
MPRI - Cours de Concurrence - 2006

Lectures 9-12

http://mpri.master.univ-paris7.fr/C-2-3.html

Roberto Amadio

Université de Paris 7

Laboratoire Preuves, Programmes et Systèmes

1

Programme of these lectures

We will cover the notions of:

• Determinacy and Confluence.

• Synchrony.

• Termination and Reactivity.

in the framework of process calculi (specifically, CCS, π-calculus,
and variations thereof).

NB These lectures aim both at presenting some basic results and
at introducing to some areas of ignorance (a.k.a research).

2

Advertising

• On January 8th, 15th, 22nd, 29th (Monday, last slot) there will
be 4 lectures by Robin Milner. Attendance is recommended.
You should be able to get 2 credits for this (to be confirmed).

• Those who want to do research on the topics of this course
might be interested in the Groupe de travail Concurrence
Chevaleret, Thursday 2 pm.

http : //www .pps.jussieu.fr/ ∼ amadio/cc/

3

Determinacy

4

What is a deterministic system?

In automata theory, one can consider various definitions. For
instance, look at finite automata:

Def 1 There is no word w that admits two computation paths in
the graph such that one leads to an accepting state and the
other to a non-accepting state.

Def 2 Each reachable configuration admits at most one successor.

Def 3 For each state:

• either there is exactly one outgoing transition labelled with
ε,

• or all outgoing transitions are labelled with distinct symbols
of the alphabet Σ.

Thus one can go from ‘extensional’ conditions (intuitive but hard
to verify) to ‘syntactic’ conditions (verifiable but not as general).

5

Why did we allow non-determinism?

Race conditions Two clients request the same service.

νa (a.P1 | a.P2 | a)

General specification and portability We do not want to
commit on a particular behaviour. For instance, consider

νa, b (c.a.b.d | a.b.e | b)

to minimize context switches, in a mono-processor
implementation we might always run d after c. However, in a
multi-processor, we might run e at the place of d.

6

Why is determinism desirable?

• Easier to test and debug.

• Easier to prove correct.

NB Often the implementation seems ‘deterministic’ because:

• either the program is inherently deterministic,

• or the scheduler determinizes the program’s behaviour.

7

Towards a definition of determinacy

• If we run an ‘experiment’ twice we always get the same ‘result’.

• If P and P ′ are ‘equivalent’ then one is determinate if and only
if the other is.

• If P is determinate and we run an experiment then the residual
of P after the experiment should still be determinate.

8

• Most of the time, we will place ourselves in the context of a
simple model such as CCS.

• We take equivalent to mean weak bisimilar.

• We take experiment to be a finite sequence of interactions.

9

A formal definition of determinacy

• Denote with L the set of visible actions and co-actions with
generic elements `, `′, . . .

• Denote with Act = L ∪ {τ} the set of actions, with generic
elements α, β, . . .

• Let s ∈ L∗ denote a finite word over L. Then:

P
ε⇒ P ′ if P

τ⇒ P ′

P
`1...`n⇒ P ′, n ≥ 1 if P

`1⇒ · · · `n⇒ P ′

10

Definition A process P is determinate if for any s ∈ L∗,

P
s⇒ P ′ P

s⇒ P ′′

P ′ ≈ P ′′

11

Exercise

Are the following CCS processes determinate?

1. a.(b + c).

2. a.b + ac.

3. a + a.τ .

4. a + τ.a.

5. a + τ .

12

Proposition

1. If P is determinate and P
α→ P ′ then P ′ is determinate.

2. If P is determinate and P ≈ P ′ then P ′ is determinate.

13

Proof idea

1. Suppose P
α→ P ′ and P ′ s⇒ Pi for i = 1, 2.

• If α = τ then P
s⇒ Pi for i = 1, 2. Hence P1 ≈ P2.

• If α = ` then P
`·s⇒ Pi for i = 1, 2. Hence P1 ≈ P2.

14

2. Suppose P ≈ P ′ and P ′ s⇒ P ′
i for i = 1, 2.

• By definition of weak bisimulation:

P
s⇒ Pi and Pi ≈ P ′

i

for i = 1, 2.

• Since P is determinate, we have P1 ≈ P2.

• Therefore, we conclude by transitivity of ≈:

P ′
1 ≈ P1 ≈ P2 ≈ P ′

2

NB Most proofs in this lecture will be by diagram chasing.

