intuitively, our interpreter will work in a top-down fashion, and at any point we shall have
read only a prefix approximation of the input.

We thus augment our term alphabet by adding to the alphabet ® a new constant €2, which
will stand for “unknown”. Terms (without variables) over this extended alphabet will be called
Q-terms. They are used to talk about partially computed terms. The approximation or prefix
ordering over {2-terms will be the same as the familiar match ordering, but where €2 acts as a
“dont-care” variable. Occurrences of € in M are called omegas, and we write F(M) for the set of
such occurrences (the frontier of M). We partition the domain of an Q2-term in its frontier and its
set O(M) of strict occurrences:

D(M) = F(M) U O(M).

Finally, if M is any term, we write Mq for the Q-term obtained by substituting every variable by
Qin M.

Definition. The prefix ordering < over (2-terms is the smallest term compatible relation verifying

Q < M for all M.

It is easy to verify that < is a partial ordering, which could be alternatively defined by:

M < N & D(M) C D(N) AVu € O(M) M(u) = N(u).

This is of course the specialization to linear terms of the familiar partial ordering of matching.
Actually, the set of Q2-terms is order-isomorphic to the set of linear terms with variables.

If M < P and N < P, we say that the Q-terms M and N are compatible, which we write MTN.
We may then define M M N as the P with D(P) = D(M) N D(N) such that P(u) = F if
M(u) = N(u) = F, and P(u) = Q otherwise. Similarly, when M TN, we define M U N as the P
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with D(P) = D(M)UD(N) such that P(u) = F if u € D(M)ND(N) and M(u) = N(u) = F, or
u € D(M)—D(N)and M(u) =F, oru € D(N)—D(M) and N(u) = F.

We leave it to the reader to check that M M N is the greatest lower bound, and that M L N
is the conditional lowest upper bound of M and N. Actually, we do not need to restrict ourselves
to finite terms, with finite domains. The whole theory applies to arbitrary terms, with finite or
infinite terms possessing finite and infinite occurrences. Then we may generalize LI to | |5, where
FE is a directed set of Q-terms. Thus 2-terms form a complete partial ordering. It is an algebraic
cpo, with the finite 2-trees as finite elements: every {2-tree is the limit of its finite approximants.
This is of course a direct consequence of the compactness of its set of occurrences.

Actually, Q-trees form a domain of a very special kind, a concrete domain in the sense of
Kahn-Plotkin [14]. For instance, we get:

Proposition. If MK N, there exists P M such that M M N < P < N.
Proof. Let U = D(M M N). By hypothesis we get U C D(N). Let « minimum in D(N) — U. We
take P as the restriction of N to U U {u}.

6.5.3 Derivation sequences

From now on, we assume that R is a given regular system. We now consider derivations from M
to N, where M and N are ()-terms.

We shall here abstract a derivation A : M =y, --- =y, N into its derivation sequence U* =
[Ui,...,U,]. This derivation sequence may be applied to any initial term which contains at least
all the occurrences that are used by some reduction step. Let us make that more precise. Let
Used(A) = {u € D(M) | u\A = 0} be the set of occurrences in M which are used by derivation
A. We now close this set by prefix, and get Useful(A) = {u € D(M) | Fv € Used(A) u < v}. By
restricting M to Useful(A) we get an Q-term Dom(A), and it makes sense to consider the derivation
starting from Dom(A) and having as derivation sequence U*, i.e. A : Dom(A) =}, Codom(A).
Let Vars(A) = F(Dom(A)). Now N can be constructed uniquely as N = Codom(A)[u < M/v |
v € Vars(A) Au € v\A].

Remark. Dom(A) is not invariant by permutation, because some redex u € R(A) may be not
needed. However, Dom(st(A)) is the minimum common prefix to every Dom(B), for B = A, with
st(A) the standard equivalent to A.

We can number the omegas of Dom(A) (for instance, from left to right), and thus get a term
with variables Left(A) = Dom(A)[u; < i | u; € Vars(A)]. Similarly, we get a term with variables:
Right(A) = Codom(A)[u « i | v; € Vars(A)Au € v;\A]. The term Left(A) is linear, but Right(A)
is not in general, since one of the occurrences in Vars(A) may have several residuals by A. Now we
see that A is a substitutive tree-transformation: A : Left(A) — Right(A), i.e. for every substitution
o we get: 0(A): o(Left(A)) =7 o(Right(A)).

Derivations preserve the term structure, in the sense of the following proposition, whose proof is
left as exercise:

Proposition 1. Let M and N be two Q-terms, and u a common redex in M and N. That is, with
A the corresponding pattern: {u@u | v € O(A\)} C O(M N N). Let M —, M’ and N —, N'. We
have M M N —, M’ N N'. Furthermore, when MTN, we get M'{N' and M U N —, M' LI N'.

Furthermore, these preservation properties commute with the permutation equivalence. For in-
stance, let us consider the interference of two redexes u; and us.
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Proposition 2. Let {u1@Quv | v € O(A1)} CO(MMNN), and {u@uv | v € O(A2)} CO(MMN). Let
M —,,=v; M'and N —,,=v, N, with Vi = us\u1, and V5 = uq\ug. We have MNN —* M'TIN’.
Furthermore, when M TN, we get M'I{N' and M UN —* M' U N'.

Proof. Exercise.

Corollary. Let A and B be two equivalent derivation sequences starting from 2-term P: A :
P=*P,B:P=*P,A=B. Le¢ M = Pand N = P. Considering A and B as derivation
sequences, it makes sense to write: A : M =* M', B: M =* M’', and similarly: A : N =* N/,
B: N =* N'. We have A: M NN =* M'1 N'. Furthermore, when M N, we get M'TN’ and
MUN=*MUN'

Thus the structure of terms is preserved by equivalent derivations. In categorical terms, this
could be expressed by considering derivations sequences as functors which preserve pullbacks.

6.5.4 Computability

Definition. We say that the Q-term M is computable iff M —* N, where N is a normal term
(without 2’s).

Computability is increasing with respect to the prefix ordering:
Fact. If M is computable, then every N = M is computable.

Furthermore, computability is a stable property in the terminology of Berry [2]:

The Stable Computability Theorem. Let MTN. Then M M N is computable iff both M and
N are.

Proof. Assume M and N are computable. Consider the standard derivation from M LI N to its
normal form, which is thus the common normal form P of M and N. We have Dom(A) C O(M)
and Dom(A) C O(N), and thus Dom(A) C O(M M N). Consider the derivation A : M M N =* Q.
We have from the preceding corollary Q@ = P P = P and thus M M N is computable.

Corollary. Every computable 2-term M possesses a minimum computable prefix N, and M and
N admit the same normal form.

Note that this key property is not true of non-regular systems. For instance, with the parallel-or
system above, both Q-terms T'rue V 2 and 2 V T'rue are computable, but Q2 Vv € is not.

If we reconsider Gustave’s algorithm, we get in particular that any computable Q-term M =
F(My, My, M3) has a minimum computable prefix. But this does not mean that there is a uni-
form way of computing in all such M’s. Actually, F(True, False,Q), F(Q,True, False) and
F(False,Q, True) are all three computable, even though F(£2, 2, Q) is not.

Remark. Our notion of computability is absolute. We could define a more general notion of M
computable towards P, defined as the existence of some N > P such that M —* N. This notion
could be used to study computation rules for derivations starting from terms without normal forms.
But since this would involve considering infinite terms and infinite derivations, we shall not develop
this further here.

6.5.5 Sequentiality

Intuitively, Gustave’s algorithm is not sequential. Our goal is now to characterize a restriction of
regular systems for which we can design a sequential evaluator, which will compute uniformly on
prefixes of terms.
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Technically, we are going to require the computability predicate to be sequential in the sense

of Kahn and Plotkin [14].

Definition. Let P be a prefix-increasing property on Q-terms. That is, M < N and P(M) implies
P(N). We say that u € F(M) is an index of P in M iff YN = M P(N) = u ¢ F(N).

Thus an index of P is a place in its argument which we must fill in order to achieve P.
Definition. A predicate P is sequential at M iff

e cither P(M)

e or =P(N) for every N = M

e or else there is an index of P in M.
Finally, P is sequential iff it is sequential at every (2-term.

Intuitively, a sequential predicate is input-driven: it can be fulfilled only by computing at critical,
or needed places, its indexes. Note that every predicate is sequential at every term (i.e. without
(U’s). The notion is interesting only for the 2 terms M such that P(M) is false but P(N) is true
for some N > M.

Definition. A term rewriting system is sequential iff its computability predicate is sequential.

Lemma 12. If R is regular, its sequentiality need only be tested on normal Q-terms.
We do not give here the proof of this lemma, which uses auxiliary technical notions. The interested
reader may consult [13] for a proof.

Sequential evaluation theorem. Let R be sequential. Let Q(M) = M[u«— Q| u e R(M)]. If
M is not normal, then any index of the computability predicate in (M) is a needed redex of M.

This theorem gives the existence of a terminating computation strategy for any term reducing to
a normal term. Unfortunately, this strategy is not effective in general, since recognizing an index
may be an undecidable property. For instance, consider the regular system:

The undecidably sequential system

F(G(A,z),B) — K

F(G(z, A),C) —» K
F(D,z) — K
G(E,E) —

Now, consider M = F(G(Q,),Q). Its occurrence [2] is a computability index iff G(E, E)
cannot compute to D, an undecidable property, since there may be many more rules. Note that if
indeed [2] is a computability index, then the result at that place (e.g. B or C) will then be used
to determine which argument of G(£2,€2) to evaluate next. Thus a sequential evaluator need not
base its strategy solely on the arguments of a given functor, but on the context of the computation
as well. This shows that our theory of sequentiality is stronger than previous semantical proposals
such as Sazonov’s [19].

In order to be able to compute effectively computability indexes, and to decide sequentiality of
regular systems, we must restrict further the sequentiality condition.
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6.5.6 Necessary sequentiality

The main idea is to ignore the right-hand side of rules, and to make sequentiality determined only
from the left-hand sides of the rules. This leads us to a modal theory of sequentiality.

Definition. We say that M possibly reduces to N, and write M — N, iff N = M [u « P] for some
redex u € R(M) and some arbitrary Q-term P. We say that M is possibly computable iff M —*N
for some normal term N.

We now restrict indexes by enlarging computability:

Definition. A term rewriting system is necessarily sequential iff the possible computability pred-
icate is sequential at every normal {2-term.

Lemma 13. A necessarily sequential system is sequential.

Proof. Let M be any normal 2-term which is not a normal term. It does not possibly reduce to a
normal term, and if there is some N > M such that NV reduces to a normal term, it also possibly
reduces to it, and thus an index of possible computability at M is also an index of computability.
The result follows from Lemma 12.

However, notice that the equivalent of Lemma 12 does not hold, i.e. there may exist non-normal €2-
terms which have no index of possible computability. For instance, with R = {F(True, False,x) —
K,F(False,z,True) —» K,H — K}, consider M = F(H,Q,Q). Now Q(M) = F(,9Q,Q) has an
index of possible computability (underlined), but M has not.

Let us note Z(M) for the set of indexes of possible computability. From now on, we shall simply

call indexes of M the members of Z(M).

Definition. Let M be a non-normal term, and u € R(M). The redex u is said to be necessarily

needed iff u € Z(QQM)).

Remark. A necessarily needed redex is needed.

We now present a correct sequential computation rule.

The sequential evaluator. At every step, select a necessarily needed redex.

We must now explain algorithms to find effectively a necessarily needed redex in every non-normal
term, and to decide the necessary sequentiality of regular term-rewriting systems.

6.5.7 Approximation

Definition. Let R be a regular system. We define Rg = {Aqg | A — p € R} for the set of
Q-patterns of R. We write MR iff M and N are compatible (2-terms, for some N € Rqg. We
use a similar convention for other notations such as M < R. Note that, since R is assumed to be

left-linear, M is top-reducible iff M > R.

We are now ready to define the approximant w(M) of an Q-term M as follows:
e wH(Q) =0
o wH(F(My,...,M,)) = Flw(M),...,w(M,))

e w(M)=1let Mt =wt (M) in if MTTR then 2 else M.
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Note that for every Q-term M we have w(M) <X Q(M) < M. Intuitively, the approximant w(M) is
the minimum information available without look-ahead concerning the computations starting from
M: if it is €2, then M is possibly ultimately top-reducible. More generally, w(M) is a common
prefix to all terms to which any extension of M possibly reduces.

Example. Let Rq = {F(G(Q, A), B), H(B),C}, and M = G(F(G(Q, H(C)),Q),A). We get
w(M) = G(Q, A).

It is easy to verify that w is an idempotent increasing function on 2-terms.

6.5.8 A decision procedure for indexes

Definitions. An Q-term M is fixed iff M = w(M). For instance, a term is fixed iff it is normal.
A fixed Q-term M is said to be solid iff there is no non-€2 subterm N of an element of R such
that MTN. For instance, any constant which does not appear in any pattern is solid. Also, every
proper non-{2 subterm of an Q-pattern is solid, by regularity. Intuitively, a solid 2-term solidifies
locally the approximation function. Finally, we say that M is w-maximum iff w(N) = w(M) for
every N > M.

We now have all the tools to connect the notions of approximation and of possible reduction,
by showing that an 2-term is possibly computable iff it is w-maximum.

Let K be any given solid Q-term. If u is an occurrence of Q in M, w(M [u < K1J) is the maximum
of all w(M [u — N] ) We define the solidified term M associated with Q-term M as M where every
Q is replaced by K: M = M [u«— K | M/u = Q]. An Q-term is w-maximum iff w(M) = w(M), a

condition easily testable.

Lemma 14. M—*N iff w(M ) < N.
Corollary. An Q-term is possibly computable iff it is w-maximum.

The preceding lemma gives a decision procedure for possible computability. The following lemma
gives a decision procedure for an omega to be an index.

Lemma 15. Let M be an Q-term, and u € F(M). Then v € Z(M) iff w(M) # w(M[u «— K1) iff
u € D(w(M[u — K1)).

That is, an index is a place where it is possible to increase the approximant.

Example. Let Rq = {F(G(A,Q),F(B,N)),F(G(R,A),F(C,Q)),G(D,D)}. The following -
terms have their indexes underlined:

( ( 2),0)

( ( ) F(£2,9))

Let us give a few immediate consequences of the previous lemmas.

Lemma 16. If uQu is an index of M, then v is an index of M /u. If furthermore w(M/u) = €,
then u is an index of M [u «+ €]. Similarly, when v is disjoint from u such that w(M/u) = €2, then
v is an index of M iff v is an index of M [u « Q].

The remaining problem is deciding whether a regular term rewriting system is necessarily sequential
or not. The problem is not entirely trivial. For instance, the system given in the last example is
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not necessarily sequential, but the smallest 2-term with no index is F(G(€2,Q), F(G(9,Q),Q2)).
We shall postpone temporarily this problem, and study in the next section pattern-matching
in necessarily sequential systems.

6.5.9 Directions

Definition. Let S be any set of 2-terms. We consider the predicate Matchg defined by Matchg(M)
iff M = N for some N € S. We say that set S is sequential iff Matchg is sequential. The set
Dirg(M) of indexes of this predicate at M are called the directions towards S in M. In particular,
we shall consider the predicate R-match defined as Matchr,,, and we note Dirg (M) for the set of
its indexes in M, called simply directions in M. We say that R is match-sequential iff R-match is
sequential.

Exercise. Show that every index of M must be a direction in M.

Lemma 17. An omega u of M is a direction towards S in M iff for every N € S such that MTN,
u is a non-{2 occurrence of N.

Examples. Let Rq = {F(A4,Q), F(G(K,Q),B), F(G(Q,K),C)}. The directions in the following
Q-terms are the underlined omegas:

9]

F(2,9Q)
F(G(2,9),9)
F(G(Q,9),B)
F(G(2,9),0).

In this example, every direction in also an index. If now we consider Rq = {F(G(A, B)),G(22,C)},
both omegas in F(G(2,)) are directions, but only the rightmost one is an index.

We shall now see that the (finite) set of proper prefixes of Q-patterns is sufficient to search for
directions (whereas the set of 2-terms simply compatible with some Q-pattern is in general infinite).

Lemma 18. Let S || M ={N € S| NTM}. If S || M is empty, then Matchg is trivially sequential
at M. Otherwise, the directions towards S in M are the directions towards S || M in M M N, for
any N € S || M.

Corollary. For any finite S, we may decide whether S is sequential.

Proof: Check that Matchg is sequential at every M proper prefix of some N € S.

Lemma 19. If R is necessarily sequential, then R is match-sequential.
Proof. If M is normal, then an index of M is also a direction. Thus every M < Rq has directions.
If MTRq, use lemma 18.

Lemma 20. Let M < Rq, v € Dirg(M), and N = M[v «— F(Q,...,Q)]. If NTRgq, then

Intuitively, the notion of direction allows us to organize the set of patterns of R as a trie structure
in order to factorize pattern matching over all patterns. When R is necessarily sequential, it is even
possible to construct data-structures, called below matching tries, which factorize tree traversals
for both global and local searches.

Note that the converse of the last lemma is true for systems that correspond to recursive def-
initions by cases on constructors, that is when the functors are divided into defined functors and
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constructors, and every pattern consists of a defined functor applied to constructor terms with vari-
ables. This is the case for ML definitions by cases, whenever the patterns are mutually incompatible:
such definitions are sequentially evaluable iff there are directions for pattern matching. The rest of
the general theory concerns systems where there is no clear notion of (free) constructor.

6.5.10 Progressive systems

Definition. Let R be a regular term rewriting system. We say that R is progressive iff there is a
function A mapping every M < Rq to a non-empty set of its directions A(M) C Dirg(M) such
that, for every u € A(M) and for every N < Rq, with P = M [u <+ NJ, whenever P < R, the
set {v | uQu € A(P)} is a non-empty subset of A(N).

In particular, a progressive system is match-sequential. But it is so in a very strong way: global
and local matches can be factored together, leading to a linear pattern-matching algorithm. In
other words, no backtracking is necessary when looking for a redex.

Examples. The example S considered above defines the patterns of a progressive system. Gus-
tave’s algorithm is not, since it is not even match-sequential. The undecidably sequential system is
match-sequential, but definitely not progressive, since the only direction in F(€2, ) is [1], and the
only direction in F(G(€2,Q),Q) is [2], even though G(€2,) is the prefix of a pattern. This reflects
the fact that this system is possibly sequential, but not necessarily sequential, since we shall see
that a regular system is progressive iff it is necessarily sequential.

We are now able to state a non-deterministic sequential evaluator:

Algorithm A. Input: a term M without variables. The algorithm uses two occurrence variables
u and v, and one -term variable P. P is a prefix of M, denoting the part of M that has been
read so far. The occurrence u is an outer-most potential redex in P, and v is a direction in P/u.
Initialisation: P <« €Q;
Start global search: Choose u in F(P);
Get next symbol: Choose v in A(P/u);
let F = M(uQv)in P« P[u@Quv « F(£,...,Q)]. There are two cases:
1. 3 2 v (P/u@v')Rq; Then for the minimum such v', u < u@v’ and two cases again:
(i) P/u € Rq : exit with answer “Redex u”.
(ii) Otherwise: Get next symbol.
2. Otherwise, two cases:
(i) F(P) =0 : exit with answer “Normal form”.
(iii) Otherwise: Start global search.

Theorem. Let M be any term without variables. If M is normal, algorithm A terminates with

answer “Normal form”. Otherwise, it terminates with answer “Redex «”, with v € Z(2(M)) and
thus M/u > Rq.

The proof of the theorem above is done using Floyd’s method. We shall show that after choosing
v the following assertions are true:

(a) P<M
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We leave it to the reader to show the invariance of the above assertions, using previous results
such as lemma 20. Note that it is essential that A be closed by suffix, in the sense that u@Qv € A(M)
and M/u < Rq imply v € A(M/u). This property is verified by indexes. Let us now show the
converse. More generally, we show that the above assertions entail that u@Quv € Z(P):

Lemma 21. Let P/u < Rq with P such that Yw € D(P) — F(P) (P/wlRq) = w = u. Then
u@Qu € Z(P) for all v € A(P/u).
Corollary. A(M) CZ(M).

Let us however remark that Z(M) does not in general satisfy the requirements for A(M). For
instance, consider Ry = {F(G(A,Q),B), F(G(Q,A),C)}, and R; = Ry U {G(E,E)}. The system
R is necessarily sequential, and both omegas in F(£2,€2) are indexes. However, choosing the first
one as a candidate for v above is wrong, since then at the next step we may get P = F(G(£,),Q)
which has only one index (underlined) and thus assertion (d) cannot be maintained. This in turn
may falsify assertion (b) later. For instance, we would miss the redex in term F(G(E, E), D). Thus
the members of A must be not only indexes, but indexes that may be increased as further indexes,
so that we get a linear piling-up of compatible subterms of P.

