MPRI - Cours de Concurrence - 2006

Lectures 9-12
http://mpri.master.univ-paris7.fr/C-2-3.html

Roberto Amadio
Université de Paris 7
Laboratoire Preuves, Programmes et Systèmes

Programme of these lectures

We will cover the notions of:

- Determinacy and Confluence.
- Synchrony.
- Termination and Reactivity.
in the framework of process calculi (specifically, CCS, π-calculus, and variations thereof).

NB These lectures aim both at presenting some basic results and at introducing to some areas of ignorance (a.k.a research).

Advertising

- On January 8th, 15th, 22nd, 29th (Monday, last slot) there will be 4 lectures by Robin Milner. Attendance is recommended. You should be able to get 2 credits for this (to be confirmed).
- Those who want to do research on the topics of this course might be interested in the Groupe de travail Concurrence Chevaleret, Thursday 2 pm.
http : //www.pps.jussieu.fr/ ~ amadio/cc/

Determinacy

What is a deterministic system?

In automata theory, one can consider various definitions. For instance, look at finite automata:

Def 1 There is no word w that admits two computation paths in the graph such that one leads to an accepting state and the other to a non-accepting state.

Def 2 Each reachable configuration admits at most one successor.
Def 3 For each state:

- either there is exactly one outgoing transition labelled with ϵ,
- or all outgoing transitions are labelled with distinct symbols of the alphabet Σ.

Thus one can go from 'extensional' conditions (intuitive but hard to verify) to 'syntactic' conditions (verifiable but not as general).

Why did we allow non-determinism?
Race conditions Two clients request the same service.

$$
\nu a\left(\bar{a} . P_{1}\left|\bar{a} \cdot P_{2}\right| a\right)
$$

General specification and portability We do not want to commit on a particular behaviour. For instance, consider

$$
\nu a, b(c \cdot \bar{a} \cdot \bar{b} \cdot \bar{d}|a \cdot \bar{b} \cdot \bar{e}| b)
$$

to minimize context switches, in a mono-processor implementation we might always run \bar{d} after c. However, in a multi-processor, we might run \bar{e} at the place of \bar{d}.

Why is determinism desirable?

- Easier to test and debug.
- Easier to prove correct.

NB Often the implementation seems 'deterministic' because:

- either the program is inherently deterministic,
- or the scheduler determinizes the program's behaviour.

Towards a definition of determinacy

- If we run an 'experiment' twice we always get the same 'result'.
- If P and P^{\prime} are 'equivalent' then one is determinate if and only if the other is.
- If P is determinate and we run an experiment then the residual of P after the experiment should still be determinate.
- Most of the time, we will place ourselves in the context of a simple model such as $C C S$.
- We take equivalent to mean weak bisimilar.
- We take experiment to be a finite sequence of interactions.

A formal definition of determinacy

- Denote with \mathcal{L} the set of visible actions and co-actions with generic elements $\ell, \ell^{\prime}, \ldots$
- Denote with Act $=\mathcal{L} \cup\{\tau\}$ the set of actions, with generic elements α, β, \ldots
- Let $s \in \mathcal{L}^{*}$ denote a finite word over \mathcal{L}. Then:

$$
\begin{array}{ll}
P \stackrel{\epsilon}{\Rightarrow} P^{\prime} & \text { if } P \stackrel{\tau}{\Rightarrow} P^{\prime} \\
P^{\ell_{1} \ldots \ell_{n}} \Rightarrow{ }^{\prime} P^{\prime}, n \geq 1 & \text { if } P \stackrel{\ell_{1}}{\Rightarrow} \cdots \stackrel{\ell_{n}}{\Rightarrow} P^{\prime}
\end{array}
$$

Definition A process P is determinate if for any $s \in \mathcal{L}^{*}$,

$$
\frac{P \stackrel{s}{\Rightarrow} P^{\prime} \quad P \stackrel{s}{\Rightarrow} P^{\prime \prime}}{P^{\prime} \approx P^{\prime \prime}}
$$

Exercise

Are the following CCS processes determinate?

1. $a \cdot(b+c)$.
2. $a . b+a c$.
3. $a+a . \tau$.
4. $a+\tau . a$.
5. $a+\tau$.

Proposition

1. If P is determinate and $P \xrightarrow{\alpha} P^{\prime}$ then P^{\prime} is determinate.
2. If P is determinate and $P \approx P^{\prime}$ then P^{\prime} is determinate.