15

τ-inertness and determinacy

Definition We say that a process P is τ -inert if for all its
derivatives Q, if Q

τ⇒ Q′ then Q ≈ Q′.

Proposition If P is determinate then it is τ -inert.

16

Proof idea

• Suppose P
s⇒ Q and Q

τ⇒ Q′.

• Then P
s⇒ Q and P

s⇒ Q′.

• Thus by determinacy, Q ≈ Q′.

17

Trace equivalence

We define the traces of a process P as

tr(P) = {s ∈ L∗ | P s⇒ ·}

and say that two processes P,Q are trace equivalent if
tr(P) = tr(Q).

NB The traces of a process form a non-empty, prefix-closed set of
finite words over L.

18

Exercise

Are the following equations valid for trace equivalence and/or weak
bisimulation?

1. a + τ = a.

2. α.(P + Q) = α.P + α.Q.

3. (P + Q) | R = P | R + Q | R.

4. P = τ.P .

19

Proposition

1. If P ≈ Q then tr(P) = tr(Q).

2. Moreover, if P,Q are determinate then tr(P) = tr(Q) implies
P ≈ Q.

20

Proof idea

1. Suppose P ≈ Q and P
s⇒ ·. Then Q

s⇒ · by induction on |s|
using the properties of weak bisimulation.

2. Suppose P,Q determinate and tr(P) = tr(Q).

• We show that

{(P,Q) | tr(P) = tr(Q)}

is a bisimulation.

21

• If P
τ→ P ′ then P ≈ P ′ by determinacy.

• Thus taking Q
τ⇒ Q we have:

P ′ ≈ P tr(P) = tr(Q) .

• By (1), we conclude:

tr(P ′) = tr(P) = tr(Q) .

22

• If P
`→ P ′ then we note that:

tr(P) = {ε} ∪ {`} · tr(P ′) ∪
⋃

` 6=`′,P
`′⇒P ′′

{`′} · tr(P ′′)

• This is because all the processes P ′ such that P
`⇒ P ′ are

bisimilar, hence trace equivalent.

• A similar reasoning applies to tr(Q).

• Thus there must be a Q′ such that Q
`⇒ Q′ and

tr(P ′) = tr(Q′).

23

How do we build deterministic systems?

• Start with deterministic components.

• Look for methods to combine them that preserve determinacy.

24

Exercise

Consider the process P | Q where P,Q are as follows.

1. P = a.b, Q = a.

2. P = a, Q = a.

3. P = a + b, Q = a.

Are P , Q, and (P | Q) determinate?

25

Sorting

Sorting information is useful when trying to combine processes so
as to preserve some property such as determinacy.

Let L be the set of visible actions and L,L′, . . . range over 2L.

Definition We say that a process P has sort L if all the actions
performed by P and its derivatives lie in L ∪ {τ}.

26

Remarks on sorting

• In CCS, it is easy to provide an upper bound for sorting since:

P : fn(P) ∪ fn(P)

where fn(P) are the free names in P .

• Sorting is closed under intersection: if P : Li for i = 1, 2 then
P : L1 ∩ L2.

• Thus each process has a minimum sort.

• In general, the minimum sort cannot be computed because CCS
can simulate Turing machines (TM) and the firing of a
transition may correspond to the TM reaching the halting
state. . .

• We discuss a method to compute an over-approximation of the
minimum sort that we denote with L(P).

27

Computing the over-approximation

• Non-trivial programs in CCS are given via a system of
recursive equations:

A(a1, . . . , an) = P

where the names a1, . . . , an are all distinct and
fn(P) ⊆ {a1, . . . , an}.

• An assignment ρ is a function that associates with every thread
identifier A of arity n a function ρ(A) that takes a vector of n

names (b1, . . . , bn) and produces a subset ρ(A)(b1, . . . , bn) of

{b1, . . . , bn, b1, . . . bn}

• The least assignment ρ∅ is the function where the ‘subset’
produced is always the empty set: ρ∅(A)(b1, . . . , bn) = ∅.

28

• We define the sort [[P]]ρ of a process P relatively to an
assignment ρ:

[[0]]ρ = ∅

[[α.P]]ρ =

{
[[P]]ρ if α = τ

{α} ∪ [[P]]ρ otherwise

[[P1 + P2]]ρ = [[P1]]ρ ∪ [[P2]]ρ

[[P1 | P2]]ρ = [[P1]]ρ ∪ [[P2]]ρ

[[νa P]]ρ = [[P]]ρ\{a, a}

[[A(b)]]ρ = ρ(A)(b)

29

• Now we compute iteratively ρ0 = ρ∅ and ρn+1 so that:

ρn+1(A)(a) = [[P]]ρn

for all identifiers A defined by an equation A(a) = P .