This does not entail however that we have a linear chain of non-omega symbols below u. For
instance, consider Ry = Ro U {F(D,z)}. Now in F(€,Q) only the first omega is an index. If we
choose it as v, we get P = F(G(9,9),2). Now this is consistent with all assertions, since here
G(92,9Q) is not potentially reducible.

Let us now finish the proof of the theorem above. When algorithm A terminates at “Normal
form”, we get P = M, and M normal. If it terminates at “Redex u”, we get u € Z(Q2(M)) by
lemma 16.

We shall see later that every necessarily sequential system is progressive. Conversely, every
progressive system has computable indexes. This provides a decision procedure for necessary
sequentiality, since the condition on A is finitary.

There are basically two ways of constructing sets candidate for the A operation: proceed
bottom-up from the empty sets, adding progressively elements with the existence condition. Or
else proceed top-down from the sets of directions, subtracting directions which violate the suffix
condition. The first method seems preferable, since it will generate a minimum solution when
possible. There is no known efficient method of conducting this search, so we may have to backtrack
through the whole search space. However, this is done once and for all for a given set of rules,
and thus this should be counted as the cost of building a compiler for the language. Once the A
sets have been computed, we shall see that it is possible to implement efficiently the sequential
interpreter.

6.5.11 Fast pattern-matching

The first problem we have to tackle is how to make the evaluator deterministic. There are two
non-deterministic choices. The first one is the choice of © among the omegas of P when starting a
global search. This is not a problem. We may for instance decide to pick the left-most such omega.
This can be implemented efficiently as follows. Assume we mark every node of the original term
M as “not traversed”. Every time we read a new symbol, we mark it as “traversed”. This way we
shall get all the choices in a linear time, since term M is traversed just once. This uses just one
bit of space for every node of M, plus a traversing stack of length bounded by the depth of M (i.e.
log| M]).
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The second non-deterministic choice is v in A(P/u). Since the domain of A is finite, we may
have pre-computed it in a table where we have made a deterministic choice once and for all.
However, this leads to a cost proportional, for each node of M, to the maximum size of a pattern
of R. This seems a waste, since the search in the table storing the subterms of patterns could be
done progressively along the traversal of term M.

However there is a difficulty in implementing this approach: we may have to store in this
dictionary structure several distinct linearizations of some of these patterns prefixes. This is true
even if we make a deterministic choice of the directions in the global search, since local searches
may be forced along several distinct partial linearizations. Let us give an example.

The problematic progressive system.

Let Rq = {G(F(A,Q)),F(F(Q,H(A)),B),G(F(F(Q,H(Q)),C))}. Assume we are looking for a
redex in M = P = G(F(F(,9),9Q)). The underlined 2 is the only v where to look next, since
the three non-omegas are potential redexes, and the leftmost omega is not a direction toward the
second pattern. Now there are two scenarios. Either we read an H at this place, and wind up
with P = G(F(F(Q2, H(2)),Q2)) and then we may read a B leading to P = G(F(F(Q,H(Q)), B)).
The second scenario is to read a B, and wind up successively with P = G(F(F(L, B),{2)), next
P =G(F(F(F(2,9Q),B),Q)), finally P = G(F(F(F(Q,H(R)),B),)). In both scenarios we end
up looking for a global redex in subterm F(F($2, H(R2)), B), but unfortunately with two distinct
linearizations: F'; F'; H; B and F'; B; F'; H respectively.

This example shows that it is not possible to simplify the definition of progressive system in such
a way as to make each A set a singleton. What we may hope at best in to replace A(M) by
a single direction 6(wps), where wys is a linearization of M. We do not have to examine all
such linearizations, since they must be obtainable as possible suffixes of sequences of ¢’s. This
computation can be effected at the same time as the progressivity condition is checked, by growing
a matching trie as explained below.

A 6-matching trie has nodes of the form (wps,v) with wy, a linearization of a subterm of a
pattern, and v = 6(wps). It has also success nodes, labeled with linearizations of patterns, and
a failure node labeled Fail. Its arcs are labeled with the functors of the term alphabet. The
initial node is labeled ([1, []). Consider a node (wps,v), and a functor F. Let M’ = M[v «
F(Q,...,Q)]. If M'/ulRg for some non-omega u € D(M), let u be the minimum such occurrence,
and N = M'/u. There are two cases, according to lemma 20. Either N € Rq, in which case we
grow an F-arc toward the corresponding success node. Or else, N < Rq, and with wy = wp; F
and v = §(wy) we grow an F-arc toward the node (wy,v). Finally, if there is no such u, we grow
an F'-arc toward the failure node.

The only choice when growing the matching trie is the function 6. The essential requirement
when choosing v = §(wy) above is that v should be a common direction for every compatible
subterm of N. This requirement makes sense, since by construction all such subterms are aligned.
If this requirement cannot be met, we have to backtrack on the choice of some earlier choice of 6.

If such a matching trie can be constructed, the system is progressive. Furthermore, an efficient
matching algorithm exists. It is enough to remark that the linearization process permits us to
represent efficiently v = §(wps) , when M # Q, as follows. Let us decompose v as v1@Q[k]. The
immediate father vl of v corresponds to some position j in the string wps, and thus we may
represent v as the pair of integers (j, k). j is bounded by the size of a pattern, and & is bounded
by the maximum arity of a functor.

We may now replace the matching trie by a finite automaton table. The states of the automaton
are the various wjs constructed as nodes of the trie. The initial state 0 corresponds to the initial
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node and to the failure node. The final states correspond to the success nodes of the trie. For every
state S, and every functor F' we store the transition state in a table Next(S, F'). For every state
S # 0 we also store the information Index(S) = (j, k). The final algorithm uses a stack Display
for traversing the term M. The pointer F'ree holds the last non-visited node in M. Display holds
the linearization of what we previously called P/u, as a list of addresses. We assume two auxiliary
functions: Mark which marks the currently visited node of M, and Searchfree which finds the
next non-visited node. We now get a fast deterministic evaluator:

Algorithm B.
Initialisation: Free < M; Display < [1; S « 0;
Start global search: P < Free;
Get next symbol: F «— M(P); Mark P; Display < P - Display;
S « Next(S,F). By cases on S:
e Success; : exit with answer “Redex at Q” with @ = Display(|R;|)-
¢ 0: Free « Searchfree(Free). If this fails, exit with answer “Normal form”,
else Start global search.
e Otherwise : Let (j,k) = Index(S) in P «— Display(j)r; Get next symbol.

Our algorithm is the natural generalization to trees of the Knuth-Morris-Pratt string pattern-
matching algorithm [16]. However, note that this algorithm has nothing to do with algorithm D of
Hoffmann and O’Donnell [10], which also uses string pattern-matching for tree pattern-matching,
but in a completely different way. Instead of matching linearizations of patterns, they rather match
in parallel all maximal paths in patterns. Thus for pattern F(A, B), they will not look for string
F; A; B but rather for the two strings F;1; A and F;2; B. The Hoffmann-O’Donnell algorithm
works for arbitrary sets of patterns. On the other hand, it cannot be used for finding an external
redex.

Fast tree pattern-matching theorem. Let R be progressive. For every non-normal term M,
the algorithm B will find a necessarily needed redex of M, in a time of order |M|.

The main remaining problem of the theory above is to find upper bounds for the number of states
of the matching automaton, as a function of |Rgq|.

Example. Let us consider the problematic system above. We leave it to the reader to construct
a matching trie, and to extract from it the following matching automaton tables.

Next
S|Index | F|G|H| A |B| C
0 2110 0\|0]| 0
1(,1) 310 0]0]O0
21 (L2) 2|10 0|4]|0
3((1,1) |5|1|0|S5 |00
41 (21) |6|1|0| 0|0]| O
50(L,2) | 211|704/ 0
6| (1,2) |2]1]|9|0]|4]0
71(32) [2|1|0] 0| 8]S;
81 (21) |2|1]0|S|0/| 0
9| (L,1) |2|1]0|S5,0/| 0
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In the transition table, Sy, So, S, and Ss denote success states corresponding to the three patterns.
Sy and S} are distinguished, since in these two states the linearization of the patterns are distinct,
and this information is needed for the reduction algorithm to perform efficiently, since the variables
positions may be accessed directly in the Display stack.

Using the automaton above, the term G (Fy(F5(Fr7(F9(A, H10(A11)), Bs), H4(Bg)), Bs)) is ac-
cessed according to the subscripts, and algorithm B stops with a redex found at the occurrence
labeled 7.

Another interesting feature of algorithm B is that it can be easily adapted to the problem of
building an interpreter for a given rewrite rules set. In order to be able to restart dynamically
after one reduction, and look incrementally for the next redex, all we have to do is to store pairs
< P,S > in the display. After reduction of a pattern of size n, all we have to do is to pop n times
the display, restore P and S, and continue at “Get next symbol”. Note that this restarting facility
obliges us to keep the whole display (of maximum length |M|), whereas if one is interested only in
finding one redex, the display may be implemented in a circular ring of length the maximum size
of a pattern. We remark that the total cost of the interpretation of a term is the total size of M
and all the right-hand sides substituted when going to the normal form.

6.5.12 Increasing indexes

We now return to indexes, and are going to show that a regular system is necessary sequential iff
it is progressive.

Definition. Let M be an Q-term. We define its set of increasing indexes as:
JM)y={ueZ(M)|VN w(N)=QAQN)=N=>Fvr>uwveI(Mu— N])}

Intuitively, an increasing index can be increased into an index whenever we substitute it with
a potential redex. For instance, with Ry above, both omegas in F(2,2) are indexes, but only the
second one is increasing.

Lemma 22. Let R be necessarily sequential. Then for every normal Q-term M we have J (M) # 0.
Lemma 23. uQu € J(M) = v € J(M/u).

An increasing index may, by definition, be increased into an index. Actually, it may even be
increased into an increasing index:

Lemma 24. Let N be such that w(N) = Q and Q(N) = N. For every u € J(M), there exists
v > u such that v € J(M [u < N1J).

Theorem. Every necessarily sequential system is progressive.
Proof: lemmas 23 and 24 show that J fulfills the requirements for A.

Conversely, it is easy to show that that if a system is progressive it is necessarily sequential. Let M
be any normal Q-term which is not w-maximum. We show that M possesses an index by processing
it with algorithm A above, slightly modified so as to stop at “Get next symbol” on omegas. All
assertions are valid as before, except that (a) reads now P < M. The algorithm may not stop
at normal form, since normal forms are w-maximum. It may not stop at redex either, since M is
normal. It must then stop with w € F(M) satisfying w € Z(P), according to lemma 21. Thus
w e Z(M).
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6.6 Practical applications

The theory presented above is rather complicated. Here we present two simple subcases for which
it is easy to construct the matching automaton tables.
6.6.1 Systems with constructors

We assume the functors are partitioned between parameters and constructors. Every pattern is
of the form F(Ci,...,C,), with F a parameter and the C;’s built only from constructors and
variables. For a left linear system with constructors to be regular, we just have to check that no
two distinct patterns are unifiable.

Lemma 25. A system with constructors is sequential iff the set Rq is sequential.
Proof. We check that for every M < Rq, Dirg(M) satisfies the requirements for A.
6.6.2 Simple systems

Definition. Let R§, = {A/u | A € Rog Au & F(A)}. We say that R is a sequential simple system
iff all subsets of R, are sequential sets.

Then the set of patterns of R is a simple forest in the sense of Hoffmann-O’Donnell [10]. That is,
any two compatible Q-terms M and N of R, are comparable, since the set {M, N} is sequential.

Definition. We define Dir*(M) = Dirs(M), where S = Rg. We then define by induction Z*(M)
for every Q-term M, with 7*(Q2) = {[1}, and Z*(M) = {u@Quv | u € Dir*(QUM)) ANv € T*(M/u)}.

Lemma 26. Let w(M) = Q. Then Z7*(M) C Z(M).

Lemma 27. Any sequential simple system is necessarily sequential.
Proof. We show that if M < R, we have Z*(M) # (0. Thus, Z* satisfies the requirements for A.

The matching trie, and in turn the automata tables, can be easily built up from Z*(M) by induction
on the size of M. We refer the interested reader to [13] for the details, and more examples.
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Chapter 7

Categorical Logic

This chapter introduces the main notions of category theory in a formal and constructive manner,
using a generalization of equational logic. The development of the theories of finite products and
exponentiation gives a categorical presentation of intuitionistic propositional logic.

7.1 General motivation

7.1.1 An axiomatic view of rewriting
Let us review the inference rules for equality rewriting, as an axiomatization of derivations.

We assume given a functor alphabet ® given with arity function «, in which we distinguish an
operator — given with arity 2. We have no substitution inference rule, since it is implicit from the
polymorphism of other rules. The replacement of equals for equals is decomposed into elementary
steps of term replacement rules:

Idy: A— A Reflexivity
~ A—>B B—-C T tivit
;e 150 ransitivity

which specify that the rewriting arrow — is a quasi-ordering. Now we must state that — is
compatible with the rest of the ®-structure. That is, for every functor F' in ® — {—} of arity n
and for every ¢+ < n we take a congruence rule:

Ay — By - Ap— By
F(Ala"'aAn)_>F(Bl7"'7Bn)

Congruence

Functp :

The rewrite rules are added as supplementary axioms (i.e. nullary rules).

The terms which form the types of derivations possess a rich structure, and there is an interesting
interplay between the structure of the derivation space and the term structure. Category theory
is the right formalism in which to express this interplay. We saw earlier that certain properties
of derivations (for instance, the parallel-moves lemma in the case of regular systems), had a nice
categorical characterization. So we shall now recall a minimum of category theory in order to make
precise these points.

7.1.2 The categorical viewpoint

This viewpoint gives a prominent role to the monoid structure of the quasi-ordering —. Simplifying
the presentation, we may present a category as presented by a set of objects Obj, which we shall
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here confuse with the set of (closed) terms over some functor alphabet ®, and by a set of arrows
(or morphisms) which we shall here confuse with the set of (closed) proofs generated from some
inference system Y. containing initially the two rules:

Idy : A—- A Identity

A—=B B—-C

T A—-C
Whenever f : A — B, we say that arrow f has domain A and codomain B. Furthermore, it is
specified that the proofs are quotiented by a congruence = verifying;:

Composition

Idl: Id;f = f
Idr: f;1d = f
Ass: (f;9);h = f;(g;h).

So we see that a category is a structure obtained as a hybrid of quasi-ordering and of monoid, to
which it reduces in the two degenerate cases (i.e. |f : A — B| <1 and |Obj| = 1). In the equations
above, the types of f and g are kept implicit. A principal type compatible with the declaration of
the inference rules can be inferred as usual, by unification.

If A and B are two categories, a functor F' from A to B associates to every object A of A an
object F(A) of B, and to every arrow f : A — B an arrow F(f): F(A) — F(B) such that the
following functorial conditions hold:

F(Id) = Id
F(f;g) = F(f);F(g).

We see a great analogy between the notion of rewriting inference system and the main categorical
notions. Actually, the categorical viewpoint is richer in that the functors have sorts themselves
(i.e., the categories), and poorer in that they do not yet have arities (i.e. we just have monadic
functors so far). In order to build-in arities we shall need products, and a full categorical account of
minimal logic is obtained by a further adjunction, namely exponentiation. But we shall defer this
explanation until later. We have given this elementary development of category theory essentially
to justify our terminology. The congruence rule of term formation explains a functoriality condition
on the object part, and the functoriality condition on the arrow part of the functor expresses the
congruence property for rewriting.

Substitutivity in rewrite rules is expressed by defining them as natural transformations between
the functors denoted by the two sides of the rule. That is, a natural transformation T between
functors F' and G (both from category A to category B) is a mapping associating to every object
A of A an arrow 74 : F(A) — G(A) such that

TA;G(f) = F(f);7s-

And if we consider equations rather than simply rewrite rules, the symmetry inference rule is inter-
preted as the existence of inverses to arrows. Equations are thus defined as natural isomorphisms.
Category theory is explained in Mac Lane [12]. The categorical viewpoint for algebra has been
developed by Lawvere and others [13]. Its application to proof theory is explained (in a somewhat
complicated form) in Szabo [18].
Let us now give a closer look at a possible formalization of category theory along proof-theoretic
lines.
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7.2 The equational nature of category theory

Category theory reasoning proves equality of arrow compositions, as determined by diagrams. The
corresponding equality is given in the model, i.e. in the category under consideration. But the
proofs do not appeal to any particular property of the equality relation, such as extensionality. All
we assume is that equality is a congruence with respect to the arrow operators.

However we are not dealing with simple homogeneous equational theories, but with typed
theories. For instance, every arrow is equipped with its type f : A — B. Here A and B are
expressions denoting objects. These expressions are formed in turn by functorial operations and
constants representing distinguished objects. The object terms can be considered untyped only
within the context of one category. As soon as several categories are concerned, we must type
the objects as well, with sorts representing categories. We thus have implicitly two levels of type
structure.

The main difference between typed theories and untyped ones is that in untyped (homogeneous)
theories one usually assume the domain of discourse to be non-empty. For instance, a first-order
model has a non-empty carrier. Thus a variable always denotes something. In untyped theories
one does not usually make this restriction. Thus we do not want to impose the Hom-set A — B
to be always empty for every A and B in the category, in the same way that we want to consider
partial orderings.

This has an unfortunate consequence: the law of substitution of equals for equals does not hold
whenever one substitutes an expression containing a variable universally quantified over an empty
domain by an expression not containing this variable, since we replace something that does not
denote by something which may denote. For instance, with F,G : 0 — 2 = {T, F}, we have for
every z € ) F(z) = G(x), and yet we cannot conclude T = F. We shall have to keep this problem
in mind in the following.

7.2.1 The general formalism

We have thus a formalism with four levels. At the first level, we have the alphabet of categories
Cat = {A,...,Z}. At the second level, we have the alphabet of objects. Every category is defined
over an object alphabet ® of operators given with an arity. ® is where the (internal) functors live.
We then form sequents by pairs of terms M — N, with M, N € T(®,V). V is a set of variables
denoting arbitrary objects of the category. At the third level we have the alphabet ¥ of arrows.
An operator from 3 is given as an inference rule of the form:

Si,..., S S

where the S;’s and S are sequents. Such an operator is polymorphic over the free variables of the
S;’s and S, which are supposed to be universally quantified over the inference rule. Such operators
are familiar from logic, either as schematic inference rules, or as (definite) Horn clauses. Of course
the arrows with domain M and codomain N are represented as terms over T'(X, F') of type M — N.
Here F is a set of variable arrows, indexed by sequents A — B. Finally, at the fourth level we have
the proofs of arrow equalities. The alphabet consists of a set R of conditional rules of the form:

fi=s, 91, fn=s,9n Ef =59

Here the f’s and ¢ are arrow expressions of type S, and similarly for the f;’s and g¢;’s. All object
and arrow variables appearing in the rule are supposed to be universally quantified in front of the
rule.
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7.2.2 A simplified formalism

From now on, we shall assume that we are in one category of discourse which is left implicit. We
shall therefore deal only with the last three levels. Furthermore, we shall assume that the only
proof rules are:

Refl: f=a-Bf
Trans: f=4.B9g, g=a-BhEf=a-Bh
Sym: f=a.Bg |= f=a-BY9

together with the rules stating that = is a congruence with respect to the operators in Y, all other
rules being given by simple identities, i.e. by rules with an empty set of premisses (n = 0).

The further simplification comes from the realization that we are not really obliged to completely
specify the types of all variable arrows and equalities, since there is a lot of redundancy. This fact
exploits unification, and the following:

Meta-theorem. Let X be an arbitrary arrow signature, and E be an arbitrary term formed
by operators from ¥ and untyped variables. If there is an assignment of types to the variables of E
that makes F well-typed with respect to 3, there is a most general such assignment, independent
in each variable, and furthermore the resulting type of E is most general. Here “more general”
means “has as substitution instance”. We call this assignment, together with the resulting type of
E, the principal typing of E. More generally, for every type sequent S, if there is an assignment of
types which makes F of a type some instance of S, there is a principal such assignment.

The meta-theorem above is most useful. It allows us to omit most of the types. When we write
an equation E = E', we shall implicitly refer to the principal typing giving E and E’ the same type
A — B. So from now on, all equations in R are written without type, the types being implicit
from the principality assumption.

7.2.3 The initial theory Categ

We are now ready to start Category Theory. The initial theory Categ has ® =, and ¥ = {Id, _; _},
given with respective signatures:

Id : A—- A
3_.:A—-B,B—->CFA—-C.

The notation _;_ means that we use the infix notation f;g for the composition of arrows f
and g. We can read f then g, and follow arrow composition along diagrams with semi-colon as
concatenation of the labels. But since more people are accustomed to the standard set-theoretic
composition notation, we shall below use f o g as an abbreviation for g; f.

