
.

Concurrency 2

CCS : Static scoping, bisimulation, coinduction

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2006/2007 with :

Francesco Zappa Nardelli (INRIA Rocquencourt)

Catuscia Palamidessi (INRIA - Futurs)

Roberto Amadio (Paris 7)

—————

(http://mpri.master.univ-paris7.fr/C-2-3.html)

1

.

Recommended readings

Courses 2, 3, and 4 build mainly on Milner’s ”red book”

Communication and Concurrency (see course’s web page).

For a few complements and more examples, we refer to last year’s

courses 4 and 5, by Catuscia Palamidessi

(http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005)

(course 3 of that series is course 1 of this year).

2

.

From automata to CCS (1/6)

Remove final (we are not primarily interested in termination), and initial

states (assimilate processes with states, hence any state is “initial”

relative to the process it is identified with).

Such an automaton deprived from initial and final states is called a

labelled transition system, or LTS for short.

3

.

From automata to CCS (2/6)

An LTS is given by

• a finite set of states, or P, Q, . . .,

• a finite alphabet Act whose members are called actions, and

• transitions between them, written P
µ→ Q.

4

.

From automata to CCS (3/6)

A LTS together with one of its states, that is, a process, can be

described by the following syntax :

P ::= Σi∈Iµi · Pi | let �K = �P in Kj | K

(empty sum denoted by 0)

5

.

From automata to CCS (4/6)

CCS P ::= Σi∈Iµi · Pi | let �K = �P in Kj | K | (P | Q) | (νa)P

Synchronization Trees P ::= Σi∈Iµi · Pi

Finitary CCS P ::= Σi∈Iµi · Pi | (P | Q) | (νa)P (I finite)

w.r.t. Catuscia’s course : we use guarded sums only (useful to prove

that weak bisimulation is a congruence), and mutually recursive

definitions (recKP = (let K = P in K)).

In practice, one writes a context of (sets of mutually recursive)

definitions

K1 = P1 . . . Kn = Pn instead of (let �K = �P in K1) . . . (let �K = �P in Kn)

Not the ultimate syntax yet (see scoping below) !

6

.

From automata to CCS (5/6)

in CCS

Act = L ∪ L ∪ {τ}

(disjoint union), where L is the set of labels, also called names, or

channels, and τ is a silent action that records a synchronisation. µ ∈Act,

α ∈ L ∪ L, α = α

7

.

From automata to CCS (6/6)

We write

Σi∈Iai · Pi = (Σi∈I\i0ai · Pi) + ai0 · Pi0

(note that the notation implicitly views sums as associative and

commutative – this will be made explicit later)

8

.

Labelled operational semantics (1/4)

Σi∈Iµi · Pi
µi→ Pi

P
µ→ P ′ (µ �= a, a)

(νa)P
µ→ (νa)P ′

P
µ→ P ′

P | Q
µ→ P ′ | Q

Q
µ→ Q′

P | Q
µ→ P | Q′

P
α→ P ′ Q

α→ Q′

P | Q
τ→ P ′ | Q′

Pj [�K ← (let �K = �P in �K)]
µ→ P ′

let �K = �P in Kj
µ→ P ′

9

.

Labelled operational semantics (2/4)

τ-transitions (resp. α-transitions) correspond to internal evolutions

(resp. interactions with the environment).

Rule COMM involves both.

In λ-calculus, one considers only one (internal) reduction : β.

10

.

Labelled operational semantics (3/4)

Example :

P = (νc)(K1 | K2) where

8

<

:

K1 = a · c · K1

K2 = b · c · K2

Behaviour : do a and b independently, then τ , then loop.

11

.

Labelled operational semantics (4/4)

It is possible to formulate internal reduction in CCS without reference

to the environment.

Price to pay : work modulo structural equivalence.

12

.

Structural equivalence

Σi∈Iµi · Pi ≡ Σi∈Iµf(i) · Pf(i) (f permutation)

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

((νa)P) | Q ≡ (νa) (P | Q) (a not free in Q)

let �K = �P in Kj ≡ Pj [�K ← (let �K = �P in �K)]

13

.

Reduction operational semantics (1/2)

P1 + a · P | a · Q + Q1 → P | Q P1 + τ · P → P

P1 → P ′
1

P1 | P2 → P ′
1 | P2

P → P ′

(νa)P → (νa)P ′

P1 ≡ P2 → P ′
2 ≡ P ′

1

P1 → P ′
1

14

.

