
.

Concurrency 3

CCS : Bisimulation “up to”, weak and strong bisimulation

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2006/2007 with :

Francesco Zappa Nardelli (INRIA Rocquencourt)

Catuscia Palamidessi (INRIA - Futurs)

Roberto Amadio (Paris 7)

—————

(http://mpri.master.univ-paris7.fr/C-2-3.html)

1

.

Bisimilarity is not trace equivalence

As automata P = a · (b + c) and Q = a · b + a · c recognize the same

language {ab, ac} of traces.

As processes, they are not bisimilar (Q does not even simulate P). P

keeps the choice after performing a, Q not.

Think of a as inserting 40 cents, b as getting tea and c as getting

coffee. Imagine a vending machine with a slot for a and two buttons for

b and c. The machine allows you to press b (resp. c) only if action b

(resp. c) can be performed. As a customer you will prefer P .

2

.

Strucural equivalence

Exercice 1 Show that structural equivalence ≡ is included in (strong)

bisimulation ∼.

3

.

Variations on bisimilarity (1/3)

A bisimulation up to ∼ is a relation R such that for all P, Q :

P R Q ⇒ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ→ Q′ and P ′ ∼ R ∼ Q′) and conversely

If R is strong bisimulation up to ∼, then R ⊆∼.

Exercice 2 Prove it.

Hence, to show P ∼ Q, it is enough to find a bisimulation up to ∼ such

that P R Q.

4

.

Variations on bisimilarity (2/3)

As an example, take

Sem = P · Sem′

Sem′ = V · Sem

Sem0 = P · Sem1

Sem1 = P · Sem2 + V · Sem0

Sem2 = P · Sem3 + V · Sem1

Sem3 = V · Sem2

Then a (strong) bisimulation up-to witnessing that

(Sem|Sem|Sem) ∼ Sem0 is, say :

{ ((Sem|Sem|Sem) , Sem0)

((Sem′|Sem|Sem) , Sem1)

((Sem′|Sem|Sem′) , Sem2)

((Sem′|Sem′|Sem′) , Sem3) }

5

.

Variations on bisimilarity (3/3)

For any LTS, one can change Act to Act� (words of actions), setting

P
s→ Q if

8<
:

s = µ1 . . . µn and

(∃P1, . . . , Pn (Pn = Q and P
µ1→ P1 . . .

µn→ Pn))

This yields a new LTS, call it LTS� (the path LTS) . Then the notions

of LTS and of LTS� bisimulation coincide.

6

.

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with Act = L ∪ L ∪ {tau}, call it Strong. The

bisimulation for this system is called strong bisimulation.

Take Strong� (its path LTS).

Consider the following LTS, call it Weak†, with the same set of actions

as Strong� :

P
s⇒ Q if and only if (∃ t P

t→ Q and ŝ = t̂)

where the function s 	→ ŝ is defined as follows :

ε̂ = ε τ̂ = ε α̂ = α ŝµ = ŝµ̂

The idea is that weak bisimulation is bisimulation with possibly τ

actions intersperced.

Let Weak be the LTS on Act whose transitions are P
µ⇒ Q, that is :

P
τ⇒ Q if and only if P

τ→�
Q P

α⇒ Q if and only if P
τ→� α→ τ→�

Q

Then one has Weak† = Weak�.

7

.

From strong to weak bisimulation (2/2)

None of the three equivalent definitions of weak bisimulation obtained

from the LTS’s (Weak, Weak†, Weak�) is practical. The following is a

fourth, equivalent, and more tractable version :

A weak bisimulation is a relation R such that

P R Q ⇒ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ Q

µ⇒ Q′ and P ′ R Q′) and conversely

(Note the dissymetry between the use of
µ→ on the left and of

µ⇒ on the

right.)

Two processes are weakly bisimilar if (notation P ≈ Q) if there exists a

weak bisimulation R such that P R Q.

8

.