• This defines a growing sequence (check this!) that is guaranteed
to converge after finitely many steps to a least fixed point ρ

since ρn(A)(a) ⊆ {a} ∪ {a} which is a finite set.

30

Example

• We consider the system composed of one equation:

A(a, b) = a.νc (A(a, c) | b.A(c, b))

• Then

ρ1(A)(a, b)

= [[a.νc (A(a, c) | b.A(c, b))]]ρ∅
= {a} ∪ (ρ∅(A)(a, c) ∪ {b} ∪ ρ∅(A)(c, b))\{c, c}
= {a, b}

31

• The following iteration reaches the fixed point:

ρ2(A)(a, b)

= [[a.νc (A(a, c) | b.A(c, b))]]ρ1

= {a} ∪ (ρ1(A)(a, c) ∪ {b} ∪ ρ1(A)(c, b))\{c, c}
= {a} ∪ ({a, c} ∪ {b} ∪ {c, b})\{c, c}
= {a, b}

Thus L(P) = {a, b}.

32

Some sufficient conditions for building determinate
processes

Proposition Suppose P,Q, Pi are determinate processes for
i ∈ I. Then:

1. 0, α.P, νa P are determinate.

2. Σi∈I`i.Pi is determinate if the `i are all distinct.

3. P | Q is determinate if P,Q do not communicate and do not
share actions (that is L(P) ∩ L(Q) = ∅ and L(P) ∩ L(Q) = ∅).

4. σP is determinate if σ is an injective substitution on the free
names in P .

33

Proof idea

1. For instance, for νa P one checks that if νa P
s⇒ Q then

P
s⇒ P ′ and Q = νa P ′.

2. Routine. Note that it is essential that all the actions are
distinct and visible.

3. Because of the hypothesis on the sorting, an action of (P1 | P2)
can be attributed uniquely to either P1 or P2. Then we can rely
on the determinacy of P1 and P2.

4. The transitions of P and σP are in perfect correspondance as
long as σ is injective. Note that if σ is not injective then σP

could perform some additional synchronisations.

34

Summary on determinacy

1. Deterministic processes are τ -inert.

2. For deterministic processes, bisimulation collapses to trace
equivalence.

3. A simple method to extract approximated sorting information.

4. Use approximated sorting information to build deterministic
processes.

5. Unfortunately, rules for parallel composition are too restrictive:
no synchronisation.

35

Confluence

36

Refining the conditions

We want to allow some form of communication, but. . .

• We have to avoid race conditions: two processes compete on
the same resource.

• We also have to avoid that an action preempts other actions.

• We introduce a notion of confluence that strengthens
determinacy and is preserved by some form of communication
(parallel composition + restriction).

• For instance,
νa ((a + b) | a)

will be rejected because a + b is not confluent.

37

Confluence: rewriting vs. concurrency

• Notion reminiscent of confluence in term rewriting systems and
λ-calculus (Church-Rosser theorem).

• By analogy one calls confluence the related theory in process
calculi but bear in mind that:

1. Confluence is relative to a labelled transition system.

2. We close diagrams up to equivalence.

38

Definition of confluence

We start with a rather natural notion of confluence.

Definition (Conf 0) A process P is confluent if for every
derivative Q of P we have:

Q
α⇒ Q1 Q

α⇒ Q2

Q1
τ⇒ Q′

1 Q2
τ⇒ Q′

2 Q′
1 ≈ Q′

2

Q
α⇒ Q1 Q

β⇒ Q2 α 6= β

Q1
β⇒ Q′

1 Q2
α⇒ Q′

2 Q′
1 ≈ Q′

2

39

Some properties

A first sanity check is to verify that the definition is invariant under
transitions and equivalence.

Proposition

1. If P is confluent and P
α→ P ′ then P ′ is confluent.

2. If P is confluent and P ≈ P ′ then P ′ is confluent.

40

Proof idea (cf. similar proof for determinacy)

1. If Q is a derivative of P ′ then it is also a derivative of P .

2. It is enough to apply the fact that:

(P ≈ P ′ and P
α⇒ P1) implies (P ′ α⇒ P ′

1 and P1 ≈ P ′
1)

and the transitivity of ≈.