Proof idea

1. Suppose $P \xrightarrow{\alpha} P^{\prime}$ and $P^{\prime} \stackrel{S}{\Rightarrow} P_{i}$ for $i=1,2$.

- If $\alpha=\tau$ then $P \stackrel{S}{\Rightarrow} P_{i}$ for $i=1,2$. Hence $P_{1} \approx P_{2}$.
- If $\alpha=\ell$ then $P \stackrel{\ell \cdot s}{\Rightarrow} P_{i}$ for $i=1,2$. Hence $P_{1} \approx P_{2}$.

2. Suppose $P \approx P^{\prime}$ and $P^{\prime} \stackrel{s}{\Rightarrow} P_{i}^{\prime}$ for $i=1,2$.

- By definition of weak bisimulation:

$$
P \stackrel{s}{\Rightarrow} P_{i} \text { and } P_{i} \approx P_{i}^{\prime}
$$

for $i=1,2$.

- Since P is determinate, we have $P_{1} \approx P_{2}$.
- Therefore, we conclude by transitivity of \approx :

$$
P_{1}^{\prime} \approx P_{1} \approx P_{2} \approx P_{2}^{\prime}
$$

NB Most proofs in this lecture will be by diagram chasing.

τ-inertness and determinacy

Definition We say that a process P is τ-inert if for all its derivatives Q, if $Q \stackrel{\tau}{\Rightarrow} Q^{\prime}$ then $Q \approx Q^{\prime}$.

Proposition If P is determinate then it is τ-inert.

Proof idea

- Suppose $P \stackrel{\substack{\Rightarrow}}{\Rightarrow}$ and $Q \stackrel{\tau}{\Rightarrow} Q^{\prime}$.
- Then $P \stackrel{s}{\Rightarrow} Q$ and $P \stackrel{s}{\Rightarrow} Q^{\prime}$.
- Thus by determinacy, $Q \approx Q^{\prime}$.

Trace equivalence

We define the traces of a process P as

$$
\operatorname{tr}(P)=\left\{s \in \mathcal{L}^{*} \mid P \stackrel{s}{\Rightarrow} \cdot\right\}
$$

and say that two processes P, Q are trace equivalent if $\operatorname{tr}(P)=\operatorname{tr}(Q)$.

NB The traces of a process form a non-empty, prefix-closed set of finite words over \mathcal{L}.

Exercise

Are the following equations valid for trace equivalence and/or weak bisimulation?

1. $a+\tau=a$.
2. $\alpha \cdot(P+Q)=\alpha \cdot P+\alpha \cdot Q$.
3. $(P+Q)|R=P| R+Q \mid R$.
4. $P=\tau . P$.

Proposition

1. If $P \approx Q$ then $\operatorname{tr}(P)=\operatorname{tr}(Q)$.
2. Moreover, if P, Q are determinate then $\operatorname{tr}(P)=\operatorname{tr}(Q)$ implies $P \approx Q$.

Proof idea

1. Suppose $P \approx Q$ and $P \stackrel{s}{\Rightarrow} \cdot$. Then $Q \stackrel{s}{\Rightarrow}$. by induction on $|s|$ using the properties of weak bisimulation.
2. Suppose P, Q determinate and $\operatorname{tr}(P)=\operatorname{tr}(Q)$.

- We show that

$$
\{(P, Q) \mid \operatorname{tr}(P)=\operatorname{tr}(Q)\}
$$

is a bisimulation.

- If $P \xrightarrow{\tau} P^{\prime}$ then $P \approx P^{\prime}$ by determinacy.
- Thus taking $Q \stackrel{\tau}{\Rightarrow} Q$ we have:

$$
P^{\prime} \approx P \quad \operatorname{tr}(P)=\operatorname{tr}(Q)
$$

- By (1), we conclude:

$$
\operatorname{tr}\left(P^{\prime}\right)=\operatorname{tr}(P)=\operatorname{tr}(Q)
$$

- If $P \xrightarrow{\ell} P^{\prime}$ then we note that:

$$
\operatorname{tr}(P)=\{\epsilon\} \cup\{\ell\} \cdot \operatorname{tr}\left(P^{\prime}\right) \cup \bigcup_{\ell \neq \ell^{\prime}, P \stackrel{\ell^{\prime}}{\Rightarrow} P^{\prime \prime}}\left\{\ell^{\prime}\right\} \cdot \operatorname{tr}\left(P^{\prime \prime}\right)
$$

- This is because all the processes P^{\prime} such that $P \stackrel{\ell}{\Rightarrow} P^{\prime}$ are bisimilar, hence trace equivalent.
- A similar reasoning applies to $\operatorname{tr}(Q)$.
- Thus there must be a Q^{\prime} such that $Q \stackrel{\ell}{\Rightarrow} Q^{\prime}$ and $\operatorname{tr}\left(P^{\prime}\right)=\operatorname{tr}\left(Q^{\prime}\right)$.

