
A second generation model:
SL/Esterel

1

Some informal, driving ideas

• In SCCS/Meije (or in Moore machines) the behaviour of a
process within an instant is determined by a big, fixed table.
We want to be able to program the actions we take within an
instant.

• We want to share information among several processes without
introducing non-determinism. To this end, we consider signals
which are messages that persist within an instant.

• At the end of the instant, we want to be able to detect the
absence of a signal. This allows to move from a unary to a
binary notation.

2

A simple calculus for the SL model

Write s, s′, . . . for signals.

Processes P ::= 0 || s || s.P, K || (P | P) || νs P || A(s)

Continuations K ::= P || ite s K K

• s.P, K is the present statement of the SL model: run P if s is
emitted and otherwise evaluate K at the end of the instant.

• K allows to select a continuation in the following instant
according to an arbitrary boolean condition on signals.

3

Resuming at the following instant

We ‘define’:

pause.K = νs (s.0,K) s /∈ fn(K)

We wait till the end of the instant and then we evaluate K.

4

Waiting for a signal

• Suppose fn(P) ∪ {s} = {s}.

• We ‘define’:
await s.P = A(s)

where:
A(s) = s.P, A(s)

We wait an arbitrary number of instants for a signal.

5

Example: programming a NOR gate in SL

• Input signals: s0, s1.

• Output signal: s.

• At instant i + 1, emit s iff neither s0 nor s1 were emitted at
instant i.

N0 = pause.(ite s0 N0 (ite s1 N0 N1))

N1 = s | N0

6

Remarks

• We can program the boolean function NOR rather than writing
down its truth table.

• Several threads can share the same signal:

s | s.P1,K1 | s.P2,K2

• We can react to the absence of a signal at the end of the instant
and therefore we can regard a signal as a binary information.

7

Some historical remarks

• In the Esterel model it is actually possible to react
immediately (rather than at the end of the instant) to the
absence of a signal.

• This requires some semantic care, to avoid writing paradoxical
programs such as:

s.0, s

which are supposed to emit s when s is not there (cf.
stabilization problems in synchronous circuits).

• It also requires some clever compilation techniques to determine
whether a signal is not emitted. Infact these techniques seem
specific to finite state models.

8

• SL is a relaxation of the Esterel model where the absence of
a signal can only be detected at the end of the instant.

• If we forget about name generation, then the SL model
essentially defines a kind of monotonic Mealy machine.
Monotonic in the sense that output signals can only depend
positively on input signals (within the same instant).

• The monotonicity restriction allows to avoid the paradoxical
programs (monotonic boolean equations do nhave a least fixed
point!).

• The SL model has a natural and efficient implementation
model that works well for general programs (not just finite state
machines).

9

• The Esterel/SL models were conceived in Sophia-Antipolis
shortly after the SCCS/Meije models and in the same research
team.

• In spite of this, there is no strong formal result on the
possibility/impossibility of embedding one model into the other
up to some reasonable equivalence.

10

Macro-scopic transitions

• Let I,O be finite sets of signals.

• The judgement:

P
I/O→ P ′

means: P receiving the signals I at the beginning of the
instant, reaches the end of the instant, emits the signals O, and
becomes the process P ′ in the following instant.

• A derivative of P is a process P ′ such that:

P
I/O→ · · · I′/O′

→ P ′

11

Two desirable properties

Reactivity Instant should end, i.e., for all derivatives Q of P , for
all inputs I, the process Q must reache the end of the instant
(suspends).

Determinacy (assuming reactivity) For all derivatives Q of P ,
for all inputs I,

Q
I/O1→ Q1 Q

I/O2→ Q2

O1 = O2 Q1 equivalent to Q2

12

Micro-scopic semantics

The macro-scopic semantics relies on a micro-scopic semantics that
is built on three relations:

• A labelled transition system α→ describing how a process can
interact during the instant.

• A suspension predicate ↓ that holds when a process cannot
perform any more internal transition.

• An evaluation relation 7→ describing how the process evolves at
the end of the instant.

13

Labelled transition system
Actions

α ::= τ || s || s

Special rules for signals

s
s→ s s.P, K

s→ (P | s)

14

Standard rules (cf. CCS)

P1
s→ P ′

1 P2
s→ P ′

2

P1 | P2
τ→ P ′

1 | P ′
2

P1
α→ P ′

1

P1 | P2
α→ P ′

1 | P2

P
α→ P ′ s /∈ α

νs P
α→ νs P ′

A(x) = P

A(s) τ→ [s/x]P

15

Remarks

• Emission of a signal is persistent.