The equations R of Categ are simply the laws of a monoid:

Ass : (fog)oh = fo(goh)
Idl : Idof = f
Idr : fold = f

It is to be noted that the identification of the Hom-set symbol — with the sequent entailment
arrow is not fortuitious. Actually Id and ; are well-known inference rules of intuitionistic proposi-
tional calculus. However, the logic is quite poor at this stage: we have no propositional connective
whatsoever, just the basic mechanism for sequent composition, stating that entailment is reflexive
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and transitive. The rules of R, considered as a left-to-right rewriting system, define a normal form
on the sequent calculus proofs, i.e. on the arrow expressions.

Before we embark on more complicated theories, let us give a recipe on how to cook an equational
presentation from a categorical statement.

7.2.4 What the category theorists don’t say

Open a standard book on category theory, and consider a typical categorical definition. It usually
reads: “Mumble, such that the following diagram commutes.” Similarly, a typical categorical
result states: “If diagram, and ... and diagram,, commute, then diagram commutes.” The first
step in understanding such statements is to determine exactly their universality: what is exactly
quantified, universally or existentially, what depends on what, what are exactly the parameters of
the (frequent) unicity condition. The next step is to realize that the diagram states conditional
equalities on arrows, and that it is enough to state the equalities of the inside diagrams in order to
get all equalities.

A uniform compilation of such statements as an equational theory proceeds as follows. First
write completely explicitly the quantification prefix of the statement, in two lines, one for the objects
and one for the arrows. Then Skolemize the statement independently in the first and the second line.
That is, for every existentially quantified variable x following the universally quantified y1, ... yn,
introduce a new n-ary operator X and substitute throughout = by X (y1,...y,). The Skolemization
of the object variables determines ®. The Skolemization of the second line, together with the
types implicit from the diagram determine 3. Finally, following arrows around the inner diagrams
determines R. This concerns the existential part. For the unicity part, proceed as follows. Let f be
the arrow whose unicity is asserted. The existence part provided by Skolemization an F'(g1,...,gk)
in place of f. Write a supplementary arrow h on the diagram parallel to f, and use the commutation
conditions to eliminate all the g;’s as G;(h). Add an extra equation F(G1(h),...,Gg(h)) = h.

Once we have convinced ourselves that the category theoretic statements and proofs are of an
equational nature, we may ask: why do the category theorists use diagrams at all? The reason
is that diagram chasing is a sophisticated way of doing complex equality reasoning, using several
equations simultaneously, on a shared data structure (the graph underlying the diagram). So
diagrammatic reasoning may be considered a good tool for high level equational reasoning. On
the other hand, equality reasoning techniques such as rewrite rules analysis is good for mechanical
implementation, and this is why we stress here the equational theories hidden behind the diagrams.

Remark. Let us finally remark that more general categorical concepts than the simple universal
statements that we shall now consider may force us to generalize the basic formalism. For instance,
more complicated limit constructions such as pullbacks force the dependence of objects on arrows.
The Skolemization cannot be effected separately on the object and the arrow variables, and we
shall have to place ourselves in a more complicated type theory with dependent types.

7.3 Products

7.3.1 The theory Prod

We shall apply the recipe above to the definition of product in a category. We recall that a category
possesses a product if for all objects A, B, C there exists arrows fst, snd such that for every object
D and every arrows f, g there exists a unique arrow h such that the following diagram commutes:
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fst snd

D

We now get the theory Prod by enriching Categ as follows. The Skolemization of C' gives the
binary functor x, and we write with the infix notation A x B in place of C. So now & = {x}.
Similarly, we add to ¥ the following operators, issued respectively from fst, snd and h:

Fst : AxB— A

Snd : AxB— B
< ,.>:D—-A,D—-B+-D—-AXB

and we now have the usual diagram:

Fst Snd
A = AxB - B
f < f.g> g
D

The existence of h, that is the commutation of the two triangles, gives two new equations in R:
m : Fsto< fig>=f

mg : Sndo< f,g> = g.

Unicity of h gives one last equation:
UniPair : < Fstoh, Sndoh > = h.
The arrow part of the functor x may be defined as a derived operator as follows:
X_:A—-B,C—>DF AxC—-BxD

Defx : fxg =< foFst, goSnd >
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Remark. There is a possible source of confusion in our terminology. We talked about the elements
of ® as functors. Actually these are just function symbols denoting object constructors. Skolem-
ization of a diagram will determine certain such function symbols, but there is no guarantee that
there will be a corresponding functor. For instance, for product, we had to define the arrow part
of x above, and to verify that indeed it obeys the functoriality laws.

7.3.2 The logical point of view

From the logical point of view, specifying a product amounts to defining conjunction. Read A x B
as AN\ B, and recognize Fst, Snd and < _,_ > as respectively A-elim-left, A-elim-right, and A-intro
respectively [3, 6, 16].

The rules of R have a computational meaning: they specify how to reduce a proof to its normal
form. Here we may apply known results from the theory of term rewriting systems, in order to
complete R to a canonical system [7, 4].

The Knuth-Bendix completion procedure, when applied to theory Prod, generates two addi-
tional rewrite rules:

IdPair : < Fst,Snd > = Id
DistrPair : < f,g>oh =< foh,goh>.

The resulting system R is canonical, and can be used to decide the equality of arrows in the
theory Prod. Of course, the equations above do not modify the theory, since they have been
obtained by equational reasoning.

Finally, let us note that other presentations of the same theory are possible. For instance,
we could have obtained product as the right adjoint of the diagonal functor. The unit of this
adjunction is the duplicator, which may be defined here as:

D =<IdId>.

Note that type-checking imposes that the two identities are the same, so that Dy : A — A x A.
As its name suggests, the duplicator duplicates, in the sense that we can prove Do f = < f, f >.
The co-unit of the adjunction is the pair of projections (Fst, Snd).

7.3.3 Finite products

We say that a category admits all finite products if it admits products and a terminal object.
Equationally, this amounts to enriching the theory Prod to a theory Prods by adding a constant
1 to @, a polymorphic constant Nil : A — 1 to X, and a unicity equation Unil to R:

Unil : h = Nil.

Note that this does not make the equational theory inconsistent: variable h above is principally
typed to A — 1. However this equation brings up two problems. The first one is the one mentioned
in the beginning of these notes, since variable h appears on the left but not on the right of Unil.
The second problem is that Un:1 cannot be considered as a term rewriting rule in the usual sense,
since it would rewrite Nul to itself and therefore does not satisfy the finite termination criterion.
Note that Un:l entails with the other equations two consequences:

Zero : Nilof = Nil

Idl : Id = Nil.
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Again, Id1 does not identify every Id with every Nil, but only (restoring explicit types) Id;
with Nily. Now it may be checked that Unz:l is actually a consequence of Zero and Idl. The rule
Zero is a bona fide rewrite rule, which leaves the special equality Idl to be dealt with in an ad hoc
fashion.

Using operators X and 1 we may now construct n-tuples of objects, which we shall call contexts.
1 is the empty context, and if E is a context of length n and A an object term, F X A is a context of
length n+ 1. We write |E| for the length of an object list. If C is the current set of (representable)
objects, i.e. T(®,V), we denote by C* the set of contexts.

If 1 <14 < |E|, we define the i-th component E; of E recursively, as:

(Ex Ay =A iti=1
E;,_, ifi>1.

If £ and E' are contexts, we define their concatenation FQE’ as a context recursively:

FQl = FE

EQ(E' x A) = (EQE') x A.

Similarly, using operators < _,_ > and Nil we may construct lists, or n-tuples of arrows of
same domain D). The empty arrow list is Nil, of length 0 and if L : D — FE is an arrow list of
length n then < L, f >: D — E X A is an arrow list of length n 4 1, for every f : D — A. Finally,

for every object list and every m, with 1 < n < |E| we define recursively the projection arrow

mp(n) : E — E,, as:
mr(n) = Snd ifn=1
mg(n—1)oFst ifn>1and E = E' x A.
7.4 CCC

7.4.1 The theory Exp

We obtain the theory Exp by enriching the theory Prods as follows. First, we add a binary
operator = to ®. Next we add two operators to X, the constant App (application) and the unary
operator [](abstraction):

App : (B=C)xB — C
] : AxB—-CHF A—-(B=C)

Finally, we add the following equations to R:

ExAbs : App o([1f xId) = f

UniAbs : [(App o(f x Id)) = f

As before, this equational theory may be mechanically generated from the following diagram:
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App
B=CxB - C

Of | d f

A X B

The logical point of view is here that = is the (intuitionistic) implication. The operator App
is =-introduction. It plays the role of the Modus Ponens inference rule (although here it is a
constant, and not a binary operator). Abstraction is =--elimination, and plays somewhat the réle
of the deduction theorem.

Let us give a few equational consequences of the theory Exp:

IdEzp : [JApp = Id

Red; : Appo< [If oy, z>= fo<y,z>
Red : Appo< [If,xz>= fo<Id,z >
DistrAbs : [1f og = [1(fo (g x Id))

We can also show that abstraction is a bijection between the arrows of A x B — C' and those
of A — B = C, with inverse:
[17'f = Appo< fx1Id>.

Thus we could have presented Exp in terms of [] and [17!, and defined App as [17'Id. This
corresponds to the fact that we could have rather axiomatized exponentiation by an adjunction to
the product, whose co-unit is App (the unit being []Id).

Finally, we define the arrow part of the functor = (which is contravariant in its first argument)
as:

f=9 = [(goAppo(Id x f)).

Sometimes [] is called Curryfication, in honor of Curry. In fact there is an important relation
between combinatory logic and CCC’s, which we shall exhibit on A-calculus in the next chapter.
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Chapter 8

A-calculus

This chapter gives an overview of A-calculus, centered principally on the connection between typed
A-calculi, cartesian closed categories, and proof structures of natural deduction.

8.1 Combinatory Algebra

8.1.1 Proofs with variables: sequents

We first come back to the general theory of proof structures. We saw earlier that the Hilbert
presentation of minimal logic was not very natural, in that the trivial theorem A = A necessitated
a complex proof S K K. The problem is that in practice one does not use just proof terms, but
deductions of the form

r+ A4

where I is a set of (hypothetic) propositions.
Deductions are exactly proof terms with variables. Naming these hypothesis variables and the
proof term, we write:

{lzi:Ad...|i<n} F M:A

with V(M) C {z1,...,zn}. Such formulas are called sequents. Since this point of view is not very
well-known, let us emphasize this observation:

Sequents represent proof terms with variables.

Note that so far our notion of proof construction has not changed:
'k M : Aiff Fyyr M @ A, i.e. the hypotheses from I' are used as supplementary axioms, in
the same way that in the very beginning we have defined T(3,V) as T(X U V).

8.1.2 The deduction theorem

This theorem, fundamental for doing proofs in practice, gives an equivalence between proof terms
with variables and functional proof terms:

ru{A} r B & '+ A=B

That is, in our notations:

a)'' - M:A=B = TU{z:A} F (Mz):B

119
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This direction is immediate, using App, i.e. Modus Ponens.
b)Tu{z:A} W M:B = T F [zZIM:A=B
where the term [z] M is given by the following algorithm.

Schonfinkel’s abstraction algorithm:

]z = I (= 5 K K)
[zZJM = K M if M atom (variable or constant) # z
[(z](M N) = S [«]1M [z]1N

Note that this algorithm motivates the choice of combinators S and K (and optionally I).
Again we stress a basic observation:

Schonfinkel’s algorithm is the essence of the proof of the deduction theorem.

Now let us consider the rewriting system R defined by the rules:

optionally supplemented by:
Def;: Iz = z

and let us write > for the corresponding reduction relation.
Fact. ([zZIM N) p* Mz« NJ.

We leave the proof of this very important property to the reader. The important point is that
the abstraction operation, together with the application operator and the reduction [>, define a
substitution machinery. We shall now use this idea more generally, in order to internalize the
deduction theorem in a basic calculus of functionality. That is, we forget the specific combinators
S and K, in favor of abstraction seen now as a new term constructor.

Remark 1. Other abstraction operations may be defined. For instance, the strong abstraction
algorithm is more economical:

[zxlz = T
[zZIM = KM if z does not occur in M
(z](M z) = M if £ does not occur in M

[zZ]J(M N) = S [zIM [z]N otherwise.

Remark 2. The computation relation > of combinatory algebra is confluent. Actually, it is defined
by a particularly simple case of necessarily sequential rewrite rules. It is compatible with the term
structure of combinatory algebra, and in particular with application. But it is not compatible with
the derived operation of abstraction, and thus the £ rule of A-conversion is not valid. That is,
combinatory computation simulates only weak B-reduction.

Similarly to A-calculus, there are typed and untyped versions of combinatory algebra.

Other combinators than K, S and I have been considered. A general combinator is defined by
a rewrite rule:

Czrizg ... Tz, & M,
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where the left-hand side stands for the pattern App(--- App(C,z1)---,x,) and the right-hand side
is an arbitrary term constructed from the xz;’s and App.

A set of combinators is said to form a basis if it is sufficient to derive an abstraction algorithm
(equivalently, if S and K are definable from the set). The state of the art about combinatory
completeness is described in Statman [20].

8.2 Lambda-calculus

We now abandon the first-order term structures of combinatory algebra and turn to A-calculi. We
first consider typed A-calculus, where the set of types 7 is defined as the set of terms constructed
over some functor alphabet ® containing the binary functor =. We write 7* for the set of finite
sequences of types, with 1 the empty sequence and E X A the sequence obtained from sequence £
by adding one more type A.

8.2.1 The (typed) A-terms

We define recursively a relation £ - M : A, read “M is a term of type A in context E”, where
A €T and E € T*, as follows:

Variable : If1<n<|E|then EFn:E,
Abstraction : If E X AF- M : Bthen EF [AIM : A= B
Application : If E-F M : A= Band E- N: Athen E+ (M N): B

Thus a term may be a natural number, or may be of the form [A]M with A a type and M a
term, or may be of the form (M N) with M, N two terms.

We thus obtain typed A-terms with variables coded as de Bruijn’s indexes [2], i.e. as integers
denoting their reference depth (distance in the tree to their binder). This representation avoids all
the renaming problems associated with actual names (« conversion), but we shall use such names
whenever we give examples of terms. For instance, the term [A](1 [BI(1 2)) shall be presented
under a concrete representation such as [z : Al(z [y : B](y z)). In Church’s original notation,
the left bracket was a A and the right bracket a dot, typing being indicated by superscripting, like:
Azt - (z AyP - (y ).

Note that the relation £ + M : A is functional, in that A is uniquely determined from E and M.
Thus the definition above may be interpreted as the recursive definition of a function A = 75(M).

The set 7 of types used in the A-terms has been defined as all terms constructed from &
containing =. The ordinary Curry-Church A-calculus is obtained when ® = {=} U7, where 7j is
a finite set of atomic types, for instance {bool,int}. But we may include other functors in ®. For
instance, 7 may be taken as the set of objects in a cartesian closed category.

8.2.2 A translation from A-terms to CCC arrows

We shall now show how to translate A-terms to CCC arrows. More precisely, to every term M such
that EF M : A we associate an arrow Fg(M) : E — A as follows:

Fg(n) = wg(n)

Fg([AIM) = [IFpxa(M)
Fgp((M N)) = Appo < Fg(M), Fg(N) >
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It can be easily proved by induction that Fr(M) is a well-typed arrow expression.

Example. The closed term M = [f : nat = natl [z : natl(f (f z)) of type A = (nat =
nat) = (nat = nat) in the empty context £ = 1, gets translated to:

Fg(M) = [Q[(Appo < Sndo Fst, Appo < Sndo Fst, Snd >>):1 — A.

8.3 The syntactic theory of A-terms

The advantage of the name-free terms is that we have no name conflict. The disadvantage is that
we have to make explicit the relocation operations for terms containing free variables. For instance,
let us define for every term M the term M ™™ obtained in incrementing its free variables by n. Let

M+ = RY(M), with:

Ri(k) =k  ifk<i

k+n ifk>q
RL([AIM) = [AIRLHY (M)
R,((M N)) = (R, (M) R,(N)).

The reader will check that E+ M : A iff EQE' - M*" : A, where E' is an arbitrary context of
length n.

We now define substitution to free variables. Let E X AF M : B, and F + N : A. We shall
define a term M{N}, and show that E -+ M{N} : B. First we define recursively:

y(k) =k if k<n
Nt ifk=n
k—1 ifk>n
Y ([AIM) = [AIXNTH(M)
IR (M N)) = (Sx(M) IR(N)).

It is easy to show that substitution preserves the types, in the sense that (E x A)QE'+ M : B
and E + N : A implies EQE' - Y% (M) : B, with n = |E'|.
Now we define M{N} = X% (M), and we get that Tg(M{N}) = 7gxa(M), with A = 75(N).

We are now ready to define the computation relation > as follows:
(LAIM N) > M{N) ()

M > M = [AIM > [AIM' (6)
M 1> M = (M N) > (M N)
M > M = (N M) > (N M.

It is clear that computation preserves the types of terms. But it also preserves their values, in
the sense of the translation to CCC arrows: If E- M : A and M > N, then Fg(M) = Fg(N) in
the theory Exp, as we shall show.

The computation relation presented above is traditionally called (strong) (-reduction. It is
confluent and ncetherian (because of the types!), and thus every term possesses a canonical form,
obtainable by iterating computation non-deterministically. Another valid conversion rule is 7-
conversion:

[x: AI(M z) = M (n)
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whenever x does not appear in M. Let us show that it corresponds to UniAbs, using our translation
above.
First we define the relocation combinators p(i) as follows.

p(0) = Fst
p(i+1) = p(i) x Id

It is easy to show that (with appropriate types):

(k) o p(i) = n(k) ifk <i
w(k+1) ifk >

and thus that R: (M) = M op(i). As a particular case we get M1 = M o Fst and thus we can
read the law UniAbs as [z](M*! z) = M. Whenever = does not occur in M the expressions M
and M 1! are concretely identical, and we obtain the 7 conversion rule. Note however that UniAbs
is an algebraic law, whereas 77 makes sense only relatively to concrete representations.

We are now going to show that Red validates the S-reduction rule. First we define the substi-
tution combinators as follows.

on(0) = < Id,N >
on(n+1) = on(n) x Id

Next we check that for every A-terms M,N and every integer n the following equation is provable
in Exp (confusing M with F(M), and assuming types are correct):

YN(M) = Mooy(n).
This suggests defining in Exp the derived operator:
{}: AxB—-C,A—-BFA->C

with defining equation:

Subst : f{z} = fo<Id,z>

and now the rule Red reads:

Appo < [f,z > = f{x}

which clearly validates the computation relation [>.

8.4 J)-calculus variations

8.4.1 Weak reduction

There are many variations on A-calculus. What we have just presented is typed A-calculus, with
Curry-Church types. The notion of computation > is strong g reduction. It is also interesting
to consider a weak reduction, obtained by not allowing rule £ above. Thus, weak reduction is not
compatible with the abstraction operator []. As we have already seen, A-calculus may be translated
into combinatory algebra, but the natural computation rule associated with the set of combinator
definitions seen as term rewriting system corresponds then to weak reduction, not strong reduction.



8.4. A-CALCULUS VARIATIONS 124

8.4.2 Pure \-calculus

If we remove the types, we get the theory of pure A-calculus. The set of pure lambda terms is

defined as:
A= {J M
n>0
where the set A\, of A-terms with n potential free variables is defined inductively by:
eic )N, if1<i<n
o [IMe X, if M € Mg
e (M N)eX, if M,|N € A,

As we did previously, we get readable concrete syntax by sticking variable names in the brackets,
as in [z]z. The terms in Ay are the closed pure A-terms. Analogous untyped versions of the rules
above define analogous computation rules. Sometimes syntactic properties are easier to prove in
pure A-calculus. For instance, the confluence property in typed calculi is an easy consequence of
the corresponding property in the pure calculus, if we remark that computation preserves typing.
The classical method, due to Tait and Martin-Lo6f [1], consists in proving that the relation [ is
strongly confluent, with > defined as the reflexive and compatible closure of:

MP>M ND>N

(IIM N) IZM’{N’}'
It is easy to check that indeed > and > have the same reflexive-transitive closure, whence the
result. As we saw for regular term rewriting system, such a “parallel moves” theorem is actually

much stronger than strong confluence, since it corresponds to the existence of pushouts in an
appropriate category of computations. The theory of A-calculus derivations is worked out in detail
in J.J. Lévy’s thesis [15, 16]. Note that contrarily to the theory of regular term rewriting systems,
the parallel reduction B> is not limited to parallel disjoint redexes, since in A-calculus residuals of
a redex may not be disjoint. For instance, consider ([u] (v v) [w]([z]v y)).