How do we build deterministic systems?

- Start with deterministic components.
- Look for methods to combine them that preserve determinacy.

Exercise

Consider the process $P \mid Q$ where P, Q are as follows.

1. $P=a . b, Q=a$.
2. $P=a, Q=\bar{a}$.
3. $P=a+b, Q=\bar{a}$.

Are P, Q, and $(P \mid Q)$ determinate?

Sorting

Sorting information is useful when trying to combine processes so as to preserve some property such as determinacy.

Let \mathcal{L} be the set of visible actions and L, L^{\prime}, \ldots range over $2^{\mathcal{L}}$.

Definition We say that a process P has sort L if all the actions performed by P and its derivatives lie in $L \cup\{\tau\}$.

Remarks on sorting

- In CCS, it is easy to provide an upper bound for sorting since:

$$
P: f n(P) \cup \overline{f n(P)}
$$

where $f n(P)$ are the free names in P.

- Sorting is closed under intersection: if $P: L_{i}$ for $i=1,2$ then $P: L_{1} \cap L_{2}$.
- Thus each process has a minimum sort.
- In general, the minimum sort cannot be computed because CCS can simulate Turing machines (TM) and the firing of a transition may correspond to the TM reaching the halting state...
- We discuss a method to compute an over-approximation of the minimum sort that we denote with $\mathcal{L}(P)$.

Computing the over-approximation

- Non-trivial programs in CCS are given via a system of recursive equations:

$$
A\left(a_{1}, \ldots, a_{n}\right)=P
$$

where the names a_{1}, \ldots, a_{n} are all distinct and $f n(P) \subseteq\left\{a_{1}, \ldots, a_{n}\right\}$.

- An assignment ρ is a function that associates with every thread identifier A of arity n a function $\rho(A)$ that takes a vector of n names $\left(b_{1}, \ldots, b_{n}\right)$ and produces a subset $\rho(A)\left(b_{1}, \ldots, b_{n}\right)$ of

$$
\left\{b_{1}, \ldots, b_{n}, \bar{b}_{1}, \ldots \bar{b}_{n}\right\}
$$

- The least assignment ρ_{\emptyset} is the function where the 'subset' produced is always the empty set: $\rho_{\emptyset}(A)\left(b_{1}, \ldots, b_{n}\right)=\emptyset$.
- We define the sort $\llbracket P \rrbracket \rho$ of a process P relatively to an assignment ρ :

$$
\begin{array}{ll}
\llbracket 0 \rrbracket \rho & =\emptyset \\
\llbracket \alpha . P \rrbracket \rho & = \begin{cases}\llbracket P \rrbracket \rho & \text { if } \alpha=\tau \\
\{\alpha\} \cup \llbracket P \rrbracket \rho & \text { otherwise }\end{cases} \\
\llbracket P_{1}+P_{2} \rrbracket \rho & =\llbracket P_{1} \rrbracket \rho \cup \llbracket P_{2} \rrbracket \rho \\
\llbracket P_{1} \mid P_{2} \rrbracket \rho & =\llbracket P_{1} \rrbracket \rho \cup \llbracket P_{2} \rrbracket \rho \\
\llbracket \nu a P \rrbracket \rho & =\llbracket P \rrbracket \rho \backslash\{a, \bar{a}\} \\
\llbracket A(\mathbf{b}) \rrbracket \rho & =\rho(A)(\mathbf{b})
\end{array}
$$

- Now we compute iteratively $\rho_{0}=\rho_{\emptyset}$ and ρ_{n+1} so that:

$$
\rho_{n+1}(A)(\mathbf{a})=\llbracket P \rrbracket \rho_{n}
$$

for all identifiers A defined by an equation $A(\mathbf{a})=P$.

- This defines a growing sequence (check this!) that is guaranteed to converge after finitely many steps to a least fixed point ρ since $\rho_{n}(A)(\mathbf{a}) \subseteq\{\mathbf{a}\} \cup \overline{\{\mathbf{a}\}}$ which is a finite set.