• When a signal is present, the continuation is guaranteed to see
the signal as present. For instance,

s.(s1 | s.s2, 0), 0

either suspends on s or emits both s1 and s2.

16

• The input rule has the effect that:

s | s.0, 0 τ→ s | 0 | s

• However this is not a problem, because emitting a signal once
is the same as emitting it twice.

17

Suspension

• We write P ↓ if ¬P
τ→ ·.

• By inspection of the semantics, one verifies that suspension
means that every ‘thread’ is either terminated (0) or waiting for
a signal that was not emitted.

• The (virtual) machine running a program has efficient means
to detect suspension and to move the computation to the
following instant.

18

End of the instant

The evaluation at the end of the instant is defined by a judgement

P 7→ P ′

which is defined compositionally using a more elaborate judgement

P
E,V7−→ P ′

where E, V are sets of signals.

19

Intuitively, in P
E,V7−→ P ′:

• E: signals emitted by P .

• V : signals that are assumed to be emitted at the end of the
instant.

Thus we expect: E ⊆ V . At the end of the instant, we compute:

[[K]]V =


P if K = P

[[K1]]V if K = ite s K1 K2, s ∈ V

[[K2]]V if K = ite s K1 K2, s /∈ V

20

Rules for the end of the instant

0
∅,V7−→ 0

s ∈ V

s
{s},V7−→ 0

s /∈ V

s.P, K
∅,V7−→ [[K]]V

Pi
Ei,V7−→ P ′

i i = 1, 2

(P1 | P2)
E1∪E2,V7−→ (P ′

1 | P ′
2)

P
E,V7−→ P ′ {s} ∩ E = {s} ∩ V

νs P
E\{s},V \{s}7−→ νs P ′

P
E,V7−→ P ′ E = V

P 7→ P ′

21

Example

νs1 (s1.0, (ite s2 A() 0) | s2)

| s1 | s2

{s1,s2},{s1,s2}7−→ νs1(A() | 0) | 0 | 0

NB Evaluation at the end of the instant is deterministic. If P ↓
then ∃!P ′ (P 7→ P ′).

22

From micro to macro transitions

• If I = {s1, . . . , sn} is a finite set of signals let PI = s1 | · · · | sn.

• Let Out(P) = {s | P s→ ·}.

• Define the I/O macro transitions as follows:

(P | PI)
τ⇒ P ′′ P ′′ ↓ Out(P ′′) = O P ′′ 7→ P ′

P
I/O→ P ′

23

Exercise

Define the rules for the lts and the end of the instant for the
operators await and pause.

24

Coming next

A survey on:

1. Reactivity.

2. Expressivity.

3. Determinacy.

4. Compositional reasoning.

5. Data types extensions.

in the SL model.

25

Reactivity in the SL model

26

A simple static analysis that guarantees reactivity

• We assume the instruction pause is explicitly used in the
program.

• We compute an over-approximation of the control flow of the
system of equations.

• We check that within an instant it is not possible to loop
through a thread identifier.

27

Call graph

If P is a process then Call(P) is an over-approximation of the set
of process identifiers that P may possibly call within the current
instant:

Call(P) = case P

0 : ∅
pause.P : ∅
B(a) : {B}
s : ∅
s.P, K : Call(P)

νs P : Call(P)

P1 | P2 : Call(P1) ∪ Call(P2)

28

Given a system of equations:

A1(a1) = P1

· · ·
An(a1) = Pn

build a (directed) call graph with nodes {A1, . . . , An} and such that

(Ai, Aj) is an edge iff Aj ∈ Call(Ai)

29

Proposition If the call graph has no loops then any process
relying on the related system of equations is reactive.

30

Proof idea

• If the graph has no loops then we can define a well-founded
order > on thread identifiers such that A > B whenever there
is an edge from A to B in the call graph.

• A process is essentially a multi-set of threads:

{|P1, . . . , Pn|}

• Whenever we perform an internal reduction either we reduce
the size of a Pi or we unfold a recursive equation Ai(a) = Pi

and then we have:

Call(Ai) = {|Ai|} >mset Call(Pi)

31

Exercise

Define a well-founded measure on processes that shows that all
internal reductions terminate.

32

Expressivity of the SL model

33

Simulating push-down automata

• We want to write a SL program that simulates a deterministic
push-down automata.