Bisimulation is a congruence (1/6)

We define ∼∗ inductively by the following rules :

P ∼ Q

P ∼∗ Q

P ∼∗ Q

Q ∼∗ P

P ∼∗ Q Q ∼∗ R

P ∼∗ R

∀ i ∈ I Pi ∼∗ Qi

Σi∈Iµi · Pi ∼∗ Σi∈Iµi · Qi

P1 ∼∗ Q1 P2 ∼∗ Q2

P1 | P2 ∼∗ Q1 | Q2

P ∼∗ Q

(νa)P ∼∗ (νa)Q

Clearly ∼⊆∼∗ and ∼∗ is a congruence, by construction. It is enough to

show that ∼∗ is a bisimulation (since then ∼ =∼∗ is a congruence).

9

.

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case P1 | P2 ∼∗ Q1 | Q2 :

1. (backward) decomposition phase : if P1|P2
µ→ P ′, then P ′ = P ′

1|P ′
2 and

three cases may occur, corresponding to the three rules for parallel

composition in the labelled operational semantics. We only consider the

synchronisation case. If P1
a→ P ′

1 and P2
a→ P ′

2, then

2. by induction there exists Q′
1 such that Q1

a→ Q′
1 and P ′

1 ∼∗ Q′
1, and

there exists Q′
2 such that Q2

a→ Q′
2 and P ′

2 ∼∗ Q′
2.

3. Hence (forward phase) we have Q1 | Q2
τ→ Q′

1 | Q′
2 and

P ′
1 | P ′

2 ∼∗ Q′
1 | Q′

2.

10

.

Bisimulation is a congruence (3/6)

≈ is also a congruence (for our choice of language with guarded sums).

Same proof technique : define ≈∗. For the forward phase, we use the

following properties, which are true :

(P
µ⇒ P ′) ⇒ ((νa)P

µ⇒ (νa)Q′)

(Q1
µ⇒ Q′

1) ⇒ (Q1 | Q2
µ⇒ Q′

1 | Q2)

(Q1
a⇒ Q′

1 and Q2
a⇒ Q′

2) ⇒ (Q1 | Q2
τ⇒ Q′

1 | Q′
2)

11

.

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e.,

replace Σi∈Iµi · Pi by two constructs Σi∈IPi and a · P , with rules

Pi
µ→ P ′

i

Σi∈IPi
µ→ P ′

i µ · P µ→ P

Then strong bisimulation is a congruence, and weak bisimulation is not

a congruence.

The problem arises because more processes (like P + (Q|R)) are allowed.

12

.

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule ? For the forward phase, we would

need the property :

(Q1
µ⇒ Q′

1) ⇒ (Q1 + Q2
µ⇒ Q′

1)

which does not hold (take µ = τ and Q′
1 = Q1).

Counter-example : τ · a · 0 + b · 0 �≈ a · 0 + b · 0

13

.

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :

Proposition : For any process S (possibly with recursive definitions) with

free variables in �K :

∀ �Q, �Q′ (�Q ≈ �Q′ ⇒ S[�K ← �Q] ≈ S[�K ← �Q′])

The proof is by induction on the size of S. The non-recursion cases

follow by congruence. For the recursive definition case

S = let �L = �P in Lj, the trick is to unfold :

S[�K ← �Q] =def let �L = �P [�K ← �Q] in Lj

≈ Pj [�K ← �Q][�L ← (let �L = �P in �L)]

≈ind Pj [�K ← �Q′][�L ← (let �L = �P in �L)]

≈ S[�K ← �Q′]

14

.

Specification and weak bisimulation

HAMMER JOBBER STRONG JOBBER

H = g · H′ H′ = p · H J = in · S S = g · U K = in · D D = out · K
U = p · F F = out · J

We have : (νg, h)(J | J | H) ≈ K | K. Their first actions are the same :

(νg, h)(J | J | H) R K | K (νg, h)(S | J | H) R D | K

(νg, h)(J | S | H) R K | D (νg, h)(S | S | H) R D | D

The only possible sequence of actions out of, say, (νg, h)(S | S | H) is :

(νg, h)(S | S | H)
τ→ (νg, h)(S | U | H′) τ→ (νg, h)(S | U | H′) out−→ (S | J | H)

Hence we complete R with :

(νg, h)(S | U | H′) R D | D (νg, h)(S | F | H) R D | D

(νg, h)(J | U | H′) R K | D (νg, h)(J | F | H) R K | D

(νg, h)(U | J | H′) R D | K (νg, h)(F | J | H) R D | K

15