Example

- We consider the system composed of one equation:

$$
A(a, b)=a . \nu c(A(a, c) \mid \bar{b} \cdot A(c, b))
$$

- Then

$$
\begin{aligned}
& \rho_{1}(A)(a, b) \\
& =\llbracket a . \nu c(A(a, c) \mid \bar{b} \cdot A(c, b)) \rrbracket \rho_{\emptyset} \\
& =\{a\} \cup\left(\rho_{\emptyset}(A)(a, c) \cup\{\bar{b}\} \cup \rho_{\emptyset}(A)(c, b)\right) \backslash\{c, \bar{c}\} \\
& =\{a, \bar{b}\}
\end{aligned}
$$

- The following iteration reaches the fixed point:

$$
\begin{aligned}
& \rho_{2}(A)(a, b) \\
& =\llbracket a . \nu c(A(a, c) \mid \bar{b} . A(c, b)) \rrbracket \rho_{1} \\
& =\{a\} \cup\left(\rho_{1}(A)(a, c) \cup\{\bar{b}\} \cup \rho_{1}(A)(c, b)\right) \backslash\{c, \bar{c}\} \\
& =\{a\} \cup(\{a, \bar{c}\} \cup\{\bar{b}\} \cup\{c, \bar{b}\}) \backslash\{c, \bar{c}\} \\
& =\{a, \bar{b}\}
\end{aligned}
$$

Thus $\mathcal{L}(P)=\{a, \bar{b}\}$.

Some sufficient conditions for building determinate processes

Proposition Suppose P, Q, P_{i} are determinate processes for $i \in I$. Then:

1. $0, \alpha . P, \nu a P$ are determinate.
2. $\Sigma_{i \in I} \ell_{i} . P_{i}$ is determinate if the ℓ_{i} are all distinct.
3. $P \mid Q$ is determinate if P, Q do not communicate and do not share actions (that is $\mathcal{L}(P) \cap \mathcal{L}(Q)=\emptyset$ and $\mathcal{L}(P) \cap \overline{\mathcal{L}(Q)}=\emptyset)$.
4. σP is determinate if σ is an injective substitution on the free names in P.

Proof idea

1. For instance, for $\nu a P$ one checks that if $\nu a P \stackrel{s}{\Rightarrow} Q$ then $P \stackrel{s}{\Rightarrow} P^{\prime}$ and $Q=\nu a P^{\prime}$.
2. Routine. Note that it is essential that all the actions are distinct and visible.
3. Because of the hypothesis on the sorting, an action of $\left(P_{1} \mid P_{2}\right)$ can be attributed uniquely to either P_{1} or P_{2}. Then we can rely on the determinacy of P_{1} and P_{2}.
4. The transitions of P and σP are in perfect correspondance as long as σ is injective. Note that if σ is not injective then σP could perform some additional synchronisations.

Summary on determinacy

1. Deterministic processes are τ-inert.
2. For deterministic processes, bisimulation collapses to trace equivalence.
3. A simple method to extract approximated sorting information.
4. Use approximated sorting information to build deterministic processes.
5. Unfortunately, rules for parallel composition are too restrictive: no synchronisation.

Confluence

Refining the conditions

We want to allow some form of communication, but...

- We have to avoid race conditions: two processes compete on the same resource.
- We also have to avoid that an action preempts other actions.
- We introduce a notion of confluence that strengthens determinacy and is preserved by some form of communication (parallel composition + restriction).
- For instance,

$$
\nu a((a+b) \mid \bar{a})
$$

will be rejected because $a+b$ is not confluent.

Confluence: rewriting vs. concurrency

- Notion reminiscent of confluence in term rewriting systems and λ-calculus (Church-Rosser theorem).
- By analogy one calls confluence the related theory in process calculi but bear in mind that:

1. Confluence is relative to a labelled transition system.
2. We close diagrams up to equivalence.

Definition of confluence

We start with a rather natural notion of confluence.