Reduction operational semantics (2/2)

The relations → and
τ→≡ coincide.

Exercice 1 Prove it, via the following claims :

• If P
µ→ P ′ and P ≡ Q, then there exists Q′ such that Q

µ→ Q′ and

P ′ ≡ Q′.
• If P

α→ P ′, then P ≡ (ν�a) (α · Q + P1 | P2) and P ′ ≡ (ν�a) (P1 | P2), for

some �a, P1, P2, Q.

15

.

Semaphore in CCS

Sem = P · V · Sem

Sem | (P · C0;V) | (P · C1;V)

→ (V · Sem) | (P · C0;V) | (C1;V)

→� (V · Sem) | (P · C0;V) | V
→ Sem | (P · C0;V)

Exercice 2 Encode P ; Q in CCS.

16

.

Value passing

P1 + a(x) · P | a〈v〉 · Q + Q1 → P [x ← v] | Q

A memory cell

Persistent : Reg〈x〉 = Get〈x〉 · Reg〈x〉 + Put(y) · Reg〈y〉

One-shot :

8

<

:

Sem〈x〉 = (Get〈x〉 · K) + K

K = Put(y) · Sem〈y〉

17

.

Scope and recursion (1/4)

Consider (example of Frank Valencia) (we write µ for µ · 0) :

P1 = (let K = a|(νa)((a · test)|K) in K)

Applying the rules, we have (two unfoldings) :

(a|(νa)((a · test)|a|(νa)((a · test)|K))
τ→ (a|(νa)(test)0|(νa)((a · test)|K))

(a|(νa)((a · test)|K))
τ→ (νa)(test |0|(νa)((a · test)|K))

K
τ→ (νa)(test)0|(νa)((a · test)|K))

What about P2 = (let K = a|(νb)((b · test)|K) in K) : the double enfolding

yields a|(νb)((b · test)|a|(νb)((b · test)|K), which is deadlocked, while the

first definition of K allows to perform test (notice the capture of a).

18

.

Scope and recursion (2/4)

P1 = (let K = a|(νa)((a · test)|K) in K)

P2 = (let K = a|(νb)((b · test)|K) in K)

There is a tension :

- These two definitions have a different behaviour.

- The identity of bounded names should be irrelevant (α-conversion).

So let us rename a in the first definition :

P3 = (let K = a|(νb)((b · test)|K[a ← b]) in K)

But what is K[a ← b] ? Well, we argue that it is not K, it is a

substitution or (explicit) relabelling which is delayed until K is replaced

by its actual definition (cf. e.g. λ-calculus with term metavariables and

explicit substitutions)

So, all is well, we maintain both α-conversion (P1 = P3) and the

difference of behaviour (P1 �= P2), and the tension is resolved . . .

19

.

Scope and recursion (3/4)

In an α-conversion (νx)P = (νy)P [x ← y], y should be chosen not free in

P . BUT when substitution arrives on K, how do I know whether y is

occurs (free) in K ? For example, in

P4 = (let K = b|(νa)((a · test)|K) in K)

b is free in K, but I cannot know it from just looking at the subterm

(νa)((a · test)|K).

Clean solution (definitions with parameters) : maintain the list of free

variables of a constant K, and hence write constants always in the form

K(�x) and make sure that in a definition let K(�a) = P in Q we have

FV (P) ⊆ �a. (cf. syntax adopted in Milner’s π-calculus book).

And now, relabelling can be omitted from syntax, i.e. left implicit, since,

e.g. K(a, b)[a ← c] = K(c, b).

Exercice 3 Express the LTS rule for constants in this new setting.

20

.

Scope and recursion (4/4)

A “real” example : Consider the following linking operation (with

implicit substitution) :

P � Q = (νi′, z′, d′)(P [i, z, d ← i′, z′, d′]|Q[inc, zero,dec ← i′, z′, d′])

In particular

8

<

:

C(inc, zero,dec, z, d) � C(inc, zero,dec, z, d)

= (νi′, z′, d′)(C(inc, zero,dec, z′, d′)|C(i′, z′, d′, z, d))

A (unbounded) counter :

C = inc · (C � C) + dec · D D = d · C + z · B B = inc · (C � B) + zero · B

An example of execution :

B
zero→ B

inc→ (C � B)
inc→ ((C � C) � B)

dec→ ((D � C) � B)

τ→ ((C � D) � B)
dec→ ((D � D) � B)

τ→ ((D � B) � B)

τ→ ((B � B) � B)
inc→ ((C � B) � B · · ·

Exercice 4 Make the parameters of C, D, B explicit in the above

definition of counter.