The theory of (-n-reduction is rather complicated. Actually, note that there is a critical pair
between the two rules, since ([z](M z) N) contains conflicting redexes for the two rules. Fortu-
nately, the two rules reduce to the same term (M N). However, the two rules are usually dealt with
separately, since it can be showed that 7 conversions can be postponed after 8 reductions. In the
following, we write > for the B-reduction rule, and = for its associated congruence. The theory of
B-reduction is similar to the theory of regular term rewriting systems. Certain results are simpler.
For instance, the standardization theorem has a simpler form, since the standard derivation always
reduces the leftmost needed redex. Others are more complicated, due to the residual embedding
noted earlier.

Certain theorems are identical for the pure calculus as for the typed case. Other aspects of pure
A-calculus differ from the typed version. In the pure calculus, some terms do not always admit
normal forms. For instance, with A = [u]l(u u) and L = (A A), weget L > L >... A more
interesting example is given by

Vo= [f1(Led(f (v ) [Wl(f (vw)
since (Y M) = (M (Y M)) shows that Y defines a general fixpoint operator. Y is called the

Curry fixpoint operator. Other fixpoint operators are known. For instance, the Turing fixpoint
operator is defined as:

© = ([21lyl(y (z 2 y)) [=1lyl(y (z z v))),
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and it verifies the stronger property that for every M we have (6@ M) >* (M (© M)).

Exercise. Show that ® = [p]l[f1(f (¢ f)) is a generator of fixpoints, in that M is a fixpoint
combinator iff ®(M) = M.

The existence of fixpoint operators, and the easy encoding of arithmetic notions in pure A-
calculus, make it a computationally complete formalism: all partial recursive functions are defin-
able. We shall not develop further this aspect of A-calculus, but we just remark that it entails the
undecidability of most syntactic properties. Thus 2 is an undecidable relation, and it is generally
undecidable whether a given term is normalisable or not.

What we are mostly concerned here is the application of A-calculus to logic. And one may
worry about the interpretation of fixpoints of propositional connectives such as negation. The next
section shows that indeed pure A-calculus is logically problematic.

8.4.3 Curry’s version of Russell’s paradox

Our framework is minimal logic, with propositions represented as pure A-expressions. That is, we
assume that = is a constant of the calculus. We assume that we have as rules of inference:

A=B, A}t B (App)
FA= A (1d)
F(A= (A= B))= (A= B) (W)

It is easy to see that (W) is valid in minimal logic (consider [u: A = (A = B)]1[v: Al(u v v)).
Now consider an arbitrary proposition X. Let us define N = [A]JA = X, and let M = (Y N). N

is in a way the minimal meaning for negation, and M is a fixpoint of it. That is:
M=~ (M = X). (*)

Now we get M = M from Idys, and thus M = (M = X) by (x). Using App and D we infer
M = X, and thus M using (%) in the reverse direction. A final use of App yields X, which is an
arbitrary proposition, and thus the logic is inconsistent [6].

Thus combinatory completeness of the pure A-calculus at the level of propositions is not com-
patible with the logical completeness issued from the typed A-calculus at the level of proofs.

Half way between the typed and the pure calculus we find typed calculi where additional
constants and reduction rules have been added. For instance, it is possible to add typed recursion
operators in order to develop recursive arithmetic in a sound way [21]. Let us now consider a
particularly important typed calculus.

8.4.4 A-calculus with products

CCC arrows are richer than A-terms. This suggests enriching A-calculus with further operators
fst, snd, pair,nil with appropriate supplementary reduction rules, and to allow “varstruct” bindings
in the concrete syntax in order to have variables correspond to arbitrary sequences of F'st and Snd,
as opposed to just integers coded up in unary notation. For instance, ML (without recursion) can
be translated into CCC arrows by a simple extension of the translation F' above.

Let us formalize this idea. We now consider a A-calculus with types formed with x,=, and 1.
The rules of formation of the calculus are as follows. We define recursively a relation E + M : A,
read “M is a term of type A in context E”, where A € 7 and E € T*, as follows:
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Variable : If1<n<|E|then EFn:E,
Abstraction : If E x A+ M : B then E+ [AIM : A= B
Application : If E- M : A= Band EF N: Athen E- (M N): B

Pairing : IfEF-FM:Aand EF N:Bthen EFM,N:AXx B
Projl : If EFM:AXBthen EF fst(M): A

Projr : IfE-M:AxDBthen EF snd(M) : B

Nil : EF():1

The computation relation extends the one given above, with supplementary rules:
fst(M,N) > M

snd(M,N) > N
fst(M), snd(M) > M (SP)
M() if M:1 and M # ()
Mp>M = M,N>M,N
Np>N = M,N >M,N'
M > M' = fst(M) > fst(M')
M > M = snd(M) > snd(M'")
[z:A1(M z) > M (n)

This computation relation is confluent [17] and Neetherian [10].

Let us now consider the set A" of all such A-terms defined in a context of length 1, i.e. with
at most one free variable. We abbreviate 1 x AF M : B as M : A — B. We associate with every
M :A— Be€ ) an Exp arrow M : A — B as follows. We use u for the name of the free variable
of M, in order to avoid complex de Bruijn indexes.

M=u M=1d

M = [BIN M = [1P where P = N{1 < snd(u)}{2 « fst(u)}
M = (M; M,) M = Appo < My, My >

M = My, M, M =< My, My >

M = fst(N) M = FstoN

M = snd(N) M = Sndo N

M=) M = Nil.

This definition is well-founded, using a weight function ¢ such that £(k) = 0 for k a variable,
E(fst(M)) =0 if £(M) = 0 and similarly for snd.

Exercise. Show that the congruence classes of A\{" with respect to > form a CCC.

Conversely, we define an inverse translation from a ground arrow term M : A — B in Exp to a
term M : A — B in A, as follows.
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M =1d M=u

M = M o My M = Mi{M>)

M = Fst M = fst(u)

M = Snd M = snd(u)

M =< My, My > M = My, Mo

M = Nil M = nil

M=1IN M = [1(P{u < (2,1)}) where P =N
M = App M = (fst(u) snd(u)).

Lemma. For every term M € A}, we have (M) = M, where & is the equivalence generated by I>.

Corollary 1. A\{/ = is isomorphic to the free CCC.

Corollary 2. The theory Exp is decidable.
Proof. ExpF M = N iff M and N have the same [>-normal form.

This method is due to Lambek and Scott [14]. The decidability of the word problem for free
CCC’s was first shown by more complicated methods in Szabo [22].

8.4.5 Other sub-theories of CCC’s

The Exp theory is decidable, as we saw. Unfortunately, no canonical system is known for the full
theory. An interesting sub-theory is obtained by restricting R to the set

R1 = {Ass,Idl, Idr, 7,79, Distr Pair, [dPair,UniPair, Red, Distr Abs}.

Considered as a (typed) term-rewriting system, R; is locally confluent. This can be mechanically
checked by the Knuth-Bendix decision procedure. Note that this is possible because a system such
as R1 may be considered as an (untyped) equational theory in the ordinary sense, by mixing the
arrow structure and the object structure as follows: every arrow sub-term M of type A — B is
represented as T'(M, A, B), where T is a special ternary function symbol. Note that variables in the
type subparts get instantiated by matching and unification, in the same way as the variables in the
arrow subparts. This supports our view of the polymorphic nature of the categorical combinators.

The system R is neetherian, and thus confluent. It would be interesting to have the termination
argument formulated so as to show that the rewriting relation is a simplification ordering. However,
note that this argument cannot work on the Y-trees alone, since the corresponding untyped system
is strong enough to code the g-reductions of untyped A-calculus (and furthermore Klop has shown
that A-calculus with surjective pairing is not Church-Rosser [12]).

Another interesting locally confluent subtheory is:

Ry = {Ass, Idl, Idr,n1, 79, Distr Pair, IdPair,UniPair, Red, Red; }.

The state of the art in the theory of categorical combinatory algebra and its relations with
various A-calculi can be found in Curien’s extensive monography [5].

8.4.6 Extensions of the CCC theory

It is also possible to enrich the type structure with sums, corresponding to categorical co-product.
The Exp theory is enriched with injections and a conditional operator. The corresponding models
are the bi-cartesian closed categories.
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It is also possible to axiomatize the existence of a natural number object, in order to get
primitive recursive functions. We may even axiomatize a general fixpoint operator.
Finally, we may postulate the existence of a universal object U and build the pure A-calculus

in the manner of Scott, as described in [19]. That is, we postulate a retract pair between U and
U—U:
Quote : (U=U)—-U

Eval :U — (U=1)

verifying:
Retract : Eval o Quote = Id.

Let us call Univ the theory obtained by the corresponding enrichment of Exp.
We may now translate any M € A, as an arrow A,(M) : U™ — U as follows:

An(k) = myn(k)
A ([1M) = Quoteo [JA,11(M)

Ap((M N)) = Appo < Evalo A,(M), Ap(N) >.

We leave it to the reader to check that the S rule is still an equational consequence of Univ.
However, note that the n rule is not valid anymore, since it would entail that Fval and Quote define
an isomorphism between U and U = U.
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Chapter 9

Propositional Natural Deduction

9.1 Proof theoretic methods

Let us give a short interlude on the general methodology we have been following. Our approach
has been to classify logical systems according to the formal structures underlying propositions and
proofs. We used analogies drawn from computer science (types and programs) and category theory
(objects and arrows). We identified three levels of generality of hierarchical structures:

e terms
e terms with variables
e \-terms.
For instance, concerning proofs, we get at the three levels:
e Hilbert systems
e Sequent formulations
e Natural deduction, as seen below.

The point of view of computation, by rewriting proofs, is the key to showing many meta-
mathematical properties. In proof theory, a redex schema is called a cut. In natural deduction, a
cut takes a form of the composition of an introduction rule for some connective with the elimination
rule for the same connective. For instance, in minimal logic, this corresponds to the (3 redex
(LAIM N). Cut elimination consists in showing that this proof rewriting relation is ncetherian.
The corresponding A-calculus property is called strong normalization.

Strong normalization shows that every proof is equivalent to a normal proof, having the struc-
ture of a normal A-term. This proves the equivalence of the original logical system with a simpler
system, whose inference rules reflect the construction rules of normal terms. This simpler system
is usually useless for actually carrying out deductions. In particular, proofs in the normal system
may be much larger than the proofs in the original systems. That is, every lemma is expanded out
like a macro, leading to a completely explicit reasoning sequence. However, the simplicity of the
normal system makes more apparent certain of its properties.

For instance, in many cases the normal system has the subformula property: for every infer-
ence rule, every antecedent formula is a subformula of some consequent formula. Such systems
are immediately seen to be logically consistent. This was the original application of Gentzen’s

131
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techniques. Of course, according to Gédel’s theorem, this does not establish absolute consistency
of the logic, but relativizes it to a carefully identified troublesome point, the proof of termination
of some reduction relation. This has the additional advantage in providing a hierarchy of strength
of inference systems, classified according to the ordinal necessary to consider for the termination
proof.

Finally, in the cases where the notion of subformula is such that any formula has only a finite
number of subformulas, the subformula property yields directly the decidability of the corresponding
system. This permits to give an immediate proof of decidability of intuitionistic propositional
calculus.

9.2 GGentzen’s systems

Gentzen considered two kinds of systems: the N systems of natural deduction and the L systems
of sequent calculus. Both systems come in two flavors: the intuitionistic systems, and the classical
systems (the latter beeing denoted by Nx and Lk respectively). These calculi are defined by
inference rules operating not simply on propositions, but rather on judgements of the form I' - A,
for the intuitionistic systems, and of the form I' - A, for the classical systems. Here I and A denote
finite sets of propositions, and A denotes a proposition. These judgements may be considered as
types of deductions, i.e. proofs from hypotheses, i.e. terms with a set of free variables.

9.2.1 The N system

The role of variables is taken by the base sequents:

Axi P
xiom AT A
together with the structural thinning rule:
r -B
Thinni P
inning TU{A] I B

which expresses that a proof may not use all of the hypotheses. Gentzen’s remaining rules give
types to proofs according to propositions built as functor terms, each functor corresponding to a
propositional connective. The main idea of his system is that inference rules should not be arbitrary,
but should follow the functor structure, in explaining in a uniform fashion how to introduce a
functor, and how to eliminate it.

For instance, minimal logic is obtained with ® = {=}, and the rules of = intro and = elim,
that is:

S intro - LOlAFE B
T - A= B

i DHASB A4
TUA F B

Conjunction is obtained by adding:

kA AFB
FruUA F AAB

'FAAB
'FA

A intro

A elim left
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THAAB
T'-B

We remark that the rule of thinning may then be dispensed with, since it may be derived from the
A and Aziom rules. One gets positive logic by adding the rules for disjunction:

A elim right

V ntro left ”714
'HAvVB
V intro right ﬁ
I'AVBEB
v elim :FI—AVB AU{A}+C @U{B}I—C.
FruAuerc

Finally, full (intuitionistic) propositional logic is obtained by adding negation:

~Tu{A}+-B AU{A}F-B
FuUAF -4

T'FA AF-A
Tr'uArB

Alternatively, we could introduce negation by definition, adding a constant | for falsity, defining
—-A as A= 1, and adding a rule:

= ntro

= elim

1 elim 'k1
elim : F—-
The classical system N is obtained from N by replacing the — elim rule by:
r--4
Classical @ ————
assica TE A

which expresses that classical proofs are proofs by contradiction (this is the well known reduction
of classical logic to intuitionistic logic by double negation).

Such propositional systems can be extended to first-order logic by giving appropriate rules for
quantifiers. Further extensions yield arithmetic, set theory, etc... However we do not have yet the
formal apparatus to discuss dependent types, and thus we abstain from presenting these rules; this
difficulty leads in standard textbooks to side-conditions restricting the application of the rules such
as “where x does not appear free in ...”

9.2.2 The L system

The judgements of the system are sequents I' H A where I' and A are finite sets of propositions.
In the intuitionistic version, we have |A| < 1, and we write I' - A when A = {4}, and I' - L when
A = (. We keep the base sequents Axiom. The basic idea is to keep the introduction rules, but to
replace the elimination rules by rules of introduction to the left of . The structural rules are:

. k1
Struct right Tra
'HB
Struct left | —————
ruct left  FOTAT T B
and minimal logic is obtained with:
~Tu{A}+-B

= rght : TSR
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TU{B}FC AFrA

z :
=t FUAUAS BIFC

Conjunction is then obtained by adding:

" THA AFB

A right
g TUAFAAB

TU{4,B}FC

Al : .
A FUTAnBIFC

This last rule may be replaced by two simpler rules:

ru{Aa}rc
Fru{AAB}rC

ru{B}rcC
TU{AAB}+-C’

with the help of Struct left. We get positive logic by adding the rules:

: 'HA
V right, TEAVE

: T'HB
V right, : TEAVE

" Tu{4}FC AU{B}FrC

V left
of TUAU{AVB}FC

Finally, propositional calculus is obtained with:

. DU {A}F L

= right “TE-A
'HA

—left | ————.

o FUATE L

The classical system Ly is obtained by adding supplementary sets of propositions to the right
of .

Facts. The system L has the subformula property, i.e. every formula appearing in the numerator
of every rule is a subformula of some formula appearing in the denumerator. Furthermore, it is
consistent, in the sense that the sequent @ - | is not derivable, as is obvious since no rule applies.
Finally, it is easy to see that if I' -7 A then I' Fx A, by showing that every rule of L is a derived
rule of V.

The converse of the last statement is not obvious, since the elimination rules of N do not satisfy
the subformula property. Let us consider an extended system LT, obtained by adding to L the
following:

I'tA AU{A}FB
TruArB

It is now easy to show that the rules of N are derived rules of L*. All that is left to show in
order to prove that L and N are equivalent is thus:

Cut
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Gentzen’s Theorem. I' -+ A implies ' -1, A.
Proof. We look at the derivation tree of A in L™, and we eliminate the occurrences of the cut rule
by appropriate reduction rules, in a bottom-up fashion. Details are given in [10, 12, 19, 3].

This historically fundamental theorem establishes the consistency of the corresponding theories in
a completely finitist way, except for the termination proof (the argument showing that the proof
normalization terminates). Rather than giving a completely detailed proof, we shall now show how
it is possible to normalize directly the proofs in IV, using A-calculus techniques.

9.3 A J)-calculus formalization

9.3.1 The minimal system with proofs

The judgements of the Gentzen systems admit implicit structural rules from the structure of finite
set of propositions on the left of -. For a meta-mathematical study it is more convenient to be more
explicit and represent these sets as lists of propositions. The judgements become thus sequents of
the kind we encountered in our study of A-calculus. Furthermore, the idempotence of set union
on the left of - is not justifiable intuitionistically, since it really corresponds to a principle of
proof irrelevance. (Whereas commutativity and associativity are justifiable categorically since the
corresponding laws correspond to natural isomorphisms)

For instance, we may formalize minimal logic (with its proofs) along exactly the formation rules
of (typed) A-calculus, in the following system Min:

v
M DX AFVar(l): A
v '+Var(n): B
Wl T AF Var(S(n)) : B
TxAFM:B
Abstr X

T [AIM:A= B
oy DFM:A=>B TEN:A
PPt TF(MN):B

Now we define a cut as an application of the S-conversion rule. Cut-elimination is thus strong
normalization of (typed) A-calculus. It proves the equivalence of the above system with a system
describing the structure of normal terms.

9.3.2 The normal minimal system with proofs

Such a system may be obtained by adding to judgements I' F M : A another sort of judgement:
I' M :: A, meaning that M is a non-abstraction term of type A in context I'. We thus obtain the
normal system Norm(Min) of minimal logic:

v
T X AFVar(l) = A
re=v @ B
Varp1 ar(n)
I'x AFVar(S(n)):: B
I'xAFM:B
Abstr X

I'-[AIM: A= B
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I'tM: A= B 'EN:A

Appl

(M N):B
c T'EFM: A
oerce TEM A

Discussion. Our judgements I' - M : A may be taken as propositions of a meta-system admitting
a ternary functor (i.e. predicate) for each form of judgement. Thus such judgements could be
verified using a Prolog-like mechanism. This is essentially the method used by G. Kahn and his
colleagues in their natural semantics system [2]. However, if one is interested in using this inference
system as the specification of a proof checker, we remark that this specification is functional in
nature, in that I' - M : A may be interpreted as determining A uniquely from I' and M, leading to
a direct implementation in a functional language with pattern-matching such as ML . Furthermore
if the meta-language has a mechanism for type inclusion then the rule Coerce vanishes completely,
the coercion from :: to : being automatic from the shape of M. This mechanism has been proposed
by Ait-Kaci [1]. Of course, we could also dispense with Coerce by duplicating rule Appl with two
cases for M (corresponding to variable and application), but this would not be as elegant.

Remark 1. The 7-rule can be accomodated as a maximum 7-expansion normalization. This
amounts to requiring type A to be atomic in rule Coerce above.

Remark 2. Adding conjunction amounts to considering a A-calculus with products. The CCC
presentation Exp gives a simple axiomatization, with 1 standing for the truth-value True.

Problem. Compare this axiomatization with the one derived from the Hilbert presentation in
Chapter 3. Quantify precisely in which way it is more efficient. Is it possible to give a com-
plete restriction to Prolog which will make it a decision procedure for Minimal Logic in either
axiomatization?

9.3.3 The proof-irrelevant minimal system

If one is interested in the inference system above for generating proofs, then the power of Prolog
is needed for dealing with rule Appl, since A does not appear in the denumerator. If one is
interested only in the existence of a proof, and not in the proof object itself, the M arguments
may be dropped from the rules. It is convenient to formulate such a proof-irrelevance system with
Gentzen-like sequents I' - M, where I' is again a finite set of propositions:

Ael
'HA

Tu{A}+ B

T-A= B
I'HAy,....,TFA, A= (Ay= - (A, = B)---) €T
T+ B '

This infinite, but simple, system expresses exactly in what way the normal system above has the
subformula property. Using remark 1 above, we may restrict B to be atomic in the third rule.

Exercise. Derive from the system above a decision procedure for Minimal Logic.

Problem. Derive from the above considerations a generalization of Prolog where clauses and
literals are generalized to a common abstraction.
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9.4 Tait’s computability method

We give in this section a short overview of Tait’s method for proving strong normalization of typed
A-terms. We write TSN for the set of strongly normalizable (typed) A-terms.

Definition. Let ' - M : A. We say that M is computable iff:
e either A is atomic and M € TSN
e or A= B = C and for every computable N, with I' - N : B, we have (M N) computable.

From now on, we assume that ' is such that it contains an initial prefix containing every
primitive type. Thus we assume the primitive types to be non-empty. This will ensure that for
every type A there exists a computable term C4 such that I' - Cy4 : A.

Remark. If M is computable, and M reduces to N, then IV is computable, by an easy induction
on the type of M.