Definition (Conf 0) A process P is confluent if for every derivative Q of P we have:

$$
\begin{aligned}
& \frac{Q \stackrel{\alpha}{\Rightarrow} Q_{1} \quad Q \stackrel{\alpha}{\Rightarrow} Q_{2}}{Q_{1} \stackrel{\tau}{\Rightarrow} Q_{1}^{\prime} \quad Q_{2} \stackrel{\tau}{\Rightarrow} Q_{2}^{\prime} \quad Q_{1}^{\prime} \approx Q_{2}^{\prime}} \\
& \begin{array}{ccc}
Q \stackrel{\alpha}{\Rightarrow} Q_{1} & Q \stackrel{\beta}{\Rightarrow} Q_{2} & \alpha \neq \beta \\
\hline Q_{1} \stackrel{\beta}{\Rightarrow} Q_{1}^{\prime} & Q_{2} \stackrel{\alpha}{\Rightarrow} Q_{2}^{\prime} & Q_{1}^{\prime} \approx Q_{2}^{\prime}
\end{array}
\end{aligned}
$$

Some properties

A first sanity check is to verify that the definition is invariant under transitions and equivalence.

Proposition

1. If P is confluent and $P \xrightarrow{\alpha} P^{\prime}$ then P^{\prime} is confluent.
2. If P is confluent and $P \approx P^{\prime}$ then P^{\prime} is confluent.

Proof idea (cf. similar proof for determinacy)

1. If Q is a derivative of P^{\prime} then it is also a derivative of P.
2. It is enough to apply the fact that:

$$
\left(P \approx P^{\prime} \text { and } P \stackrel{\alpha}{\Rightarrow} P_{1}\right) \text { implies }\left(P^{\prime} \stackrel{\alpha}{\Rightarrow} P_{1}^{\prime} \text { and } P_{1} \approx P_{1}^{\prime}\right)
$$

and the transitivity of \approx.

A first characterisation

We consider a first 'asymmetric' characterisation where the move from Q to Q_{1} just concerns a single action.

Proposition (Conf 1) A process P is confluent iff for every derivative Q of P, we have:

$$
\begin{gathered}
Q \stackrel{\alpha}{\rightarrow} Q_{1} \quad Q \stackrel{\alpha}{\Rightarrow} Q_{2} \\
Q_{1} \stackrel{\tau}{\Rightarrow} Q_{1}^{\prime} \quad Q_{2} \stackrel{\tau}{\Rightarrow} Q_{2}^{\prime} \quad Q_{1}^{\prime} \approx Q_{2}^{\prime} \\
\frac{Q \stackrel{\alpha}{\Rightarrow} Q_{1}}{} \quad Q \stackrel{\beta}{\Rightarrow} Q_{2} \quad \alpha \neq \beta \\
\hline Q_{1} \stackrel{\beta}{\Rightarrow} Q_{1}^{\prime} \quad Q_{2} \stackrel{\alpha}{\Rightarrow} Q_{2}^{\prime} \quad Q_{1}^{\prime} \approx Q_{2}^{\prime}
\end{gathered}
$$

Proof idea

- The diagrams of (Conf 1$)$ are a particular case of $(\operatorname{Conf} 0)$.
- Thus we just have to show that the diagrams of (Conf 1) suffice to complete the diagrams of (Conf 0$)$.
- We may proceed by induction on the length of the transition $Q \stackrel{\alpha}{\Rightarrow} Q_{1}$. For instance suppose $\alpha \neq \beta, \beta \neq \tau$, and

$$
Q \xrightarrow{\tau} Q_{1} \stackrel{\alpha}{\Rightarrow} Q_{2} \quad Q \stackrel{\beta}{\Rightarrow} Q_{3}
$$

- By (Conf 1$)$,

$$
Q_{1} \stackrel{\beta}{\Rightarrow} Q_{4} \quad Q_{3} \stackrel{\tau}{\Rightarrow} Q_{5} \quad Q_{4} \approx Q_{5}
$$

- By inductive hypothesis

$$
Q_{2} \stackrel{\beta}{\Rightarrow} Q_{6} \quad Q_{4} \stackrel{\alpha}{\Rightarrow} Q_{7} \quad Q_{4} \approx Q_{7}
$$

- From $Q_{4} \approx Q_{5}$ and $Q_{4} \stackrel{\alpha}{\Rightarrow} Q_{7}$ we derive

$$
Q_{5} \stackrel{\alpha}{\Rightarrow} Q_{8} \quad Q_{7} \approx Q_{8}
$$

- Therefore

$$
Q_{2} \stackrel{\beta}{\Rightarrow} Q_{6} \quad Q_{3} \stackrel{\alpha}{\Rightarrow} Q_{8} \quad Q_{6} \approx Q_{8}
$$

as required.

Exercise

Complete the proof by considering the remaining cases.

Determinacy vs. Confluence

Confluence implies τ-inertness, and from this we can show that it implies determinacy too.