Exercice 5 Show that there is no derivation B
τ→� inc→ τ→� dec→ τ→� dec→ .

21

.

CCS encodings (1/4)

(Thanks to Catuscia Palamidessi for these encodings)

Here is a specification P of (up to) n readers in parallel and (at most)

one writer :

R = pR · read · vR

W = pW · write · vW

S0 = pR · S1 + pW · vW · S0

Sk = pR · Sk+1 + vR · Sk−1 (0 < k < n)

Sn = vR · Sn−1

in

(νpR, vR, pW , vW)(S0|R| · · · |R|W | · · · |W) (arbitrarily many readers and writers)

If P
s→ (νpR, vR, pW , vW)P ′, then

(νpR, vR, pW , vW)P ′ s′→ (νpR, vR, pW , vW)P ′′, where

- P ′′ = Si|Q (up to i threads of Q can perform read and no thread can

perform write), or

- P ′′ = (vW · S0)|Q (no thread of Q can perform read and at most one

thread can perform write)

22

.

CCS encodings (2/4)

The dining philosophers can be encoded by a closed linking (cf. above)

of n copies of the following process Philn,p,a (each philosopher holds its

left fork at the beginning)

Philn,p,a = τ · Philh,p,a + τ · Philn,p,a + cL · Philn,a,a

Philn,a,p = symmetric

Philn,a,a = τ · Philn,a,a + τ · Philh,a,a

Philh,a,a = cL · Philh,p,a + cR · Philh,a,p

Philh,p,a = cLPhilh,a,a + cR · Philh,p,p

Philh,a,p = symmetric

Philh,p,p = eat · Philn,p,p

Philn,p,p = cL · Philn,a,p + cR · Philn,p,a

- n/h stand for “not hungry” / “hungry”, a/p for absent / present

(second and third index for first and second fork, respectively)

- under the linking, cR (resp. cL) is (privately) identified with the cL

(resp. cR) of the right (resp. left) neighbour

23

.

CCS encodings (3/4)

We show, at any stage : Fairness ⇒ Progress

Fairness A hungry philosopher, or a philosopher who has just eaten, is

not ignored forever.

Progress If at least one philosopher is hungry, then eventually one of the

hungry philosophers will eat.

By contradiction : Suppose P is the state of the system in which one

philosopher at least is hungry, and suppose that there is an infinite fair

evolution P
τ→� · · · that makes no progress. Then :

Step 1 : Eventually, all philosophers hold at most one fork. No

philosopher at any stage can be in state (h, p, p), since by fairness

eventually this philosopher will eat. If at some stage a philosopher is in

state (n, p, p), then by fairness this philosopher will eventually give one

of his forks. No philosopher at any styage can be in state (n, p, p) unless

it was already in this state in P , since the only way to enter this state is

after eating. Hence all the (n, p, p) states will eventually disappear.

24

.

CCS encodings (4/4)

Step 2 : Eventually, all philosophers hold exactly one fork. This is

because if one philosopher had no fork, then another one would hold

two (n forks for n − 1 philosophers).

Step 3 : When this happens, our philosopher is still hungry (he cannot

revert to non-hungry unless he eats), say it is in state (h, p, a), and

eventually by Fairness it is his turn. The transition (h, p, p) is forbidden.

Hence he gives his fork to the left neighbour. Only a hungry philosopher

receives forks, hence the neighbour is in state (h, p, a), but then makes

the transition (h, p, p) which is also forbidden.

Exercice 6 Show that the system can never deadlock.

25

.

Bisimulation on a LTS (1/4)

A simulation is a binary relation R on the set of processes such that for

all P, Q, if P R Q then

∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ→ Q′ and P ′ R Q′)

26

.

Bisimulation on a LTS (2/4)

A bisimulation is a binary relation R on the set of processes such that R
and R−1 are simulations.

(R−1 = {(Q, P) | P R Q})

P, Q are bisimilar (notation P ∼ Q) if there exists a bisimulation R such

that P R Q.

27

.

Bisimulation on a LTS (3/4)

If R,S are bisimulations, then so is their composition

RS = {(P, R) | ∃Q P R Q and Q SR}

In particular, ∼∼ ⊆ ∼, i.e., bisimilarity is transitive.