Convention. In the following, when we write (M M; ... M,), this notation includes the term M
in case n = 0.

Lemma 1. T'F (n N; ... Ni): A is computable whenever N; € TSN (0 <k),and'HF M : A
and M computable implies M € TSN.

Proof. Induction on A.
Corollary. Every computable term is strongly normalizable.

Lemma 2. If M{N} is computable, then ([AJM N) is computable provided N is computable
when M is constant (i.e. the variable 1 does not appear in M).

Lemma 3. Let I x A- M :Band I'F N : A, with N computable. Then M{N} is computable.

Corollary. Every term is computable.
Hint: Induction on M.

We may now conclude:
Strong Normalization Theorem. Every (typed) A-term is in TSN.

The complete proof of the lemmas above is given in [19]. Extensions of this method to calculi with
more functors is given in [20].

9.5 A syntactic interpretation

We shall here give a more abstract treatment of Tait’s method, due originally to Girard, and
modified by Coquand. This method extends to stronger calculi, as we shall see in the next chapter.

The idea is to build an interpretation Z of typed A-terms as follows. We denote by v(M) the
pure A-term obtained by erasing the type information of bound variables. Let SN denotes the set
of strongly normalizable closed pure A-terms built on one constant €2.

Definition. A subset S of SN is said to be saturated iff

o VN, Mi,..., M, € SN (M{N}M, ... M) € S=(IMN M, ... M,)€S
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e Ni,...,Ny € SN = (2 N,...Ny) €S.

We write Sat for the set of saturated subsets of SN.

Now assume the interpretation 7 associates with every typed term M its corresponding pure
term Z(M) = v(M), and with every type A a set Z(A) C Sat, in such a way that ' - M : A
implies Z(M) € Z(A). This clearly shows that every M is strongly normalizable, since M > N iff
v(M) > v(N).

We may now immediately place Tait’s method in this framework, by defining:
I(A) = SN if A is atomic,

I(B=C)={M |VN € Z(B) (M N) e Z(C)}.

Exercise. Show that the lemmas above prove that for every proposition P, Z(P) has the required
properties. Actually Z(A) may be interpreted as an arbitrary element of Sat, for A an atomic type.

Remark 1. The “saturated” condition is directly inspired from the result one wants to prove,
here strong normalization. Other desired properties may be obtained using other definitions of
saturation. For instance, if one only wants to show normalizability, it is enough to replace the
first closure condition by the simpler condition: M > N and N € S implies M € S. The special
constant € is needed in order to have a non-trivial interpretation for the non-atomic propositions.

Remark 2. The interpretation above is syntactic in nature. It is possible to transform such an
interpretation into an extensional one, using Gandy’s hull technique, generalized by Plotkin and
others with the technique of the so-called logical relations. (Note that the interpretation above is
typically a logical predicate). More generally, logical mappings are (typed) A-calculus morphisms.
The state of the art on logical relations is described in [18].

9.6 Realizability

The interpretation above may be considered a realizability interpretation, in the spirit of Kleene
[9]. However, here the derivation of I' F M : A gives directly a realization of proposition A as
a A-term v(M), without going to the detour of computing Gédel numbers as codes of recursive
functions. We leave the development of this recursion-theoretic view of intuitionistic proofs for a
future version of these notes.
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Chapter 10

Polymorphism

10.1 ML’s polymorphism

We saw that formal systems could be pleasantly presented using polymorphic operators (inference
rules) at the meta level. It seems a good idea to push polymorphism to the object level, for functions
defined by the user as A-expressions. To this end, we introduce bindings for type variables. This
idea of type quantification corresponds to allowing proposition quantifiers in our propositional logic.
First we allow a universal quantifier in prenex position. That is, with T, = T(®,V), we now
introduce type schemas in Ty = Ty UVa- T, « € V. A (type) term in 77 has thus both free
and bound variables, and we write FV (M) and BV (M) for the sets of free (respectively bound)

variables.

We now define generic instantiation.
Let 7 = Vaj...am 10 € Ty and 7' = VBy...0, - 7§ € T1. We define 7/ >¢ 7 iff 1) = o(79) with
D(o) C {oq,...,ap,} and B; € FV(r) (1 <1i < n). Note that > acts on F'V whereas >¢ acts on
BV. Also note

>t = o) >¢ o(7).

We now present the Damas-Milner inference system for polymorphic A-calculus [11]. In what

follows, a sequent hypothesis A is assumed to be a list of specifications z; : 73, with 7, € T3, and
we write FV(A) = U; FV(m).

TAUT : AtF z:a (z:a€A)

INST : iti“ (@ <q B)
GEN Afll—;/_IM; —— (ag FV(4)
app A FMAZ Ijl(]\_/_f”]-\f)A; I—TN -

48 A
spp . AFM 7 AU{z:T} FN 27

AbFlete=MwmnN : 1
141
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For instance, it is an easy exercise to show that
Fleti = [z]lzin (ii) : a— a.

The above system may be extended without difficulty by other functors such as product, and
by other ML constructions such as letrec. Actually every ML compiler contains a type-checker
implementing implicitly the above inference system. For instance, with the unary functor list and
the following ML primitives: [] : (list «), cons : ax (list o) (written infix as a dot), hd : (list o) — «
and tl : (list o) — (list @), we may define recursively the map functional as:

letrecmap f1 = if l =[] then [] else (f (hd 1)) - map f (¢l 1)

and we get as its type:
F map: (a — B) — (list «) — (list B).

Of course the ML compiler is not implemented directly from the inference system above, which is
non-deterministic because of rules INST and GEN. It uses unification instead, and thus computes
deterministically a principal type, which is minimum with respect to <g:

Milner’s Theorem. Every typable expression of the polymorphic A-calculus possesses a principal
type, minimum with respect to generic instantiation [18].

ML is a strongly typed programming language, where type inference is possible because of the
above theorem: the user need not write type specifications. The compiler of the language does
more than type-checking, since it actually performs a proof synthesis. Types disappear at run time,
but because of the type analysis no dynamic checks are needed to enforce the consistency of data
operations, and this allows fast execution of ML programs. ML is a generic name for languages of
the ML family. For instance, by adding exceptions, abstract data types (permitting in particular
user-defined functors) and references, one gets approximately the meta-language of the LCF proof
assistant [15]. By adding record type declarations (i.e. labeled sums and products) one gets L.
Cardelli’s ML [2]. By adding constructor types, pattern-matching and concrete syntax, we get the
ML presented in Chapter 1. A more complete language, including modules, is under design as
Standard ML [19]. Current research topics on the design of ML -like languages are the incorporation
of object-oriented features allowing subtypes, remanent data structures and bitmap operations [3],
and “lazy evaluation” permitting streams and ZF expressions [28, 20].

Note on the relationship between ML and A-calculus. First, ML uses so-called call by value im-
plementation of procedure call, corresponding to innermost reduction, as opposed to the outermost
regime of the standard reduction. Lazy evaluation permits standard reductions, but closures (i.e.
objects of a functional type @ — [3) are not evaluated. Finally, types in ML serve for ensuring the
integrity of data operations, but still allow infinite computations by non-terminating recursions.

10.1.1 The limits of ML ’s polymorphism
Consider the following ML definition:
letrec power n f u = if n =0 then u else f (power (n —1) f u)

of type nat — (o« — a) — (o — «). This function, which associates to natural n the polymorphic
iterator mapping function f to the n-th power of f, may be considered a coercion operator between
ML ’s internal naturals and Church’s representation of naturals in pure A-calculus [6]. Let us recall
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briefly this representation. Integer 0 is represented as the projection term [f][u]u. Integer 1 is
[f1[ul(f u). More generally, n is represented as the functional 7 iterating a function f to its n-th
power:

n = [f1I(f (f ..(f u)...)

and the arithmetic operators may be coded respectively as:
n+m = [f1ul(n f (m fu))
nxm = [l (m f))

n™ = (mn).

For instance, with 2 = [f][ul(f (f u)), we check that 2 X 2 converts to its normal form 4.
We would like to consider a type

NAT = Va-(a— a) — (a— a)

and be able to type the operations above as functions of type NAT — NAT — NAT. However the
notion of polymorphism found in ML does not support such a type, it allows only the weaker

Va-((a = a) = (a=a)) = ((@a=a) = (a—a)) = (@=a) = (a—a)

which is inadequate, since it forces the same generic instantiation of NAT in the two arguments.

10.2 Second-order \-calculus

The example above suggests using the universal type quantifier inside type formulas. We thus
consider a functor alphabet based on one binary — constructor and one quantifier V. We shall now
consider a A-calculus with such types, which we shall call second-order A-calculus, owing to the
fact that the type language is now a second-order propositional logic, with propositional variables
explicitly quantified. In order to emphasize this connection, we actually write = instead of —. In
this calculus, we shall be able to form types (propositions) such as:

(VA-A=>A)= (VA - A= A).

Such a calculus was proposed by J.Y. Girard [13, 14], and independently discovered by J. Reynolds
[22].

10.2.1 The inference system

We now have two kinds of variables, the variables bound by A-abstraction, and the propositional
variables. Each kind will have its own de Bruijn indexing scheme, but we put both kinds of bindings
in one context sequence, in order to ensure that in a A-binding [z : P] the free propositional
variables of P are correctly scoped. A context I' is thus a sequence of bindings [z : P] and of
bindings [A : Prop]. We use de Bruijn indexes V(n) and P(n) to reference respectively the two
kinds of variables. However, there is a slight difficulty if one tries to adhere too strictly to de
Bruijn’s notation. Consider the context I' = [A : Prop] [x : A][B : Prop]. In concrete syntax, we
write I' - z : A. But if we use de Bruijn’s indexes for propositional names, we get in the abstract
syntax I' = V(1) : P(2), i.e. the propositions have to be relocated.
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In order to remedy this notational difficulty, we shall assume a mixed naming scheme, allowing
concrete names for free variables of expressions as well as integers for bound variables. The binding
operation [z : P] M denotes now the abstract [P]M’, where M’ is M where every occurrence of
x is replaced by the correct de Bruijn’s index. Similarly we provide a binding operation VA - P for
propositional variables. Finally an operation AA - M binds a propositional variable in a term.

A context I' is said to be valid if it binds variables with well-formed propositions. Thus the
empty context is valid, if I' is valid and does not bind A then I'[A : Prop] is valid, and finally if
I is valid and does not bind z then I'[x : P] is valid provided I' - P : Prop. This last judgement
(propositional formation) is defined recursively as follows:

[A: Prop] €T
I'-A: Prop
I'-P: Prop I'-Q: Prop
'FP=Q:Prop
I'A: Prop] + P : Prop
'~VYA-P:Prop
Let us now give the term-formation rules. We have two more constructors: AA-M which makes

a term polymorphic, by V-introduction, and < M P >, which instantiates the polymorphic term M
over the type corresponding to proposition P, by V-elimination.

[z: Pl el
'kFz:P
~I'FP: Prop IM'x:P1-M:Q
'Flz:PIM:P=Q
I'FM:P=Q 'EN:P
(M N):Q
I'lA: Propl] - M : P
" TFAA-M:VA-P
I'FM:VA-P I'-Q@: Prop
'F<M Q>: P{Q}p
We do not make explicit the propositional substitution operation P{Q}p, which is defined

similarly to the A-calculus substitution M {N} seen previously. The latter will be denoted here by
M{N}vy.

Var

Abstr

Appl

Gen

Inst

Proposition 1. If T is valid, then I' - M : P implies I' = P : Prop.
We leave the proof of such easy (but tedious) lemmas to the patient reader.

Let us now give an example of a derivation. Let Id := AA- [z : A]lz. Id is the polymorphic
identity algorithm, and we check easily that - Id : One, where One := VA:.-A = A. Note that
indeed One is well-formed in the empty context. Now we may instantiate Id over its own type
One, yielding: F<Id One>: One = One. The resulting term may thus be applied to Id, yielding:
F (<Id One> Id): One.

Similarly, we can define a composition operator for proofs, whose type is the analogue of the cut,
or detachment rule:

[P : Propl[Q : Propl[R: Propl - [f : P = Qllg:Q = Rllz: Pl(g (fz)): ((P=>Q) =
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(Q=R)= (P = R)).
We shall use the notation f;g as a shorthand for the too cumbersome (< Compose P Q R> f g),
since the type arguments P, ) and R can be retrieved as subparts of the types of f and g.

10.2.2 The conversion rules

The calculus admits two conversion rules. The first one is just g:

B

"TF ([z: PIM N) > M{N}y~

The second one eliminates the cut formed by introducing and eliminating a quantification:

ro.
B Tr<AA-M P> oM{Plp

Of course, we assume all other rules extending > as a term congruence, as usual. We may also
consider analogues of the n rule.

Proposition 2. If 'isvalid, TFM :Pand ' M > N thenI' N : P.

10.2.3 The syntactic interpretation

We proceed as in the last chapter. However, here there are no primitive types. In order to have a
non-trivial interpretation, we introduce a supplementary constant €2 to our untyped A-terms. Let
Aq be the set of such terms, and SN be the set of strongly normalizable terms of Aq.

Definition. A subset S of SN is said to be saturated iff
e VNe SN (M{N} M, ... M,) e S= (DM N M, ... M,) €S
e eSS
e Ni,...,.Ny € SN = (2 N;...Ng) €S.

Note that in the first clause, we may limit ourselves to considering M and the M;’s in SN. We
write Sat for the set of saturated subsets of SN.
We now define the interpretation Z by defining for every term M its corresponding pure term

IZ(M) =v(M), where

o v(AA - M) = v(M)
e y(<M P>)=v(M).

Note that v(M) is a pure A-term constructed over the list of free variables {z | [z : P] € I'}.

Finally, to every A such that [A : Prop] € I' we associate an arbitrary saturated set Z(A).
Let I(T') be the product of all such Z(A)’s. We define recursively the interpretation Zzr)(P) of a
proposition P, such that I' - P : Prop, as follows:
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¢ Ig(P = Q)={M |VN € Ig(P) (M N)€Zg(Q)}

o Ig(YA - P) = Nsesar Zaxs(P)

e 7g(A) = Ga.

Example. Z(Id) = [11. Z(One) contains all strongly normalizable terms whose canonical form is
[11, plus strongly normalizable terms whose canonical form has head variable 2.

10.2.4 Basic meta-mathematical properties
The main use of the interpretation above is to prove:

Girard’s theorem. If T is valid and T'+ M : P, then Z(M) € Z(P) € Sat.
Corollary 1. v(M) € SN.

Corollary 2: Strong normalization. The conversion [> on typed terms is Ncetherian.
(Note that 3’ alone is Noetherian).

Definition. Let I' be a valid context, with I' = P : Prop. We say that P is inhabited in T iff
Tz(ry(P) contains a term without ’s.

Note that if ' = M : P, then P is inhabited (by Z(M)). We know obtain the consistency of the

logical system as:

Soundness Theorem. The type V =VA - A is not inhabited.
Corollary. There is no term M which proves V.

Undecidability Theorem. The following problem is recursively unsolvable: Given a valid context
I' and a proposition P, with I' P : Prop, find whether or not there exists an M such that
'EM:P.

The second-order A-calculus does not admit principal types. For instance, we shall show below that
combinator K may be typed in several incompatible manners. We may still wonder whether it is
decidable whether an arbitrary pure A-term is typable in the system or not. This is an important
open problem:

Problem. Give a procedure which, given a pure A-term 7', decides whether or not there exist M
and P such that - M : P, with T = v(M). Alternatively, show that the problem is undecidable.

10.3 Examples of polymorphic proofs

In this section, we demonstrate the power of expression of the second-order calculus by way of
examples.

10.3.1 Intuitionistic connectives

We first show that the other propositional connectives are definable in the calculus. It is well
known that the intuitionistic connectives are definable in the second-order propositional calculus.
The encoding of conjunction was already proposed by Russell, as explained in Prawitz [21].
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Let P and @ be two propositions. We define P A Q as the proposition:
PAQ =VA- (P=Q=A)= A.

As usual, we associate implications to the right, and applications to the left. The definition above
is a correct encoding of A, as can be seen from the derivation of the standard rules of conjunction:

[P:PropllQ:Propllz: Plly:Q1FAA-[h:P=Q=Al(hzy): PAQ

[P: Propl[Q: Propllz: PAQl1F (<z P> [u:Pllv:Qlu): P
[P: Propl[Q: Propllz: PAQlF (<z Q> [u:Pllv:Qlv):Q.

In order to understand this sort of definition, it is best to wonder what is the operational use
of the concept one is trying to define. Once this is clear, the concept can be easily programmed.
This procedural interpretation is faithful to the intuitionistic semantics. For instance, P A Q is a
method for proving any proposition A, provided one has a proof that A follows from P and Q.
Note that the proof of A-introduction above is a pairing algorithm, the two projections being the
proofs of A-elimination on the left and on the right.

We may similarly “program” the (intuitionistic) sum P + @ of two propositions P and Q:

P+Q :=VA-(P=A)= (Q=A4)=> A
Sum elimination is proved by the conditional, or case expression:
[P:Propl[Q:Propl FAA-[u: P=Al[v: Q=Allz: P+ Ql(<z A> uw)
:VA-(P=A)=(Q=>A)=>(P + Q)= A.
The two sum introductions correspond to the two injections:
[P:PropllQ:Proplt [z: PIANA-[u:P= Allv:Q = Al(uz): P= (P+Q)

[P:Propl[Q:Propl - [y:QIAA-[u:P=>Allv: Q= Al(vy): Q= (P+Q).

10.3.2 Classical logic

Classical reasoning is reasoning by contradiction. The contradiction, or absurd proposition, proves
every proposition A by mere application:

V = VA- A

V has no proof, and may thus play the role of the truth-value False. Negating a proposition
amounts to asserting that it implies V, whence the concept of negation:
- [A: Prop]l] .= A= V.

The Sheffer’s stroke A | B (read “A contradictory with B”) may be defined as:
[A: Prop] | [B:Propl] := A= B=V.
It is easy to show VA -VB - (A | B) <= —(A A B). The other classical connectives may be
simply expressed in term of | :
[A: Prop]l D [B: Propl] := A|-B
[A: Propl V [B: Prop] = (-A)|(—-B)
[A: Prop] = [B: Prop] := (ADB)A(BDA).
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Let us call classical closure of proposition A its double negation:

C([A: Propl) := —(-A).
Every proposition denies its negation:

[A: Prop]l - [p: Allqg: -Al(q p): A= C(A).

The reverse implication holds only of classical propositions:

Classical([A : Propl) := C(A) = A.

We can show that V,—, | construct only classical propositions, and thus so do V and D. Finally,
A preserves the property of being classical, and thus = constructs also classical propositions.
Actually, classical reasoning consists in general in showing that a set of propositions {44, ..., An }
is contradictory. The connectives V, =, | express this notion for n = 0,1, 2 respectively.
Let us remark that it is easy to prove the principe of the excluded middle:
[A: Prop]l F<Id C(A)>: "AV A.

Remark. Many other encodings of the propositional connectives may be used. Let us give two
alternate definitions for classical disjunction:

[A: Prop] V' [B: Prop] := C(A+ B)

[A: Propl V' [B: Prop] := VC - Classical(C)= (A= C)= (B=C)= C.

10.3.3 Universal algebra and abstract data types

Initial algebras

We first show how to formalize the elementary notions from Algebra, in particular the notion of
free algebra over a given signature. We start with the homogeneous case, that is we assume in the
following that contexts start with a proposition letter taken as unique sort: [A : Prop].

For every n > 0, we define the A-cardinal m associated to n by induction:
0=A
n+l=A=mn.

We define now the functionality ¢(3) associated to a signature Y represented as a list of
operators given with their arity, by:
p(0) = A
O([F :n] ¥)=71= ¢(%).

Such definitions are easily programmable in the meta-language.
We now obtain the initial algebra associated to signature ¥ by abstracting over the type given
as carrier of the algebra:

I(X) =VA- ¢(%).
Let us now consider an arbitrary Y-algebra. That is, we assume we place ourselves in context I :
I'="[A: Prop][Fy :n1] - [Fs:7s].

If M : I(Y) is an arbitrary construction of an element of the initial X-algebra, we call image
of M in the Y-algebra I' the term M' = (< M A> F; --- F;). We remark that this term is
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well-formed, with type A. This notion of image corresponds, classically, to taking the image of
M by the unique ¥-morphism from I(X) to I'. For instance, when M; : I(X), M,y : I(X), ... ,
My, : I(X), we get (Fj, M{ - Mng) : A. We define thus a F}, operator of arity nj over I(X), that
we call the Fg-constructor, obtained in discharging I', and a list of nj, variables of type I(X).

Definition. Let X be an arbitrary signature of length s:
Y=[F :ng] - [Fs:ngl.
We define the set Dat(X) of data elements of ¥ as the set:

{v(M)| M =AA-[F,:71]--- [Fs : m;]N with N canonical}.