Proposition Suppose P is confluent. Then P is:

1. τ-inert, and
2. determinate.

Reminder

A relation R is a weak bisimulation up to $\approx \mathrm{if}$

$$
\frac{P R Q \quad P \stackrel{\alpha}{\Rightarrow} P^{\prime}}{Q \stackrel{\alpha}{\Rightarrow} Q^{\prime} \quad P^{\prime}(\approx \circ R \circ \approx) Q^{\prime}}
$$

(and symmetrically for Q).

NB It is important that we work with the weak moves on both sides, otherwise the relation R is not guaranteed to be contained in \approx. E.g. consider

$$
R=\{(\tau . a, 0)\}
$$

Proof idea

1. We want to show that $P \stackrel{\tau}{\Rightarrow} Q$ implies $P \approx Q$.

- We show that

$$
R=\{(P, Q) \mid P \stackrel{\tau}{\Rightarrow} Q\}
$$

is a weak bisimulation up to \approx.

- It is clear that whatever Q does, P can do too with some extra moves.
- Suppose, for instance, $P \stackrel{\alpha}{\Rightarrow} P_{1}$ with $\alpha \neq \tau$ (case $\alpha=\tau$ left as exercise).
- By (Conf 0),

$$
Q \stackrel{\alpha}{\Rightarrow} Q_{1} \quad P_{1} \stackrel{\tau}{\Rightarrow} P_{2} \quad Q_{1} \approx P_{2}
$$

- That is

$$
P_{1}(R \circ \approx) Q_{1}
$$

2. We want to show that if P is confluent then it is determinate.

- Suppose $P \stackrel{s}{\Rightarrow} P_{i}$ for $i=1,2$ and $s \in \mathcal{L}^{*}$.
- We proceed by induction on the length $|s|$ of s.
- If $|s|=0$ and $P \stackrel{\tau}{\Rightarrow} P_{i}$ for $i=1,2$ then by confluence

$$
P_{i} \stackrel{\tau}{\Rightarrow} P_{i}^{\prime} \quad i=1,2 \quad P_{1}^{\prime} \approx P_{2}^{\prime}
$$

- By τ-inertness

$$
P_{1} \approx P_{1}^{\prime} \approx P_{2}^{\prime} \approx P_{2}
$$

- For the inductive case, suppose $P \stackrel{\ell}{\Rightarrow} P_{i}^{\prime} \stackrel{r}{\Rightarrow} P_{i}$ for $i=1,2$.
- As in the basic case we derive that $P_{1}^{\prime} \approx P_{2}^{\prime}$.
- By weak bisimulation, $P_{2}^{\prime} \stackrel{r}{\Rightarrow} P_{2}^{\prime \prime}$ and $P_{2}^{\prime \prime} \approx P_{1}$.
- By inductive hypothesis, $P_{2} \approx P_{2}^{\prime \prime}$.
- Thus $P_{2} \approx P_{2}^{\prime \prime} \approx P_{1}$ as required.

τ-inertness and confluence

Assuming that the process is τ-inert we can simplify a bit more the commuting diagrams. Let

$$
P \stackrel{\alpha]}{\Rightarrow} P^{\prime}= \begin{cases}P \stackrel{\tau}{\Rightarrow} P^{\prime} & \text { if } \alpha=\tau \\ P \stackrel{\tau}{\Rightarrow} \cdot \stackrel{\ell}{\rightarrow} & \text { if } \alpha=\ell\end{cases}
$$

Thus in $\stackrel{\ell]}{\Rightarrow}$, there is no τ action after ℓ.

Exercise (Conf 2)

Show that a process P is confluent iff it is τ-inert and for all its derivatives Q we have:

$$
\begin{gathered}
\frac{Q \stackrel{\alpha}{\rightarrow} Q_{1} \quad Q \stackrel{\alpha]}{\Rightarrow} Q_{2}}{Q_{1} \approx Q_{2}} \\
\frac{Q \stackrel{\alpha}{\rightarrow} Q_{1} \quad Q \stackrel{\beta]}{\Rightarrow} Q_{2} \quad \alpha \neq \beta}{Q_{1} \stackrel{\beta]}{\Rightarrow} Q_{1}^{\prime} \quad Q_{2} \stackrel{\alpha]}{\Rightarrow} Q_{2}^{\prime} \quad Q_{1}^{\prime} \approx Q_{2}^{\prime}}
\end{gathered}
$$

