Concurrency 3

CCS : Bisimulation “up to”, weak and strong bisimulation

Pierre-Louis Curien (CNRS — Université Paris 7)

MPRI concurrency course 2006/2007 with :

Francesco Zappa Nardelli (INRIA Rocquencourt)
Catuscia Palamidessi (INRIA - Futurs)
Roberto Amadio (Paris 7)

(http://mpri.master.univ-paris7.fr/C-2-3.html)

Bisimilarity i1s not trace equivalence

As automata P=a-(b+c¢) and Q =a-b+ a-c recognize the same
language {ab, ac} of traces.

As processes, they are not bisimilar (QQ does not even simulate P). P
keeps the choice after performing a, Q not.

Think of a as inserting 40 cents, b as getting tea and ¢ as getting
coffee. Imagine a vending machine with a slot for a and two buttons for
b and c. The machine allows you to press b (resp. ¢) only if action b
(resp. ¢) can be performed. As a customer you will prefer P.

Strucural equivalence

Exercice 1 Show that structural equivalence = is included in (strong)
bisimulation ~.

Variations on bisimilarity (1/3)
A bisimulation up to ~ is a relation 'R such that for all P,Q

PRQ=Vu,P (PLP =3Q" QL @ and P ~R ~ Q') and conversely

If 'R is strong bisimulation up to ~, then R C~.
Exercice 2 Prove it.

Hence, to show P ~ @, it is enough to find a bisimulation up to ~ such
that PR Q.

Variations on bisimilarity (2/3)

As an example, take

Sem =P - Sem’ Sem® =P - Sem?!

Sem’ =V - Sem Sem! =P .-Sem? +V - Sem®
Sem? =P - Sem? + V- Sem!
Sem3 =V - Sem?

Then a (strong) bisimulation up-to witnessing that
(Sem|Sem|Sem) ~ Sem is, say :

{ ((Sem|Sem|Sem) , Sem")
((Sem’|Sem|Sem) , Sem')
((Sem’|Sem|Sem’) , Sem?)
(Sem'|Sem’|Sem’) , Sem?) }

Variations on bisimilarity (3/3)
For any LTS, one can change Act to Act* (words of actions), setting

S=uy...un and

P5Qif Hi 7
(le,...,Pn (Pn:QandP_)P]_..._n>Pn>)

This yields a new LTS, call it LTS* (the path LTS) . Then the notions
of LTS and of LTS* bisimulation coincide.

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with Act = LU L U {tau}, call it Strong. The
bisimulation for this system is called strong bisimulation.

Take Strong™ (its path LTS).

Consider the following LTS, call it Weak', with the same set of actions
as Strong™ :

P = Qifand only if (3t P -5 Q and = 1)
where the function s — s is defined as follows :
E=€ T=€¢ a=a su=35i

The idea is that weak bisimulation is bisimulation with possibly =
actions intersperced.

Let Weak be the LTS on Act whose transitions are P £ @, that is :

*k o T X

PSQifandonlyif PS5 Q P2 Qifandonlyif P 5 2457 Q

Then one has Weak! = Weak*.

From strong to weak bisimulation (2/2)

None of the three equivalent definitions of weak bisimulation obtained
from the LTS’s (Weak, Weak', Weak*) is practical. The following is a
fourth, equivalent, and more tractable version :

A weak bisimulation is a relation R such that

PRQ=VuP (PL P =3Q Q2L Q and PP RQ’) and conversely

(Note the dissymetry between the use of " on the left and of & on the
right.)

Two processes are weakly bisimilar if (notation P ~ Q) if there exists a
weak bisimulation R such that PR Q.

Bisimulation is a congruence (1/6)

We define ~* inductively by the following rules :

P~Q P~*Q P~*Q Q~*R
P~ Q Q~*P P~*R
Viel P ~*Q; Py ~* Q1 Py ~* Q2 P ~*Q
Yierti - Py ~* Yierpi - Qi Py | Py~ Q1| Q2 (va)P ~* (va)Q

Clearly ~C~* and ~™ is a congruence, by construction. It is enough to
show that ~* is a bisimulation (since then ~ =~* is a congruence).

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case P | P> ~* Q1 | Q2 :

1. (backward) decomposition phase : if Pi|P> X P! then P! = P{|P} and
three cases may occur, corresponding to the three rules for parallel
composition in the labelled operational semantics. We only consider the

synchronisation case. If P; = P{ and P» R P}, then

2. by induction there exists @/ such that Q1 = @’ and P} ~* @/, and
there exists @, such that Q2 % Q) and P} ~* Q.

3. Hence (forward phase) we have Q1 | Q2 — Q) | Q5 and
Py Py ~* Q| Q.

10

Bisimulation is a congruence (3/6)

~ is also a congruence (for our choice of language with guarded sums).

Same proof technique : define =~*. For the forward phase, we use the
following properties, which are true :

(PEP) = (wa)P2Z a)Q)

) = (Q1]Q25 Q) Q)
= (Q1]Q2= Q4| QY)

11

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e.,
replace >;crp; - P; by two constructs >, P; and a - P, with rules

P, & p!

7

Yier P 5 P! pw-PL P

Then strong bisimulation is a congruence, and weak bisimulation is not
a congruence.

The problem arises because more processes (like P+ (Q|R)) are allowed.

12

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule? For the forward phase, we would
need the property :

@ 5Q) = (Qi+Q25Q)

which does not hold (take =7 and Q] = Q1).

Counter-example : 7-a-04+b-02a-0+b-0

13

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :

Proposition : For any process S (possibly with recursive definitions) with
free variables in K :

- — —

V3,Q" (G=Q = S[K «— Q] ~ S[K « Q)

The proof is by induction on the size of S. The non-recursion cases
follow by congruence. For the recursive definition case
S =let L = P in L;, the trick is to unfold :

SIK « Q] =gef let L=P[K « Q]in L,

Pj|[K «— QJ[L « (let L= P in L)]
Ning PilK — Q')[L « (let L = P in L)]
S[K — Q']

14

Specification and weak bisimulation

HAMMER JOBBER STRONG JOBBER
H=g9g-H H =p-H J=im-S S=g-U K=i-D D=out-K
U=p-F F=oul-J

We have : (vg,h)(J | J | H) = K | K. Their first actions are the same :
(vg,h)(J [J|H)R K| K (vg,h)(S|J|H)RD|K
(vg,h)(J|S|H)R K |D (vg,h)(S|S|H)RD|D

The only possible sequence of actions out of, say, (vg,h)(S| S| H) is :

out

(vg,R)(S| S| H) 5 (vg,h)(S|U| H) = (vg,h)(S|U | H') == (S| J | H)
Hence we complete R with :

(vg,h)(S|U|H')RD|D (vg,h)(S|F|H)RD|D
(vg,h)(J|U|H)R K| D (vg,h)(J|F|H)RK|D
(vg,h)(U|J|H)RD|K (vg,h)(F|J|H)RD| K

15