Remark. The set of canonical elements in Z(X) has too much redundancy if we do not assume
the 7 rule of conversion. The data elements restrict consideration to the A-terms in 7-expanded
normal form:

The Representation Theorem. Dat(X), structured with the constructors, is isomorphic to the
initial algebra in the class of all 3-algebras.

Problem. Prove the theorem above.

Examples of data types

Let us now give a few examples. When ¥ = (), we get I(X) = V, the empty algebra. When

Y =1[i:0], we get I(X) =One := VA- A= A, and the i-constructor is Id = AA - [i : Ali.
With ¥ = [t:0][f:0], we get: I1(X) = Bool := VA-A= A= A, and the two constructors

are the Booleans of Church [6]:

True := AA-[t:AJ[f: Al w

False := AA-[t: AI[f: A] f.

When ¥ = [s:1][z:0], we get I(X) = Nat, Church’s naturals :
Nat == VA-(A=>A)=>A=A

S = [n:Natl]AA-[s: A= Allz: A] (s (Kn A> s 2))

0 := A -[s: A= Allz: A] =.

When ¥ = [c¢: 2] [n: 0], we get I(X) = Bin, the binary trees:

Bin .= VA- (A= A=>A)=>A=A

Cons := [a;: Binllag: Bin]JAA-[c: A= A= Alln: Al (c (<a1 A> cn) (<ag A> cn))
Nil := [A: Propl]lc: A= A= A][n: A] n.

Generalization to non-homogeneous algebras

It is straightforward to generalize these notions to the non-homogeneous case, introducing as many

sorts as necessary. For instance, the list structure is axiomatized on two sorts A and B as follows:
List == VA,B- (A= B = B)= B = B.

The operation of adding an element to a list is polymorphic. Let us consider the list schema, over
proposition A:

List A == VB-(A= B = B)= B = B.

We now define, in context I' = [A : Prop]:
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Add := [z:A][L:(List A)JJAB-[c: A= B= Blle:B] (cz (<L B> ce))
:VA- A= (List A) = (List A).

We remark the analogy with ML ’s list constructor. Here the empty list is doubly polymorphic:
Empty := AA-AB-[c: A= B = Blle: Ble : List.

More generally, we may define all the data structures corresponding to free algebras. We remark
that the corresponding propositions are restricted to degree 2, with the degree ¢ defined as:

e 5(A)=0 (A variable)
o 5(VA- M) = §(M)
e (P = Q)=maz{l+6(P),5(Q)}.

Problem. Generalize the Representation theorem above to the non-homogeneous case.

Second-order arithmetic

Let us give a few examples of programs over naturals. Addition is obtained by iterating successor:
Plus := [m: Natlln: Natl(<n Nat> S m).
Other definitions are possible. Multiplication is similarly obtained by iterating addition:
Times := [m: Nat][n: Natl(<n Nat> (Plus m) 0).

We may also “see” our naturals as polymorphic iterators. Another possible definition of multi-
plication of m and n would thus be the composition m;n.

Exponentiation is obtained by iterating multiplication:
Ezp := [m: Natlln: Natl(<n Nat> (Times m) (S 0)).

Iterating a natural on a functional type may produce non-primitive recursive functions; for
instance we get Ackermann’s function by diagonalization:
Ack := [n:Natl(<n (Nat = Nat)> ([f: Nat = Natl[m: Nat] (<m Nat> f m)) S).

Indeed, most (total) recursive functions are definable as proofs in this formal system:

Theorem. (Girard [14]. See also [26]). Every recursive function provably total in second-order
arithmetic is definable as a proof of type Nat = Nat in the polymorphic A-calculus.

10.3.4 Algebraic Programming

We may consider the polymorphic A-calculus a powerful applicative programming language. It is
both poorer than ML , in that no universal recursion operator is available, and richer, in that it
provides a more complicated type structure. The price to pay is that there is no algorithm for
synthesizing a principal type.

This language is revolutionary, in that it confuses data structures and control structures. Here,
a data structure is but an unfulfilled control structure, waiting for more arguments to be able to
“compute itself out”. Thus to each of the data types seen above corresponds naturally a control
structure. For Ome it is just the identity algorithm. For Bool it is the notion of conditional;
that is, if b : Bool and M : A, N : A are the two branches of the conditional, the expression
If b Then M Else N may be implemented as (< b A > M N) : A. For Nat, the polymorphic
natural n : Nat may be thought of as the construction for i:= 1 to n do. Compare this with
iterate n, as defined in 1.1.1. Note that equality to zero is easily defined as:

EqZero := [n: Natl(<n Bool> [b: Booll False True).



10.3. EXAMPLES OF POLYMORPHIC PROOFS 151

As remarked above, the conjunction connective builds in product. Writing alternatively A x B
for A A B as defined above, we get the pairing and projection algorithms as proofs of respectively
A-intro and A-elim:

Pair := AMA,B-[z:Ally: BIAC-[h: A= B=Cl(hzy)

Fst := AA,B-[z: Ax Bl(<z A> [u: Al[v: Blu)

Snd := AA,B-[z: Ax Bl(<z B> [u: Al[v: Blv)

Thus, for instance, for any types A and B, <Fst A B>: Ax B = A, just as in ML .

However, the sum constructor is different: there is no analogue of the operators outl and outr
here, since all the functions we may define are total:

Case :== AMA,B-[z: A+ BIAC - [u: A= Cllv: B=Cl(<z C> uw)

Inl := AA,B-[z: AJIAC-[u: A= Cl[v: B= Cl(u x)

Inr := AA,B-[z:BIAC - [u: A= Cl[v: B= Cl(v z)

Primitive recursion

It is possible to represent standard program schemas by combinators. For instance, it is shown in
[8] how to define simple primitive recursive schemes.

10.3.5 Ordinals
All the propositions (types) considered above are very simple, since they are restricted to degree 2.

With more complex types, we may define richer data structures. For instance, Th. Coquand [7]
has shown how to define ordinal notations, as an extension of the naturals above. We just enrich
Nat with a limit operation, which associates an ordinal to a sequence of ordinals, represented as a
function of domain Nat. We define thus:
Ord := VA-(Nat=>A)=>A)=(A=>A)=> A=A
Olim := [0:Nat=O0rd]AA[li:(Nat=>A)= Al [s: A= Al [2: A1 (li [n:Nat](<(on) A> lisz))
Osucc := [a:0rd]AA-[li: (Nat = A) = Alls: A= Al[z: Al (s (Ka A> s z))
Ozero := AA-[li: (Nat= A) = Alls: A= Allz: A] =.

It is straightforward to coerce a natural into the corresponding ordinal, which defines the
sequence of finite ordinals:
Finite := [n: Nat] (<n Ord> Osucc Ozero).

Note that we instantiate the polymorphic natural n over type Ord. Thus the meaning of type
quantification is to quantify over an arbitrary proposition definable in the calculus, and not simply
over some totality circumscribed to the construction at hand. In other words, the calculus is
inherently non predicative, and we are using this feature in an essential way.

The first transfinite ordinal, w, may be simply obtained as limit of finite ordinals:
w = (Olim Finite).

We may program over ordinals the same way we do with naturals:

Oplus := [a:O0rd][B:O0rdl(<p Ord> Olim Osucc )

Otimes := [a:O0rd]l[B:Ord]l(<B Ord> Olim (Oplus o) Ozero)

Oexp = [a:0rdl[B:0rdl(<p Ord> Olim (Otimes a) (Osucc Ozero)).

Our ordinals are in fact ordinal notations, i.e. ordinals presented by fundamental sequences. In
particular, (Oplus (Osucc Ozero) w) and w are two distinct constructions.
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We may get the ordinal €y as the iteration (Oexp w (Oexp w---)):
€ = (<w Ord> Olim (Oexp w) Ozero).

We may now use ordinals to define functional hierarchies. First, we give preliminary definitions
concerning integer functions:

Incr := [f:Nat= Natlln: Nat]l (S (f n))

Iter := [f:Nat= Natlln: Natl (n Nat f n)

Diag := [0: Nat = Nat = Natl[n: Nat] (o n n).

Schwichtenberg’s fast hierarchy may be defined as:
Fast := [a:Ordl(<a (Nat = Nat)> Diag Iter Osucc)
and the slow hierarchy is defined similarly (note that we just change the successor argument):

Slow = [a:O0rdl(<a (Nat = Nat)> Diag Incr Osucc).

It is to be noted that (Fast €) is a total recursive function, but this fact is independent (i.e.
undecidable) from Peano’s arithmetic [12, 16].

Note that more powerful ordinals may be defined. For instance:

BigOrd = VA-(Ord=A)=A)=(A=>A)=>A=A

We may then use BigOrd’s in turn to define still more powerful sequences, defining HugeOrd, etc...
Let us call this family of ordinal notations the Scott family. Now consider the Plotkin ordinals:

ORD :=VA- (VB (B=>A)=>A)= (A=>A)=> A= A

Problem. Define the limit constructor :

LimORD :VA- (A= ORD) = ORD. Consider now:

RetractORD := < LimORDORD >: (ORD = ORD) = ORD. Investigate the properties of
(RetractORD <Id ORD>): ORD.
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Chapter 11

Constructive Type Theory

11.1 The Calculus of Constructions

11.1.1 Designing a higher-order system

The first step consists in extending the polymorphic A-calculus in order to allow the binding of
proposition schemas. This permits the definition of propositional connectives inside the formalism.
For instance, in polymorphic A-calculus, we defined A at the level of the meta-notation: A was just
a macro of the meta language expanding into a proposition of the formal system. Now we want to
be able to write A as a combinator internally.

Next we abstract on such propositional connectives, leading to a higher-order propositional
calculus. The first problem we encounter is a notational one. We shall have to distinguish between
the proposition schemas, where some variable is functionally abstracted, and the propositions where
the same variable is universally quantified.

Convention. We shall keep the square brackets for functional abstraction, and use parentheses
for universal quantification, using the traditional notation (x : A)M.

The second extension consists in adding a first-order part, allowing quantification and abstrac-
tion on “elements”. The natural question to investigate is: what are we going to choose as the types
of the elements? The simplest decision is to follow once more the Curry-Howard paradigm: we
already have the proofs, as elements of the types the propositions. This gives us not only 1st-order
logic, but higher-order logic as well, since an implication will play the role of a functional type, and
thus we encompass Church’s theory of types just because we shall have intuitionistic propositional
calculus as a sub-system of the propositions. We may wonder why it is legitimate to use the proofs
as elements: aren’t we pre-supposing some structure of our domains? Actually not, since the proofs
are the bare bones of a functional type system: they are nothing more and nothing less than the
A-expressions of the right type.

Let us thus assume that we have propositions closed under quantification (z : P)Q and abstrac-
tion [x : P1Q. The first remark is that implication becomes a derived notion: P = @ is just a
notational variant for (z : P)Q in the special case when = does not occur in Q.

11.1.2 A first formalization

Let us now introduce explicitly a constant Prop for the type of propositions. At the level of proofs
[P : Prop]l M gives us what we wrote previously AP - M. Similarly, quantifying a proposition over

155
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Prop, as in (P : Prop)Q, gives us what we wrote previously VP - Q. This suggests unifying also
the notation <M P> with (M N). We thus arrive at a very simple calculus.

The types of proposition schemas are formed by quantification over the constant Prop. Let us
use the constant T'ype for denoting all the types of the system, that is the propositions plus the
quantifications over Prop.

In all the following rules, I' is assumed to be a valid context, where the rules for valid contexts
are:

e The initial context I'g = [Prop : Type] is valid.

e If I' is a valid context which does not bind variable x and I' - T : T'ype then I'[z : T'] is a
valid context.

e If I' is a valid context which does not bind variable ¢ then I'[t : T'ype] is a valid context.

The first rule concerns accessing variables in a context:
[x:T] el
Var: TrL. T
The above rule is shorthand for T'+ Var(k) : TT*~1 when Ty, = [z : T1.
We now generalize proposition formation to type formation, as follows:

I'FP: Prop

' P:Type

I'EP:Type T'[A: Pl M:Type
'+ (A:P)M : Type

'FP:Type T[A:P]FM: Prop
I'+(A: P)M: Prop '

Inclusion :

Product :

Quant :

Finally, we have term formation rules:
'-T:Type T'lxe:T1FP:Type T'lz:T]HM:P
: TrFlz:TI1M: (z:T)P
'M:(z:T)P TEN:T

'+ (M N): P{N}

Abstr

Appl :

Remarks. The constant Type is a “type of all types”. However, it is not itself of type Type.
Note also that there is a redundancy between the rules Product and Quant. We could formulate
the system without this redundancy, but it is convenient to keep this presentation because it is
compatible with further extensions.

Definitions. Let ' - M : N, with I' a valid context. When N = Type, we say that M is a valid
I'-type. When N = Prop, we say that M is a valid I'-proposition. The valid I'-types of the form
(A1 : P)(As : Py)--- (A, : P,)Prop are called I'-products. Finally, when I' H M : N, with N a
valid I'-proposition, we say that M is a I'-element. The pure system of Constructions is obtained
by deleting the third rule of context formation, which allows the introduction of T'ype variables. In
the pure system, the only primitive type is Prop, and thus the only valid types are the products
and the propositions.

We shall use a number of abbreviations. First, we write - M : P for I'o - M : P. Then, we give
notations for the non-dependent products, that is for terms (u : P)Q in the case where u does not
occur in ). When both P and @) are propositions, we write P = @. In other cases we write rather

P — Q. Finally, we abbreviate (A : Prop)M into VA - M and [A : Prop] M into AA- M.
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11.1.3 Adding type conversion

In the polymorphic A-calculus seen in the last chapter, we defined propositional connectives as
abbreviations. Thus for propositions P and @, the notation P A Q was just a meta-linguistic
notation for the appropriate proposition. In the new calculus under consideration, connectives are
indeed definable as expressions, and propositions are formed using the general rules of A-calculus.
We should therefore expect to need internal reduction rules for playing the role of macro-expansion.

It is indeed the case that such rules are necessary for type-checking. For instance, let us assume
we define conjunction along the ideas of the previous chapter:

A := [P: Propl[Q: Propl(R: Prop)(P = Q= R) = R.
Now if we try to define the first projection, in a context
['=[P:PropllQ: Propllz: (AP Q)1,

we shall be unable to form the term (xz P), unless we are able to recognize that the type (A P Q)
is equal (by [-conversion) to (R : Prop)---.

The above discussion shows that some amount of type equality rules must be provided in a higher-
order calculus. To what extent such rules should be explicit (from the point of view of a user
checking a derivation using inference rules) is unclear. For instance, we may profit from meta-
theoretical results (confluence, strong normalization) and convert all types to normal form using
A-calculus reduction rules. Now type equality is just identity of such canonical forms. But there
is an obvious drawback here: we may spend useless time converting to normal form some types
which could be recognized as different immediately by inspection of their head normal form. Thus
[u: Al[v: Al(u ---) and [u: A]1[v: Al(v ---) need not be reduced any further. This problem
is aggravated by the fact that the higher-order nature of the calculus makes it possible to have
subparts of types which are elements. For instance, if P is a predicate over a propositional type A,
then for any element p : A we may have to convert p to ¢ in order to apply = : (P p) as argument
to a proof of some lemma of type (P q) = ---.

We now present various rules of conversion which may be used to axiomatize type equality =.
Various sub-calculi are obtainable by taking a subset of these rules, together with the rule of type
conversion:

T'-M:P THP = Q
THM:Q

'FM:N
M =2z M

Type Equality :

Refl:

TFM

SYM I EEN = M

Fl_Plgpg F[l‘:Pl]'—MlgMQ

Ab
s¢ TF(z:POM, = [z:P]M

Q " F"Plgpz I‘[a::Pljl—MlgMz

nanted TF (z:P)M;, = (z:Py)M,
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THF(MN):P TFM

Appleq :

T'lx:AlFM:P 'EN:A
' ([z: AIM N) = M{N}

Beta :

. I M:P
CTrl:A(Mta2) = M

Et

Various subsystems can now be discussed. First, the rule Fta may be omitted. Then the rule
Abseq (corresponding to the & rule of A-calculus) may be deleted, yielding a weak conversion system
corresponding to combinatory conversion.

Finally, when the conversions at the level of the elements (i.e. the terms of type a proposition)
are omitted, we get the restricted calculus of constructions.

The calculus of constructions presented above was defined in Th. Coquand’s thesis [18], who
proved the main meta-theoretic properties. Variations on the basic calculus are presented in [22, 23].

11.1.4 Example

We want to define the intersection of a class of classes on a given type A. A natural attempt is to
take

Inter := [C:(A — Prop) — Prop][z: A]1(P: A— Prop)(C P)— (P z).

Let us place ourselves in the context
I'=1[Cy:(A— Prop)— Prop]l [Py : A— Prop]l[po: (Co Po)].

We shall build a proof of the inclusion of the predicate (Inter Cp) in the predicate Py. Let us
consider

A =T1[z: Al[h: (Inter Cy z)].
We want to build with pg, z, h, Py, Cy a term of type (Pp ).

Intuitively, A which is of type (Inter Cy z) is also (by logical conversion using the definition of
Inter) of type (P : A— Prop)(Co P) = (P z), and thus we may take the term (h Py po). Now,
taking:

Subset := [P: A— Propl[Q: A— Propl(z: A)P(x)=Q(z) : (P:A— Prop)(Q : A— Prop)Prop,

we get

'k [z: A1[h: (Inter Co z)](h Py po) : (Subset (Inter Co) Pp).

This example shows that the conversion of types rules are absolutely needed as soon as one wants
to develop mathematical proofs (note that this example can be developed in the restricted calculus
as well as in the full calculus). The need for conversion rules is equally emphasized in [46] and [62].
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11.1.5 A few meta-theoretic properties

In the following statements, the meta-variable E denotes an arbitrary judgement (which may be
of the form M : P or M = N). We omit the proofs, which proceed by induction on the derivation.

Lemma 1. If ' - E, then every prefix of T is valid.

Lemma 2. If I'[z: PIAFEand ' M : P, then I'[M/z]A+F [M/z]E.

Lemma 3. fI'-M :Pand THM 2 N, then ' N : P.

Lemma 4. If ' - M : N in the pure calculus, then IV is a I'-product or a I'-proposition.

Thus, the only types are propositions and products, and the type of a valid term is a valid term.
Finally, we may show that types are unique, up to conversion:

Lemma 5. fI'F M : Ny and ' M : No, then I' - N7 =2 Ns.

For the restricted calculus, we can show directly that the relation I' = F between contexts and
judgements is decidable in the restricted pure calculus of constructions.

The proof in all details is rather long, but the main idea is simple, and its development straightfor-
ward. One defines first the notion of reduction > associated to our notion of conversion, similarly
to what we saw in the previous chapters. Then the usual argument of normalisation for the (simply)
typed A-calculus applies, with the notion of complexity of a term defined as follows.

Definition. The logical rank §(M) of a term M is defined by the inductive rules
1. (M) = 0, if M is not a product type
2. §(Prop) = 1

3. 8((x: M)N) = maz(§(M)+1,5(N)).

Lemma 6. If ' F M = N, then §(M) = §(NV).

This lemma shows that all the types of a constructed object have the same rank, and it allows the
definition:

Definition. Let I' - (([z : P1 M N) : 7, with T a product type. We say that we have a logical
redex, of complexity the rank 6(P).

The complexity of a valid term of the restricted calculus is then defined as the multiset of com-
plexities of all its logical redexes. This complexity decreases by innermost reduction, whence the
existence of a normal form, and the decidability of the conversion relation. The normalisation
property of > entails the decidability of I' - E.

Decidability Theorem. Given I' and M, it is decidable in the restricted calculus whether or not
there exists a term NV such that I' - M : N. Furthermore, if the answer is positive, we can compute
effectively such an N.

The proof is an induction on the sum of the length of M and the length of ', as in [43].
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The reduction rules for logical redexes correspond to the notion of instantiation for predicate
variables (see [65] for a more traditional presentation). Strong normalisation also holds, and this
is also provable analogously to the simply typed A-calculus.

For the full calculus, the decidability property still holds, but its proof is harder, since we need the
normalisation property for all constructed terms, since arbitrary elements can appear in the types.

11.2 A realisability interpretation

11.2.1 Stripping

We shall now show how to extract from a given proof (i.e. a given functional) its associated
pure (non-typed) A-term which represents in some way its computational contents. All this is a
generalisation of the usual realisability concept, but we use A-terms instead of Godel’s codes for
recursive functions. This can be done for the full calculus as well as for the restricted calculus.

11.2.2 The context contraction map

Let T" be a valid context. We shall distinguish in I' the quantifications over products from the
quantifications over propositions, since only the latter will be considered free variables of stripped
formulas. The quantifications over products are used solely at compile-time, for polymorphic type-
checking.