• This example serves three purposes:

1. Some non-trivial hacking in SL.

2. An opportunity for reactivity analysis.

3. Suggests that the SL model is Turing equivalent.

34

• A configuration is a pair (q, w) where q ∈ Q is a state and
w = S · · ·SZ is a stack.

• Possible transitions are:

(q, w) → (q′, Sw) (increment)

(q, Sw) → (q′, w) (decrement)

(q, Z) → (q′, Z) (positive zero test)

(q, Sw) → (q′, Sw) (negative zero test)

• We assume that the automaton is deterministic and that we
check that the stack is not empty before running a decrement
instruction.

35

• Associate a recursive equation with each state/instruction:

q = inc | await ack .pause.q′

q = dec | await ack .pause.q′

q = zero.(pause.q′), q′′

36

• With a configuration (q, S · · ·SZ) associate the program:

νs0, . . . sn (q(s0) | S(s0, s1) | · · · | S(sn−1, sn) | Z(sn))

• Z is described by the equation:

Z(s) = zero | inc.(ack | pause.νs′(S(s, s′) | Z(s′))), Z(s)

37

• and S by the equations:

S(s, s′) = Sinc(s, s′) | Sdec(s, s′)

Sinc(s, s′) = inc.pause.S+(s, s′), (ite dec 0 Sinc(s, s′))

Sdec(s, s′) = dec.pause.Sr(s, s′), (ite inc 0 Sdec(s, s′))

S+(s, s′) = ack | νs′′ (S(s, s′′) | S(s′′, s′))

Sr(s, s′) = zero′.(pause.(ack | Z(s)), (dec′ | Sl(s, s′))

Sl(s, s′) = ack ′.pause.(ack | S(s, s′)), Sl(s, s′)

38

Some dynamics

Increment

SSZ → S+SZ → SSSZ

Decrement

SSSZ → SrSSZ → SlSrSZ → SlSlSrZ → SlSlZ → SlSZ → SSZ

39

Remarks

• In S we have two parallel threads: one waiting for the signal
inc and the other for the signal dec. At the end of the instant,
the first thread will abort if the signal dec has been emitted
(and symmetrically).

• The call graph associated with the system of equations is
acyclic. Hence the program is reactive.

• It is easy to adapt the program to simulate a two counters
machine (name generation is essential here).

40

Exercise

Show that the presented encoding of push-down automata can be
adapted to CCS.

41

Determinacy in the SL model

42

(Very) Strong confluence

Determinacy of macro transitions follows by a strong confluence
property of micro transitions:

P
τ→ P1 P

τ→ P2

P1 = P2 or ∃Q (P1
τ→ Q,P2

τ→ Q)

NB We close the diagram in at most one step and up to
α-renaming.

43

Proof idea

• Internal reductions are due either to unfolding or to
synchronisation.

• The only possibility for a superposition of the redexes is:

s | s.P1,K1 | s.P2,K2

• And we exploit the fact that emission is persistent.

44

• Now consider (P | PI).

• By reactivity, all internal reduction sequences terminate.

• By reactivity, strong confluence implies confluence. Thus there
is a unique process P ′′ such that

(P | PI)
τ⇒ P ′′ and P ′′ ↓

• Then the observable output is Out(P ′′) and the continuation at
the next instant is the unique P ′ such that P ′′ 7→ P ′ (remember
that evaluation at the end of the instant is deterministic).

45

Exercise

Show a strong confluence property for the labelled transition system.

46

A compositional semantics for the
SL model

47

Trace semantics

Following, our definition for CCS, we could define a trace semantics
as:

tr(P) = {(I1/O1) · · · (In/On) | P I1/O1→ · · · In/On→ ·}

48

Problems

• The definition is not very manageable because the transitions
are complicated.

• It is not clear how to prove congruence properties.

49

A glimpse at a characterisation

It is possible to:

• Define a notion of bisimulation at the level of the micro
transitions (α→, ↓, 7→).

• Show that the notion of bisimulation is preserved by the
operators and that can be characterised as a contextual
bisimulation.

• Prove that because of determinacy bisimulation collapses with
trace equivalence.