41

A first characterisation

We consider a first ‘asymmetric’ characterisation where the move
from Q to Q1 just concerns a single action.

Proposition (Conf 1) A process P is confluent iff for every
derivative Q of P , we have:

Q
α→ Q1 Q

α⇒ Q2

Q1
τ⇒ Q′

1 Q2
τ⇒ Q′

2 Q′
1 ≈ Q′

2

Q
α→ Q1 Q

β⇒ Q2 α 6= β

Q1
β⇒ Q′

1 Q2
α⇒ Q′

2 Q′
1 ≈ Q′

2

42

Proof idea

• The diagrams of (Conf 1) are a particular case of (Conf 0).

• Thus we just have to show that the diagrams of (Conf 1) suffice
to complete the diagrams of (Conf 0).

• We may proceed by induction on the length of the transition
Q

α⇒ Q1. For instance suppose α 6= β, β 6= τ , and

Q
τ→ Q1

α⇒ Q2 Q
β⇒ Q3

• By (Conf 1),

Q1
β⇒ Q4 Q3

τ⇒ Q5 Q4 ≈ Q5

43

• By inductive hypothesis

Q2
β⇒ Q6 Q4

α⇒ Q7 Q4 ≈ Q7

• From Q4 ≈ Q5 and Q4
α⇒ Q7 we derive

Q5
α⇒ Q8 Q7 ≈ Q8

44

• Therefore
Q2

β⇒ Q6 Q3
α⇒ Q8 Q6 ≈ Q8

as required.

45

Exercise

Complete the proof by considering the remaining cases.

46

Determinacy vs. Confluence

Confluence implies τ -inertness, and from this we can show that it
implies determinacy too.

Proposition Suppose P is confluent. Then P is:

1. τ -inert, and

2. determinate.

47

Reminder

A relation R is a weak bisimulation up to ≈ if

P R Q P
α⇒ P ′

Q
α⇒ Q′ P ′(≈ ◦R◦ ≈)Q′

(and symmetrically for Q).

NB It is important that we work with the weak moves on both
sides, otherwise the relation R is not guaranteed to be contained in
≈. E.g. consider

R = {(τ.a, 0)}

48

Proof idea

1. We want to show that P
τ⇒ Q implies P ≈ Q.

• We show that
R = {(P,Q) | P τ⇒ Q}

is a weak bisimulation up to ≈.

• It is clear that whatever Q does, P can do too with some
extra moves.

• Suppose, for instance, P
α⇒ P1 with α 6= τ (case α = τ left

as exercise).

• By (Conf 0),

Q
α⇒ Q1 P1

τ⇒ P2 Q1 ≈ P2

• That is
P1(R◦ ≈)Q1

49

2. We want to show that if P is confluent then it is determinate.

• Suppose P
s⇒ Pi for i = 1, 2 and s ∈ L∗.

• We proceed by induction on the length |s| of s.

• If |s| = 0 and P
τ⇒ Pi for i = 1, 2 then by confluence

Pi
τ⇒ P ′

i i = 1, 2 P ′
1 ≈ P ′

2

• By τ -inertness
P1 ≈ P ′

1 ≈ P ′
2 ≈ P2

50

• For the inductive case, suppose P
`⇒ P ′

i
r⇒ Pi for i = 1, 2.

• As in the basic case we derive that P ′
1 ≈ P ′

2.

• By weak bisimulation, P ′
2

r⇒ P ′′
2 and P ′′

2 ≈ P1.

• By inductive hypothesis, P2 ≈ P ′′
2 .

• Thus P2 ≈ P ′′
2 ≈ P1 as required.

51

τ-inertness and confluence

Assuming that the process is τ -inert we can simplify a bit more the
commuting diagrams. Let

P
α]⇒ P ′ =

 P
τ⇒ P ′ if α = τ

P
τ⇒ · `→ if α = `

Thus in
`]⇒, there is no τ action after `.

52

Exercise (Conf 2)

Show that a process P is confluent iff it is τ -inert and for all its
derivatives Q we have:

Q
α→ Q1 Q

α]⇒ Q2

Q1 ≈ Q2

Q
α→ Q1 Q

β]⇒ Q2 α 6= β

Q1
β]⇒ Q′

1 Q2
α]⇒ Q′

2 Q′
1 ≈ Q′

2

53