Definition. The number of parameters, or arity, ar and the canonical injection jr : apr — |T'| of
a context I" are determined by the following inductive rules (confusing n with {1,...,n}):

oar, = 0 jr, = Ido.
IfT" = Alz: M1, then if M is a product, we take
ap = aa, Jjr(k) = ja(k)+1,
and if M is a proposition, we take

ar = OAA+1, ]T(l) = ]-a ]F(k+1) = ]A(k)_l_]‘

11.2.3 Untyping

Definition. if ' M : N, and N is a proposition, we define the stripped algorithm vp(M) € AT
by induction on M:

1. f M = Var(k), we take vp(M) = jp'(k).

2. If M = (M; M,), we know that I' = My : Py and T' = My : P,. If P, is a proposition, we take
vp(M) = (vp(My) vp(Ms)), and if P, is a product, we take vp(M) = vp(M;y). That is, we
simply forget all type information, which is now viewed as a comment in the algorithm.

3. If M = [x:P]N, we know that AF N : Q, with A = I'[z: P], and Q a A-proposition.
Now if P is a proposition, we take vp(M) = X z.wa(N), and if P is a product we take
vr(M) = va(N).
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We shall usually write (M) instead of vp(M) when the context I is clear.

This A-term v(M) may be thought of as the computational contents of the proof M. The
intuitive meaning of the above translation rules is that the propositions are comments of programs,
and that those programs behave in a uniform way with respect to these comments.

11.2.4 A syntactic interpretation

We first need some notations: let Z the set of all closed A-terms, built on a special constant named
Q. Let SN be the set of strongly normalizable terms of Z. We define the notion of saturated subset
of SN as in the previous chapter, and we denote by U the set of such saturated subsets.

Definition. If A € U and F € Z — U, then the dependent product II(A, F) of A and F is the
set {(M €Z|VN €A (M N)e€ F(z)}.

Intuitively, the elements of 7 are the programs and the elements of I/ the types. In the previous
definition, F' is a dependent type. We may then check that ¢/ has the following closure properties:

Lemma 7. U is closed under intersection of non empty families and under dependent product.

What follows is a realisability interpretation similar to the one defined in the previous chapter.

11.2.5 The functionality of a type

Definition. We define the functionality (M) of a type M as follows. If M is a proposition, we
take (M) = Z. For products, we take ¢(Prop) = U, and ¢([z : P1Q) = ¢(P)— ¢(Q), the set of
all applications from ¢(P) to ¢(Q).

This definition holds for the restricted calculus. In the full calculus, we would define of a
product o([z : P1Q) as p(P) — ¢(Q), if P is a product, and if P is a proposition, as the set of all
applications f from 7 to ¢(Q) such that f(M) = f(N) if M and N are (-convertible.

The following lemma is true for both the restricted and the full calculus:
Lemma 8. If ' F M = N then o(M) = ¢(N).

Definition. If I is any valid context, I' = [z, : A,] ... [x1 : A1], then the environment associated
with T" is the product G(I') = p(A4,) X -+ X p(A47).

11.2.6 Interpretation of sequents

Let ' F M : N be a derived sequent, with IV a type. We shall interpret it as an application
pr(M) : G(T) = p(N).

There are two cases, according to whether IV is a proposition or a product.

When N is a proposition, let us consider the pure A-term vp(M). It has ar free variables, and
may thus be interpreted as a function vp(M) : Z* — 7, which simply substitutes its actual argu-
ments to the corresponding free variables. Furthermore, to the previously defined type forgetting

operation jp corresponds the projection 7 : (') — Z®T. We then define pr(M) as vp(M) o 7.

When N is a product, we define pr(M) by induction on the derivation of the sequent I' - M : N
as follows.

e product formation: I' - [x : M1]1Msy : Prop results from I'[x : M1] F M5 : Prop. Let
A =T[z: M;]. We have two subcases according to whether M; is a proposition or a product
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or not:

subcase 1: M; is a proposition. Then by induction we can compute f = pr(M;) and
g = pa(Ms). Thus f: F(I') > U and g : §(I') x T — U. We define pp([z : M1 M>) as the
function from G(I') mapping a to II(f(a),g(a)).

subcase 2: M is a product, then by induction we can compute f = pa(Ms3) so that
f: @) x (M) — U. We define then pr([z : M1]1M;) as the function from F(I') mapping
a to N{f(a,z) | z € (M)}

e variable: we have [' - Var(k) : T'y, with £ < |I'| = n. Then, pp(M) is simply the projection
mapping (Zp, ..., x1) to k.

e abstraction: I'+ [z : M11Ms : (z : M7)P results from I'[z : M1] F Mj : P by abstraction.
Let A = I'[z : M;]. By induction, we can compute pa(My), which is an application from
S(I') x ¢(My) to ¢(P). We then define pr((Az : M1)M;) as the application from (') to
»(M1) — ¢(P) mapping a to the function mapping = to f(a,z).

e application: I'+ (M N) : Q{N} results from ' - M : [z : P1Q and ' = N : P. By induc-
tion, we have defined pr(M) : F(I') — (p(P) — ¢(Q)) and pr(N) : g(T') — ¢(P). We then
define pp((M N)) as the application from F(I") to ¢(Q) mapping z to pr(M)(z, pr(N,z)).

We have not taken into account the conversion rules, and this is justified by lemma 8.

Examples. The sequent - [A : Prop] [x : AJA : Prop is interpreted as the set:
{MeI|VAcUVNecA (M N)ecA}.

The sequent - [A : Prop]l [z : Alx : VA- A= A is interpreted as the untyped A-term [z]z.
Lemma 9. Let M and N be terms such that I' - M =2 N. We have pr(M) = pr(N).

This lemma holds for the restricted calculus. Similarly, in the full calculus, if ' M 2 N, pp(M)
and pr(N) are two [-convertible A-terms.

11.2.7 Interpretation of contexts

With each valid context I', we shall associate an inclusion D(I') — @(I') by induction on the
formation of I':

e case 1: D(Ty) = g(Iy) =1.

e case 2 : I' = Alxz : M], with M a proposition. Since A - M : Prop, we have already
defined pa(M). By induction, we have already an inclusion D(A) — @G(A). We take D(T") =
{(a,z) |a € D(A) N z € pa(M)(a)}.

e case 3: [' = Az : M1, with M a product. By induction, we have an inclusion D(A) — @g(A)
and we take D(I') = {(a,z) |a € D(A) A z € p(M)}.

Example : T'g[A : Prop] [z : A] is interpreted as {(4,z) e U X I | z € A}.
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11.2.8 Consistency

We can now state the principal theorem, whose proof is simply a straightforward (but somehow
tedious) structural induction and which holds in the restricted and in the full calculus.

Consistency Theorem : If ' M : P, and T' - P : Prop then for all z in D(T"), the pure A-term
pr(M,z) is an element of the saturated set pr(P,z).

Example : We have [A : Propl[x : Al F z : A, then, with I' = I'g[A : Prop] [x : A] we have
DI ={(A,z) eUd x T|xz € A} and [A: Propllz: A1+ z: Ais interpreted as f :U X T — T
mapping (A, z) to z. Similarly [A : Propl[z : A1 - A: Prop is interpreted as g : Y x T — U
mapping (A, z) to A, and we see that f(A,z) € g(A,x) if (4,z) € D(T').

Corollary 1. If - M : N and N is a proposition, then pr, (M) is a strongly normalisable closed
pure A-term.

Let p = pr,. It is sufficient to note that p(M) is an element of p(N), by the previous theorem,
and p(N) belongs to U by construction. By the definition of U, we see that p(M) is strongly
normalisable.

Definition. A proposition - P : Prop is inhabited if, and only if there is an element term M such
that - M : P.

Corollary 2. The Calculus of Constructions is consistent, in the sense that there exists a propo-
sition which is not inhabited.

The intuitive meaning of this statement is that the calculus does not prove all its well-formed
propositions. Indeed, the term 1 := (A : Prop)A is a valid T'g-proposition, but the special
constant {2 appears in all the terms of p(L). But if - M : N then Q does not appear in the term
p(M), hence the corollary.

The realisability interpretation we have presented is syntactic in nature. However, it is consis-
tent with the set-theoretical intuition of interpreting M : P as M € P. Still, the functional spaces
M — N are not interpreted as the full function space, but only as sets of definable algorithms,
closed by the operations corresponding to the syntactic operators. We know from Reynolds’ work
that a complete set-theoretic semantics cannot exist in extensions of the polymorphic A-calculus
[59].

Other interpretations of the calculus are possible. For instance, the Boolean interpretation,
where each proposition is mapped to 0 or 1 = {0}, and the elements are mapped to 0, is simpler
and suffices for proving the consistency. In some sense, this is the “proof-irrelevance” interpretation
of classical logic.

It is also possible to interpret the calculus in domains such as Pw, where each object (proposition
or element) is mapped to an element of Pw, in such a way that propositions become closures
[48]. However, such models also provide an interpretation for logically inconsistent systems (with
Type:Type) [12, 4]. Thus, such interpretations fail to capture the essential feature of the calculus.

11.2.9 Extracting programs from proofs

Every proof construction A = M : P corresponds to an algorithm va (M). Intuitively, this algorithm
obeys proposition P considered as its specification, under the hypothesis on its aa inputs described
by A. This algorithm, a pure A-expression in A*2, always terminates for well-typed values of its
inputs. This is the main limitation of our calculus as far as its programming language character
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goes. However, almost all partial recursive functions are definable in the calculus. For instance,
all total recursive functions which are provably total in higher order arithmetic are definable, as
shown in Girard [26]. They correspond to the stripped proofs of the proposition Nat = Nat, with
Nat = VA- (A= A)= (A= A).

As another example, we may consider the partial recursive function defined as:
f(n)=1if n=0o0r n=1then 0 else if even(n) then f(n/2) else f(3n+1).

This function is easily definable in the calculus, as a proof of (n : Nat)(D n) = Nat, with the
domain D defined as the proper smallest predicate preserving termination of f, that is (D n) is:

(P:Setngt)(P0)=(P1)=((u: Nat)(Pu)=(P2u))=((u: Nat)(P 3u+2)= (P 2u+1)) = (P n),

where Setng: is an abbreviation for Nat — Prop. Note that here nothing tells us that f is total
on non-negative integers. If some day a proof of that fact is known, we shall get f as an algorithm
in Nat — Nat by feeding it this proof as the (D n) argument. This example is especially simple,
since the domain argument is redundant for the computation. For more complicated examples, the
domain argument may be needed, since its proof may describe the recursion structure.

Of course the above discussion on recursion extends to inductive definitions on any data type.

We may thus consider this calculus as a general formalism in which to develop programs consistently
with their specifications. The logic is strong enough to articulate arbitrarily complex algorithmic
specifications, as well as the more mundane standard data-types found in usual programming
languages [21].

11.3 Examples of constructions

All the examples discussed in the previous chapter can be developed without modification in this
new calculus, which incorporates in a natural way the polymorphic A-calculus as a subcase. Let us
now show how quantifiers can be expressed in the calculus.

11.3.1 Universal Quantification

Universal quantification, or general product, is implicit from the notation:
IT := AA-[P: A— Prop] (z: A)(P x).
II-introduction, i.e. universal generalization, is proved by abstraction:
Gen := AA-[P:A— ProplAB-[f:(x:A) B= (Px)]ly: Bllz: AI(f z y)
:VA-(P:A— Prop)VB-((z: A) B= (P z))= (B = (Il AP)).
Similarly, II-elimination is proved by instantiation, i.e. application:
Inst := AA-[P:A— Propllz:Allp: (1T A P)]I(p x)

:VA-(P:A— Prop)(z: A)(Il A P) = (P z).
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11.3.2 Existential Quantification

Existential quantification, or general sum, can be defined by a generalization of the binary sum:

Y = AA-[P:A— ProplVB-((z: A) (P z) = B) = B.

We leave if as exercise to the reader to prove existential introduction and elimination:
Ezist := YA-(P:A— Prop)(z:A) (Pz)= (X AP)

Witness := VA-(P: A — Prop) (£ A P)= A.

Note that in a certain sense existential quantification is an abstraction mechanism: from (X A P)
it is possible to get some a : A such that (P a), but not the proof p : (P A) that it indeed satisfies
predicate P. Thus the existential quantification of the calculus of constructions is fundamentally
different from the sum in Martin-Lo6f’s calculus [47].

11.3.3 Equality

Leibniz’ equality is definable in the calculus:
Equal == AA-[z: Ally: A1(P: A — Prop)(P z) = (P y).

Exercise. Define the properties for a polymorphic relation to be reflexive, symmetric and transi-
tive. Give the three proofs that Fqual verifies these properties.

11.3.4 Tarski’s theorem

Let us now present a simple example of a higher-order proof. The goal is to prove Tarski’s theorem
[66]:

Tarski’s Theorem. A function monotonous over a complete partial ordering admits a fixpoint.

The first difficulty in formalizing Tarski’s theorem is to give it in as abstract a setting as possible,
in order to get the most direct proof. Let us try the following. Let A be a set, R a transitive
relation over A which is complete, in the sense that every subset of A has a least upper bound. Let
f : A— A be monotonously increasing. Then f admits a fixpoint.

We must now formalize the notions of set, subset, and fixpoint. A simple attempt at axiomatizing
sets consists in assuming some type A given with an equality relation =, and to represent sets in the
“universe” A by their characteristic predicate, i.e. as elements of type A — Prop. As for fixpoint,
it turns out that all we need to require is that for some X we have (R (f X) X) and (R X (f X)).
That is, the only property of equality that is needed here is the that R is anti-symmetric.

We thus assume that we are in a context I', containing the following hypotheses:
[A : Typel

[=:A— A— Prop]

[R: A— A — Prop]

[Rtrans:(z: A)(y: A)(z: A)(Rzy) = (Ry z)= (R z 2)]

[Rantisym: (z: A)(y: A)(Rzy)= (Ryz)= (= z y)]

[lim: (A — Prop) — Al

[(Upperb: (P: A— Prop)(y: A)(P y) = (Ry (lim P))]
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[Least: (P :A— Prop)(y: A)((z: A)(P z) = (R zy)) = (R (lim P) y)]
[f:A— A]
Uner : (z: A)y : A)(R = 9) = (R (f 2) (f 9))]

Now we consider the predicate ) defined as:
Q = [u: AI(Ru (f u))
(that is, @ is the set of pre-fixpoints of f) and the element X : A defined as:
X = (lim Q).

The first part of the proof consists in showing a proof of (R X (f X)) in context I'. Let us first
consider A =T'[y: A1[h: (Q y)], and terms M = (Upperb Q y) and N = (Incr y X). We get:
AFM:(Ry (fy)=(RyX), and:

AFN:(RyX)=(R(fy) (f X)). Composing the two proofs we get:

AFM;N:(Ry (fy)=(R(fy) (f X))

Thus, taking p = (M; N h), we obtain:

AF (Rtransy (fy) (f X) hp): (Ry (f X))

Discharging the hypotheses h and y, we get T = [y : A1[h: (Q y)](Rtrans y (f y) (f X) h p)
such that:

THET:VyeQ-(Ry (f X))

The proof is completed by constructing U = (Least Q (f X) T), since:

THU:(RX (f X))

The second part of the proof is the converse. Taking Z = (Incr X (f X) U), we get:

I'-Z:(R(fX)(f (f X))
but since this last proposition converts to (Q (f X)), we get:

L (Upperb Q (f X) Z): (R (f X) X).

The proof of Tarski’s theorem is thus obtained as:

'k (Rantisym (f X) X (Upperb Q (f X) Z) U): (= (f X) X).

Exercise. Use the above argument and the quantifier manipulation combinators above to prove
Tarski’s theorem as a fully quantified statement.

Numerous examples of proofs verified on machine are presented in [21]. A general discussion on
the formalization of mathematical arguments in higher order intuitionistic logic is given in [61].

11.4 A constructive theory of types

Let us now augment the calculus with rules allowing for the abstraction over all types. The first
natural attempt is to allow Type : Type. We would thus get a system of rules very close to the one
considered by P. Martin-Lof in [43]. However, this was shown to be inconsistent by Girard, who
showed that it was possible to encode the paradox of Burali-Forti in such a system. An abstract
analysis of such paradoxes is given by Coquand in [19]. Coquand showed that it was possible to
quantify propositions over all types, but not other types such as product types. Such a system is
presented below.
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11.4.1 A system for uniform proofs

First, two rules provide for abstraction over all types:

I'lt: Typel] - P : Prop
' (t: Type)P : Prop

TypeQuant :

I'lt:Typel - P:Prop I'lt:Typel M :P

TypeAbstr :
Ypesostr Lk [t:TypelM : (t: Type)P

Finally, we give one more type convertion rule:

I'lt: Typel - P : Prop Iit:Typel] FP =2 Q
Tk (t: Type)P = (t:Type)Q ’

TypeEq :
In such a system, we may now abstract the above proof of Tarski’s theorem.

11.4.2 A system with a hierarchy of universes

It is even possible to iterate the idea of a type gathering all the types obtained so far. One thus
gets a system with a hierarchy of universes like in Martin-Lof’s system [47]. See [19] for details.

11.5 An ML implementation

11.5.1 A system with normal types

It is important to clearly distinguish between the presentation of the construction calculus for
a metamathematical study and its presentation for an implementation and the development of
proofs and programs in this calculus. The presentation we have chosen here is the best suited for
the proofs of the mathematical property of the calculus of constructions. But once we have these
properties, it is possible to derive other presentations of the system. For example, since we have
the normalisation property, it is possible to present the full calculus in such a way that all types
appear in normal form. This essentially amounts to writing the rule for application as:

r-M:(z:P)Q T'+ N:P
' - (M N): N(Q{N}) ’

where N (M) denotes the normal form of the term M.

This presentation avoids the conversion rules and thus seems a bit simpler (and it is the one used
in [22]). But this system does not seem to be well suited for a metamathematical study.

11.5.2 Introducing constants

The first step toward providing a usable system consists in defining combinators which abbreviate
definitions. These constants are given, in a context I', with a definition consisting of term M, and
a unique name. We check before entering the constant in the theory that I' - M : T for some type
T. We may define propositional constants (when T is a product) or element constants (when T is
a proposition). Later on the type checker retrieves the type of each constant by looking it up in
the theory tables. This saves space (by sharing commonly used constructions) and time (by not
re-checking similar constructions). These constant definitions can be internalized in the language
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by the “let” construct, where let * = M; in M, abbreviates the redex ([z : P1Ms M) (with
P the type of M;). We can thus get “local” constants at any context depth.

No extension of the theory is required to explain the calculus with constants. The only problem
is to implement an absolute naming scheme, orthogonal to de Bruijn’s indexes considered so far,
while preserving a notion of static scope. This problem is the logical analogue of the problem of
linking separately compiled modules in a programming language. We do not comment further on
this issue, but we remark that from a practical point of view this facility is crucial, since it would
be impossible to effectively realize any significant proof without constants.

11.5.3 Synthesis of implicit arguments

The next step in providing the user with a realistic system in which to develop proofs is to reduce
the burden of polymorphic instantiation. Many propositional arguments are redundant, since they
may be inferred automatically as sub-components of types of further arguments. Thus a certain
amount of type synthesis is possible without any non-deterministic search. Let us give a trivial
example. In the following discussion, we shall confuse abstractions with products.

If one wants to define composition (i.e. the cut rule of propositional logic) in the basic calculus,
we have to define the constant:

Comp := [A: Propl[B: Propl[C:Proplf: A= Bllg:B= Cllz:Al(g (f x)).

This is very cumbersome, and if one assumes that Comp is always used with all arguments up to g
there is a lot of redundancy, since the actual arguments corresponding to A,B and C' are necessary
parts of the types of the actual arguments corresponding to f and g. The crucial observation is
that certain parts of the terms will always have residuals in every reduction of every substitution
instance of the term. This determines in the normal forms of types rigid skeletons in which one
may access sub-components by pattern-matching. For instance, in A — B, i.e. (u: A)B, we can
use the whole term as a pattern in the free variables A and B. This method relies on the variant
explained above of keeping types in normal form.

The notion of rigid skeleton was defined in [35] in the context of a unification algorithm for
typed A-calculus. Let us recall this notion. Let

M="Tu;: Pl [up: P](x Ny -+ Np)

be a term in normal form. The variables of the head prefix may be bound by product rather than
abstraction for the purpose of this discussion. Let V be a set of variables. We call rigid occurrence
of M relative to V' the set of following positions in M. First, we take the rigid occurrences in P;
relative to V U {uy,...,u;_1}, for : = 1,...,n. Then, if p = 0, the occurrence of the head variable z,
and if p > 0, and when 2 € W = V U {uy,...,u, }, the rigid occurrences in N; relative to W, for
j=1,...,p. Now let z be any variable. We say that M determines z iff z appears in M at a rigid
occurrence relative to 0.