50

The definition of bisimulation (for reactive processes)

Assuming P R Q:

(L1)
P

α→ P ′ α = τ or α = s

∃Q′ (Q
τ⇒ Q′ and P ′ R Q′)

(L2)

P
s→ P ′

∃Q′ (Q
s⇒ Q′ and P ′ R Q′) or

(Q
τ⇒ Q′ and P ′ R (Q′ | s))

(L3)

S = s1 | · · · | sn, n ≥ 0

P ′ = (P | S) ↓, and P ′ 7→ P ′′

∃Q′, Q′′ ((Q | S)
τ⇒ Q′, Q′ ↓, P ′ R Q′,

Q′ 7→ Q′′, and P ′′ R Q′′)

51

Remarks on the definition

(L1) Standard.

(L2) Inspired by the π-calculus with asynchronous communication.
No reason to distinguish s.0, 0 from 0.

(L3) Emitted values have an effect at the end of the instant.

Consider: P = s1.0, (ite s2 s3, 0) Q = s1.0, 0

Then: P ↓, Q ↓, P 7→ 0, Q 7→ 0

However: (P | s2) is not equivalent to (Q | s2)

52

Extending the SL model with data
values

53

SL and its evolution

• The language with pure signals is deterministic.

• Reasonable extension to (infinite) data domains. The resulting
language becomes non-deterministic.

• Efficient implementation model.

• Embedded in many programming environments: C, C++,
Scheme, ML.

• Significant applications: event-driven control, data flow, GUI,
simulations, web services, multiplayer games.

Some references

• Boussinot. Reactive C: an extension of C to program reactive systems.

Soft. Practice and Experience, 1991.

• Mandel-Pouzet. Reactive ML, a reactive extension to ML. In Proc. ACM

PPDP, 2005.

54

The Sπ-calculus: a synchronous π-calculus

Assume v1 6= v2 are two distinct values and

P = ν s1, s2 (s1v1 | s1v2 |
s1(x). (s1(y). (s2(z). A(x, y) , B(!s1))

, 0)

, 0)

P is a π-calculus process if we forget about the else branches of the
read instructions.

55

Spot the differences. . .

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)), 0), 0)

• In π, P reduces to

P1 = νs1, s2 (s2(z).0, A(σ(x), σ(y)), B(!s1))

where σ(x), σ(y) ∈ {v1, v2} and σ(x) 6= σ(y).

• In Sπ, signals persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(σ(x), σ(y)), B(!s1)))

where σ(x), σ(y) ∈ {v1, v2}.

56

• In π, P1 is now deadlocked.

• In Sπ, the current instant ends and we move to the following
one

P2 7→ P ′
2 = νs1, s2 B(σ(`))

where σ(`) ∈ {[v1; v2], [v2; v1]}.

• Thus at the end of the instant, !s1 becomes a list of (distinct)
values emitted on s1 during the instant.

• For this reason, Sπ includes lists has a primitive data structure.

57

Internal choice

Non-determinism arises when emitting distinct values on the same
signal:
Within the instant...

s(x).P, K | s0 | s1

with suitable encodings of 0 and 1.
...and at the end of the instant

pause.A(!s) | s0 | s1

58

Results and/or Problems

1. (Feasible) Reactivity.

2. Determinacy.

3. Compositional Semantics.

59

Some references

• G. Berry and G. Gonthier, The Esterel synchronous programming

language. Science of computer programming, 19, 1992.

It introduces an imperative language to program reactive systems.

The language can be compiled to finite automata. The semantics

allows to react immediately to the absence of a signal. Static

analysis is required to avoid ‘causality problems’.

• F. Boussinot and R. De Simone, The SL Synchronous Language. IEEE

Trans. on Software Engineering, 22, 1996.

Relaxation of the Esterel model. It allows reaction to the absence

of a signal only at the end of the instant.

• A., The SL synchronous language, revisited. Journal of Logic and

Algebraic Programming, 70:121-150, 2007.

A process calculus description of the SL model with pure signals.

• A., A synchronous π-calculus. https://hal.ccsd.cnrs.fr/ccsd-00078319.

June 2006.

The generalisation of the previous work to signals carrying data

values.

60

Advertising (bis repetita)

• On January 8th, 15th, 22nd, 29th (Monday, last slot) there will
be 4 lectures by Robin Milner on Bigraphs. Attendance is
recommended. You can get 2 credits for this.

• No course on January 12th! Instead, attend a colloquium in
Paris in memory of Gilles Kahn (see INRIA web page and
register (freely) before 29/12).

• 3 years grant available in PPS to prepare a thesis on
Concurrency Theory with applications to Security.

61