28

.

Bisimulation on a LTS (4/4)

Two processes that simulate one another, yet are not bisimilar :

P1 = a · P2 + a · P4 Q1 = a · Q2

P2 = b · P3 Q2 = b · Q3

P1 T Q1 P4 T Q2 P2 T Q2 P3 T Q3

Q1 S P1 Q2 S P2 Q3 S P3 .

but for all simulation R containing (P1, Q1) we have :

P1 R Q1 and P1
a−→ P4 ⇒ P4 R Q2

29

.

Induction and coinduction (1/4)

A function f : D → E, where D, E are partial orders, is monotonous if

∀ x, y x ≤ y ⇒ f(x) ≤ f(y)

Given (monotonous) f : D → D, a prefixpoint (resp. a postfixpoint, a

fixpoint) of f is a point x such that f(x) ≤ x (resp. x ≤ f(x), x = f(x)).

30

.

Induction and coinduction (2/4)

Any monotonous function G : P(X) → P(X) has a least prefixpoint,

which is moreover a fixpoint, and a greatest postfixpoint, which is

moreover a fixpoint. They are respectively :

lfp(G) =
T

{X | G(X) ⊆ X}
gfp(G) =

S

{X | X ⊆ G(X)}

31

.

Induction and coinduction (3/4)

Induction principle : To show lfp(µ) ⊆ X is is enough to show X is a

prefixpoint, i.e., µ(X) ⊆ X.

In practice, the induction principle is often used for a subset X of lfp(µ),

and then serves to show that X = lfp(µ).

32

.

Induction and coinduction (4/4)

Coinduction principle : To show X ⊆ gfp(µ) it is enough to show

X ⊆ µ(X).

In practice, the principle of coinduction is used to show that some

element x is in gfp(µ), and for this it is enough to find a postfixpoint X

such that x ∈ X.

33

.

Continuity

G : P(X) → P(X) is continuous if it preserves
S

of increasing chains, i.e.

G(
S

n∈ω Xn) =
S

n∈ω G(Xn). G is called anti-continuous if it preserves
T

of decreasing chains.

G continuous ⇒ lfp(G) =
S

n∈ω Gn(∅)
G anti-continuous ⇒ gfp(G) =

T

n∈ω Gn(X)

For monotonous (non necessarily continuous) operators, similar

formulas hold, using transfinite induction.

34

.

Operators defined by rules (1/5)

Monotonous operators GK on P(X) defined via a set K of rules, each of

the form (Y, x), with Y ⊆ X and x ∈ X, or, graphically (for

Y = {x1, . . . , xn} finite) :
{x1, . . . , xn}

x

Set GK(R) = {x ∈ X | ∃ (Y, x) ∈ K Y ⊆ R}.

35

.

Operators defined by rules (2/5)

Prefixpoints of GK =

subsets R closed forwards by the rules :

∀ (Y, x) ∈ K (Y ⊆ R ⇒ x ∈ R)

Postfixpoints of GK =

subsets R closed backwards by the rules :

∀ x ∈ R ∃ (Y, x) ∈ K Y ⊆ R

36

.

Operators defined by rules (3/5)

Bisimulation is defined by a set of rules : take K to be the set of all

{(P ′, f(µ, P ′)) | P
µ→ P ′} ∪ {(g(µ, Q′), Q′) | Q

µ→ Q′}

(P, Q)

where f is any function mapping each pair µ, P ′ such that P
µ→ P ′ to a

process f(µ, P ′) such that Q
µ→ f(µ, P ′) (resp. g . . .).

37

.

Operators defined by rules (4/5)

If all the Y ’s in the rules of K are finite, then GK is continuous.

If, for all x, {(Y | (Y, x) ∈ K} is finite, then GK is anti-continuous.

In finitary CCS the bisimulation operator GK is both continuous and

anti-continuous.

NB : finite sum assumption is not enough : take let K = (a · 0 | K) in K.

38

.

Operators defined by rules (5/5)

Consider the following K :

nil

l

cons(a, l)

The lfp of GK is the set of lists. The gfp of GK is the set of finite and

infinite lists.

N.B. The right setting is categorical : initial and final algebras for the

functor F (X) = {∗} ∪ A × X.

Exercice 7 How to obtain infinite lists (only) ?

39