We are now able to explain how to declare combinators of the calculus given with an arity of
explicit arguments, whose types determine automatically implicit arguments which will be auto-
matically synthesized. In our example above, we would write:

Comp[A|Prop] [B|Prop] [C|Propl[f: A= Bllg: B=C] := [z: Al(g (f z)),

where the bar | instead of the colon : indicate the implicit arguments. Now the combinator Comp
may be invoked with only its explicit actual arguments, as in Comp(F, G). In the general situation,
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a declaration of a combinator with arguments u; : P; will be legal iff for every implicit 2 there exists
an argument j > 4 such that P; determines u;. It is not mandatory that j be itself explicit, since
the synthesis of implicit arguments may be iterated (from right to left).

Remark. It is possible to generalize this method, by computing recursively whether some func-
tional argument determines some of its parameters. For instance, consider:

C := [P:A— Propllz: A1[h: (P z)]---

The occurrence of z in (P z) is not rigid. However, if the actual first argument Py of a given
application (C' Py xg hg) is of the form [u : A1 M such that M has a rigid occurrence of u, then zg
may be synthesized from the type of hg; i.e. rigidity may be inherited. However, it is not yet clear
how to specify such iterated synthesis in a clearly understandable way, since the notion of implicit
argument is not bound to the definition of combinator C anymore, but rather varies dynamically
with every use of C. A possibly useful restriction would be to impose in the definition of C that
certain arguments ought to determine certain of their own parameters, using a syntax such as:

C[P: (u|A)Propl [z|A1[h: (P z)] = ---

Now in an invocation C(Pp, hg), the analysis of Py will yield a rigid occurrence of its argument.
The argument x may then be retrieved at the corresponding position in the type of hg. This is in
a way a natural extension of restrictions of A-calculus expressibility at the proposition level, such
as Church’s use of AI-calculus, or relevance logic.

Note that the synthesis of implicit arguments corresponds exactly to the mathematical practice.
For instance, in category theory, one writes Id 4, but f o g is not annotated with objects, since the
arrows f and g determine the proper composition from their domains and co-domains.

Finally, we stress that a certain sophistication in concrete syntax, i.e. in the way new notations
may be associated to concepts by the user in the course of the development of a theory, is crucial
if one wants to mechanize mathematical concepts beyond the attempts of Frege, the Principia and
even Automath. Hopefully modern computer technology will help, and dynamically extendable
parsers and complex window managers seem to be necessary components of user interfaces to
programming and proving environments [16]. Let us just mention one proposal [22] for concrete
syntax definition of combinators given with arities, which fits nicely with the above algorithm for
synthesis of implicit arguments.

11.5.4 Concrete syntax

Since we now accept combinators with arities, we might as well endow them with concrete syntax.
A straightforward device for declaring arbitrary mixfix notation is to allow the declaration of
combinators by patterns:

pattern = term,

where pattern is an arbitrary sequence of concrete strings, implicit argument declarations {z : M},
and explicit argument declarations [x : M]. Standard methods such as precedence declarations
may complement this basic mechanism to resolve ambiguities. For instance, we would now allow
the declaration:

[A|Prop]l [B|Prop]l [C|Prop]l[f: A= Blolg:B=C] := [z:Al(g (f z)),
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and be able to write in the usual manner F o G. Examples of development of mathematical notions
along those lines are presented in [22].

More ambitiously, we may imagine incorporating theorem-proving capabilities progressively in
what is initially an interactive proof-checker. We may synthesize whole constructions by systematic
search of possible combinations of given sets of combinators. Such tacticals may be programmed
in the meta language of the system, in the tradition of LCF [30] or Pearl [16]. This will offer a
powerful help to the mathematician, who will be able to concentrate on the global proof strategy,
i.e. on the proper ordering of lemmas, without losing time over the combinatory headaches of the
technical proofs.
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Chapter 12

Induction

We shall now present various methods of proofs by induction, formalized in the calculus of con-
structions.

12.1 A constructive set theory

We assume a global context where we have declared: [U : Typel. We may think of U as the
current universe. Sets defined over U are represented as predicates of type U — Prop, which we
abbreviate from now on as Sety, or even as Set when U is clear from the context. This may
be formally justified by the type synthesis algorithm sketched in the last chapter. If A : Sety is
a U-set, we define x € A as the proposition (A z). That is, the elements of U-sets are of type
U. We abbreviate the quantification (z : U)E as Vx - E, (there should be no confusion with our
previous use of this notation for type quantification), and the abstraction [z : UIE as {z | E}.
For successive bindings, we use respectively Vz,y - E and {z,y | E}.
We define inclusion of sets A and B by:

ACB =Vx-z € A=z €B

and set equality by:
A=B := ACB A BCA.

Note that this extensional equality is distinct from Leibniz’ intensional equality. Intensional U-
equality may be defined, between two elements x and y of type U, as:

z=y = (A:Set)zr € A= ye€ A

If we decided to give a primitive equality = on type U this would complicate matters quite a bit,
since we would have to state that sets are predicates compatible with this equality, i.e. such that
(P z) and z = y imply (P y), and iterate this condition with classes, etc...

The empty U-set is defined as:
0 = {z|V}

The usual set operations are available through the corresponding logical connectives:
ANB = {z|ze€ ANz € B}
AUB = {z|z€ Avz € B}

175
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~A = {z|xe A}

Remark. If we were completely formal, we should index all our notations with U, and write
for instance = €y A, Oy, etc. We assume here no ambiguity arises as to which universe we are into.

Our sets resemble ordinary sets, except that the inclusion relation is defined constructively.
Thus, we have A C~~ A, but the converse in not true in general. That is, our sets behave
more like open sets of a topological space, and classical sets are the analogue of closed sets, i.e.
double-negation closed. The complement ~ A of A is closed, and for every A we get its closure as
~r~ A

We now define classes as set predicates. That is, a U-class is of type (Sety — Prop), abbreviated
Classy or simply Class. For instance, the class of subsets of A is defined as:

(P A) := [B:Set] BC A.

Class inclusion may be defined in the same way as set inclusion. Actually, all sets operations
above extend to class operations, since U may be instantiated with Sety.
If C is a U-class, we define the intersection of C' as the U-set defined as follows:

NC = {z|(A:Set) (C A) =z € A}.
For instance, we may define the singleton {z} as follows:
{z} = N([A: Set] z € A).
We say that set A is universal if it contains all the objects of the universe:
(Universal A) := Vz -z € A.

A mapping maps a set to a set. More precisely, a U-map has type Sety — Sety, abbreviated
Mapy or simply Map. If ¢ is a U-map, we define:

(Stable p) := [A: Setl(p A)C A

and

(Fizpt p) := [A: Setl(p A) = A.

Note that these two constructions are of type Classy. We now define the standard interpretation
of map ¢ as the intersection of the class of sets for which ¢ is stable:

(Initial @) = N(Stable )
that is, in expanded form:

{u]|(A:Set)(Vz-z€(p A) =z € A)=>uc A}

12.2 Induction

We get an induction principle by restricting ourselves to the standard interpretation:

(Induction @) = (A: Set)(Stable ¢ A) = (Universal A),
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or, in an equivalent expanded formulation:
(A:Set)(Vz-z € (p A)=>zx € A) = VYu-u € A

Note that Initial and Induction are really the same construction, up to permutation of indepen-
dent hypotheses: the binding on u migrated from the outermost abstraction in (Initial ¢) to the
innermost quantification in (Induction ).

This notion is especially important when ¢ is an increasing map:

(Incr ¢) = (A:Set)(B:Set) ACB= (¢ A) C (¢ B)

since then we may apply Tarski’s theorem above, and thus consider (Initial ¢) as the least solution
to ¢ considered as a recursive definition. Let us check the details.

In Tarski’s theorem as presented in last chapter, we instantiate the type variable A with Set
and (R z y) becomes y C z. The hypotheses Rtrans and Rantisym are easy. What was called
a set is now a class, and we take for lim the intersection operation, for which it is immediate to
show Upperb and Least. Note that it is essential here that Tarski’s theorem be expressed over
an arbitrary type. This allows us to instantiate it over the type of sets given with the inclusion
relation, obtaining thus what is usually called the Knaster-Tarski’s theorem.

Hence we get:

(¢ : Map)(Incr @) = (Fizpt ¢ (Initial ¢)). (FIX)

Actually it is possible to refine Tarski’s theorem and prove that the fixpoint obtained in the
proof is actually the limit of all fixpoints. Here this shows that (Initial ¢) is the smallest fixpoint:

(¢ : Map)(Iner @) = (Initial @) = N(Fizpt @). (MIN)

Note the similarity with the treatment in Park[5|, where Induction is called a convergence
formula.

12.3 Noceetherian induction

Let R be a binary relation on the universe, that is R : U — U — Prop, abbreviated below as Rely,
or simply Rel. Note that every relation may be seen as an indexed family of sets. Thus if > is a
preorder, (> z) is the set of elements below z.

We define the adjoint map associated with R as the U-map:
(Adjoint R) := [A: Set] {z| (R z)C A}.
It is a simple exercise (left to the reader) to prove that this map is always increasing:

(R : Rel) (Incr (Adjoint R)) (Adjoint_Incr).

The class of R-inductive sets is defined as:
(Inductive R) := (Stable (Adjoint R)).

The induction associated with the adjoint map states that the inductive sets are universal. This is
just what is usually called Ncetherian induction[2]:

(Noetherian R) := (Induction (Adjoint R))
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or, in expanded form:
(A:Set) Vz-(Vy- (Rzy)=>yecA)=>zcA)=>Vu-uc A
We recognize the definition used in [3] to prove Newman’s lemma:

(R : Rel) (Noetherian R) = (Loc_Confluent R) = (Confluent R).

Thus we see that this very powerful transfinite induction principle is but a special case of the
very general Induction above. Usual complete induction principles are in turn obtained by further
specialization. For instance, we shall see below that complete induction over the naturals is simply
(Noetherian >).

12.4 Structural Induction

It is now time to introduce some further notation. Let A be a U-set, and F be any construction
expression. We let Vx € A - E to stand for an abbreviation of Vx -z € A = FE, and similarly we
let {x € A| E} stand for {z | z € A A E}. We shall also use the notation 3z € A - E to stand for
Yulz:Ul(x € ANE).

We shall now show how to express structural induction [1] in the calculus. First we define the
relation “f preserves A”, when f is a U-function (i.e. f:U — U) and A is a U-set:

(Preserve f A) := Vzx € A-(f z) € A.

Now we define what it means for the element y : U to be reachable from element x : U using
function f. This notion is axiomatized by the relation:

(Iter f) = {z,y | (A: Set) (Preserve f A)=>z € A=y € A}.

The general method consists in defining, in the structure under consideration, the suitable gener-
alization of reachability expressing what are the elements expressible using the operations of the
structure. The expressibility proposition may then be seen as a set (the initial algebra, or standard
model). Similarly to above we get an induction principle by postulating that every element of type
U is in this set.

Let us consider for instance arithmetic. The structure is given here by a successor operation
S :U — U and a zero constant 0 : U. A universe presented with this structure we call a Peano
algebra. On any Peano algebra, we may define a relation

< := (Iter S)

and it is easy to show that < is reflexive and transitive (using as proofs respectively identity and
composition of the proper type). Now the set

fn]0<n)
is the characteristic predicate of the standard model N:

N = {n|(A:Set) (YmeA-(Sm)c A)=0c A=nec A}
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The corresponding universally quantified sentence is Peano’s induction principle:
Peano = (A:Set) (YmeA-(Sm)cA)=0€c A=Vn-nc A

Note how the binding on n migrated from A to Peano, similarly to the transformation between
Initial and Induction.

Let us now indicate the relationship with our general induction principle above. The map ¢ needed
here may be defined as sending A to: {n |3Im € A-n = (S m)+n = 0}, or equivalently, we define:

(Nat-map A) == {n|(P:Set)Vu-(u€c A= (Su)e P)=0€ P=nc P}
It is easy to prove that Nat_map is increasing, and that:
(Stable Nat-map A) < (Nat_stable A)

with
(Nat_stable A) := (Vne A-(Sn)e A) A (0€ A)

and thus we get that
(Induction Nat_map) < Peano.

Indeed, a simple Curryfication suffices to show that:

N = NNat_stable.

Remark. The equivalence between (Stable Nat_map) and Nat_stable boils down to recognizing
the following propositional equivalence:

VQ-((P=Q)= Q)& P.
Intuitively, it means that P is equivalent to its operational contents.

Actually Peano is only one half of initiality. What it says is that the universe contains only
elements which are definable with the algebra operators. The other half is to postulate that different
operators give rise to distinct elements. In the case of arithmetic, for instance, this amounts to
adding the following two postulates:

Peanol := Vn-—(Sn)=0
Peano2 := Vm,n-(Sm)=(Sn)=>m=n.

A standard model of arithmetic is thus any universe verifying Peano, Peanol and Peano2.
Remark. We recall that the natural numbers may be expressed by the second-order proposition:
Nat := (X : Prop)(X = X)=> X = X,

with the successor function, of type Nat = Nat, defined as:
S = [n:Nat][X : Prop]l[s: X = X1[z: X1(s (n X s 2))
and the zero, of type Nat, defined as:

0 := [X:Proplls: X = X][z: X]=z.
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It is possible to apply the whole theory above, with Nat standing for the universe U. However,
even in Nat we need to postulate the Peano axioms. This is a bit puzzling, since we know that
the normal forms of constructions (with 7 conversion allowed) of type Nat are isomorphic to the
standard model of natural numbers. But this knowledge is from meta-theoretic analysis, and cannot
be internalized in the system. However, it is a simple matter to define in the meta-language of
constructions appropriate macros, so that the Peano axioms are automatically generated from the
signature Nat.

The method above is of course generalizable in a straightforward way to any algebraic type, leading
to structural induction over a wide variety of structures.

Finally, complete induction is easily seen a direct application of Neetherian induction. For instance,
over integers, with
x>y = (Sy) <z

we get complete induction as (Noetherian >).

12.5 Computational Induction

We now show how to imbed in Constructions Scott’s computational induction method, as presented
for instance in LCF [4].

12.5.1 The domain postulates
We assume axioms on the universe U giving it the structure of a pre-order:
[ C: Rell
[Refl:Vu-uC ul
[(Trans :Yu,v,w-uECv=vCw=ulC w].

We define = as the associated equivalence:
=:= Vu,v-uCvAvLCu.
We say that U-set A is directed whenever:

(Directed A) == Ve € A-Vye A-FJz€ A-z CzAyLC 2.

Now we postulate the partial order U to be complete, in the sense that every directed set
possesses a limit, its lub: (A : Set) (Directed A) = Ju-u € (Lub A), with:

(Lub A) == {u|Ve e A-z2CuAVv-(Vze € A-z2Cv) = ul v}

For ease of application, we shall Skolemize the limit u as a function (lim A). We could have lim
depend on an extra argument of type (Directed A), but this extra generality is not needed; this is
an application of the principle of “proof irrelevance”. Thus we postulate:

[lim : Sety — U]

[Complete : (A : Set) (Directed A) = (lim A) € (Lub A)].
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It is easy to show that the elements of (Lub A) are equivalent:

Vu € (Lub A) -Vv € (Lub A) -u = v.

The empty set () is directed, and thus every complete pre-order possesses a minimum element:
L = (lim ).
It is straightforward to prove that L is indeed minimum:

Vu- L C u. (Bot)

12.5.2 Computational induction

Let f: U — U. We define the set of (finite) f-approximants as:

(Approzx f) = (Iter f 1)

that is:
{u|(A: Set) (Preserve f A)= 1 € A= u € A}

Remark the similarity with the definition of the standard model A above. Similarly to maps above,
we define the notion of increasing function:

(Increasing f) := Yu,v- v Cv=(f u) C(f v)
and we may show that:
(f : U — U) (Increasing f) = (Directed (Approz f)). (Dir_Approx)

The proof of this proposition, left as an exercise, is analogous to defining inductively the function
computing the maximum of two natural numbers. We may now define, for any increasing f:

(Y f) := (lim (Approx f)).
The limit of finite approximants (Y f) is intuitively L, f™(L).
We now define an admissible U-set as one which contains all the limits of its directed subsets:

(Adm A) := (B: Set) BC A= (Directed B) = (lim B) € A.

The restriction of A to admissible sets in the definition of approximant permits to iterate f in the
transfinite, which gives the notion of transfinite f-approximation:

(0 f) == {u]|(A: Set) (Addm A)= Vz € A-(f z) € A) = u € A}.

Note that (co f) is the intersection of the class of admissible sets preserved by f, whereas (Approz f)
is the intersection of the class of sets containing | and preserved by f. In some sense (oo f) is to
(Approz f) what ordinals are to natural numbers.

Let us now show that (co f) is admissible:

[f:U—U]LB: Set][hy: B C (oo f)1L[hy : (Directed B)] &1y : (lim B) € (cof)
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where [; is proved by:

[C : Set] [hs : (Adm C)] [hy : (Stable C)1(hs B Iy hs)
where I3 : B C C is proved by:

[u:U]lhs:u € B](hl u hs C hs h4)

Discharging all this temporary context, we get:

(f:U = U)(Adm (o0 f)). (Adm_oco)

Now it is a simple matter to prove:
[f:U—Ulli: (Increasing f)1 F (Adm_co f (Approzx f) incl (Dir_Approz f)): (Y f) € (oo f),
where the proof of incl : (Approz f) C (co f) is left to the reader. Thus we get finally:

(f:U = U)(Increasing f) = (Y f) € (o f).

By unwinding this proposition it is easy to see that this is precisely Scott’s computational
induction principle. Writing it in long form:

(f:U — U)(Increasing f)=(A: Set) (Adm A)=Nz € A-(fz)e A)=(Y f) € A.
(Comp_Ind)
Two remarks are in order. Firstly, note that this principle is provable from our postulates
on the domain U (i.e., the complete partial ordering axioms). Secondly, the notion of admissible
set is axiomatized inside the calculus, and thus we can use all the power of the logical system to
prove that a given set is indeed admissible, whereas in LCF [4] the notion of admissible predicate
is weakened to a syntactic check of the meta-linguistic support. Finally note that the hypothesis
1 € A is not needed above, since it is implicit from the hypothesis (Adm A).
12.5.3 Continuity and fixpoints

It may seem curious that it is not necessary in the justification of computational induction to
assume that f is continuous. But this assumption is indeed needed for recursion. Let us now make
this point precise.

First, let us define the image by f of a U-set A:
(Image f A) = {y|Fz € A-y=(f z)}.
It is easy to show that:
(Directed A) = (Increasing f) = (Directed (Image f A)). (Dir_Im)
Thus, for every increasing f and directed set A, we may define:

(Lim f A) = (lim (Image f A)).

Now let us call diagram any non-empty directed set:

(Diagram A) := Ju € A (Directed A).

Next we define what it means for an increasing f to be continuous:

(Continuous f) := (A: Set) (Diagram A) = (Lim f A) = (f (lim A)).
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Note that we must restrict A to be a non-empty directed set, since we do not demand our functions
to be strict.

Exercise. Prove that for all f, (Continuous f) = (Increasingf).

Now, defining the fixpoints of f in a similar way as for maps:

(Fizpoints f) = {u| (f u) =u},

we can prove:
(f : U — U)(Continuous f) = (Y f) € (Fizpoints f)

and:

(f : U — U)(Continuous f) = Vz € (Fizpoints f)- (Y f)C z.

In other words, (Y f) = N(Fizpoints f). This is analogous to Tarski’s theorem, but still signifi-
cantly different.

A variant of Tarski’s theorem would say here is that if f is increasing (and not necessarily contin-
uous), then (Z f) is the minimum fixpoint of f, where

(Z f) = (lim (o0 f)).

Problem. Show the above statement. In particular, you will need to prove that (co f) is itself
directed.

Thus, continuity is needed for finiteness, i.e. computability. This concludes our incursion into
domain theory.

12.6 Noetherian as a well-foundedness principle

We are going to show in this section that (Noetherian R) implies that there are no infinite R-chains,
relating induction to well-foundedness.

Let A be a U-set. We say that A is R-eternal iff:
(Eternal R A) == 3z € AANVz € A-Jye A- (R y).
It is straightforward to show, with the definition of Ncetherian given above, that:
(Eternal R A) | (Noetherian R ~ A)

where the incompatibility connective | is Sheffer’s stroke.

Thus (Noetherian R) implies (classically, but constructively) that R is well-founded, in the sense
that there are no infinite R-chains:

(WFR) := (A: Set) -(Eternal R A).

Intuitively, the set (Initial (Adjoint R)) contains all elements which have only finite R-chains
issued from them, and (Noetherian R) says that this set is universal.
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