Concurrency 3

CCS : Bisimulation "up to", weak and strong bisimulation

```
Pierre-Louis Curien (CNRS - Université Paris 7)
    MPRI concurrency course 2006/2007 with :
Francesco Zappa Nardelli (INRIA Rocquencourt)
        Catuscia Palamidessi (INRIA - Futurs)
            Roberto Amadio (Paris 7)
(http://mpri.master.univ-paris7.fr/C-2-3.html)
```


Bisimilarity is not trace equivalence

As automata $P=a \cdot(b+c)$ and $Q=a \cdot b+a \cdot c$ recognize the same language $\{a b, a c\}$ of traces.

As processes, they are not bisimilar (Q does not even simulate P). P keeps the choice after performing a, Q not.

Think of a as inserting 40 cents, b as getting tea and c as getting coffee. Imagine a vending machine with a slot for a and two buttons for b and c. The machine allows you to press b (resp. c) only if action b (resp. c) can be performed. As a customer you will prefer P.

Strucural equivalence

Exercice 1 Show that structural equivalence \equiv is included in (strong) bisimulation \sim.

Variations on bisimilarity (1/3)

A bisimulation up to \sim is a relation \mathcal{R} such that for all P, Q :
$P \mathcal{R} Q \Rightarrow \forall \mu, P^{\prime}\left(P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime} Q \xrightarrow{\mu} Q^{\prime}\right.$ and $\left.P^{\prime} \sim \mathcal{R} \sim Q^{\prime}\right)$ and conversely

If \mathcal{R} is strong bisimulation up to \sim, then $\mathcal{R} \subseteq \sim$.
Exercice 2 Prove it.
Hence, to show $P \sim Q$, it is enough to find a bisimulation up to \sim such that $P \mathcal{R} Q$.

Variations on bisimilarity (2/3)

As an example, take

$$
\begin{array}{ll}
\text { Sem }^{\prime}=\mathrm{P} \cdot \text { Sem }^{\prime} & \text { Sem }^{0}=\mathrm{P} \cdot \text { Sem }^{1} \\
\text { Sem }^{\prime}=\mathrm{V} \cdot \text { Sem }^{\text {Sem }^{1}}=\mathrm{P} \cdot \text { Sem }^{2}+\mathrm{V} \cdot \text { Sem }^{0} \\
& \text { Sem }^{2}=\mathrm{P} \cdot \text { Sem }^{3}+\mathrm{V} \cdot \text { Sem }^{1} \\
\text { Sem }^{3}=\mathrm{V} \cdot \text { Sem }^{2}
\end{array}
$$

Then a (strong) bisimulation up-to witnessing that $($ Sem \mid Sem \mid Sem $) \sim$ Sem 0 is, say :

$$
\begin{aligned}
& \left\{\left(\left(\text { Sem }^{\text {Sem }} \mid \text { Sem }\right), \text { Sem }^{0}\right)\right. \\
& \left(\left(\text { Sem }^{\prime} \mid \text { Sem } \mid \text { Sem }\right), \text { Sem }^{1}\right) \\
& \left(\left(\text { Sem }^{\prime} \mid \text { Sem }^{\text {Sem }}{ }^{\prime}\right), \text { Sem }^{2}\right) \\
& \left.\left(\left(\text { Sem }^{\prime} \mid \text { Sem }^{\prime} \mid \text { Sem }^{\prime}\right), \text { Sem }^{3}\right)\right\}
\end{aligned}
$$

Variations on bisimilarity (3/3)

For any LTS, one can change Act to Act* (words of actions), setting

$$
P \xrightarrow{s} Q \text { if }\left\{\begin{array}{l}
s=\mu_{1} \ldots \mu_{n} \text { and } \\
\left(\exists P_{1}, \ldots, P_{n}\left(P_{n}=Q \text { and } P \xrightarrow{\mu_{1}} P_{1} \ldots \xrightarrow{\mu_{n}} P_{n}\right)\right)
\end{array}\right.
$$

This yields a new LTS, call it LTS* (the path LTS). Then the notions of LTS and of LTS* bisimulation coincide.

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with Act $=L \cup \bar{L} \cup\{t a u\}$, call it Strong. The bisimulation for this system is called strong bisimulation.
Take Strong* (its path LTS).
Consider the following LTS, call it Weak ${ }^{\dagger}$, with the same set of actions as Strong* :

$$
P \stackrel{s}{\Rightarrow} Q \text { if and only if }(\exists t P \xrightarrow{t} Q \text { and } \hat{s}=\hat{t})
$$

where the function $s \mapsto \hat{s}$ is defined as follows :

$$
\hat{\epsilon}=\epsilon \quad \hat{\tau}=\epsilon \quad \hat{\alpha}=\alpha \quad \hat{s \mu}=\hat{s} \hat{\mu}
$$

The idea is that weak bisimulation is bisimulation with possibly τ actions intersperced.
Let Weak be the LTS on Act whose transitions are $P \stackrel{\mu}{\Rightarrow} Q$, that is:

$$
P \stackrel{\tau}{\Rightarrow} Q \text { if and only if } P \xrightarrow{\tau^{\star}} Q \quad P \stackrel{\alpha}{\Rightarrow} Q \text { if and only if } P \xrightarrow[\rightarrow]{\tau^{\star} \alpha} \overbrace{}^{\star} Q
$$

Then one has Weak $^{\dagger}=$ Weak *.

From strong to weak bisimulation (2/2)

None of the three equivalent definitions of weak bisimulation obtained from the LTS's (Weak, Weak ${ }^{\dagger}$, Weak*) is practical. The following is a fourth, equivalent, and more tractable version :

A weak bisimulation is a relation \mathcal{R} such that

$$
P \mathcal{R} Q \Rightarrow \forall \mu, P^{\prime}\left(P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime} Q \stackrel{\mu}{\Rightarrow} Q^{\prime} \text { and } P^{\prime} \mathcal{R} Q^{\prime}\right) \text { and conversely }
$$

(Note the dissymetry between the use of $\xrightarrow{\mu}$ on the left and of $\stackrel{\mu}{\Rightarrow}$ on the right.)

Two processes are weakly bisimilar if (notation $P \approx Q$) if there exists a weak bisimulation \mathcal{R} such that $P \mathcal{R} Q$.

Bisimulation is a congruence (1/6)

We define \sim^{*} inductively by the following rules:
$\frac{P \sim Q}{P \sim^{*} Q} \quad \frac{P \sim^{*} Q}{Q \sim^{*} P} \quad \frac{P \sim^{*} Q \quad Q \sim^{*} R}{P \sim^{*} R}$
$\frac{\forall i \in I P_{i} \sim^{*} Q_{i}}{\frac{\Sigma_{i \in I} \mu_{i} \cdot P_{i} \sim^{*} \Sigma_{i \in I} \mu_{i} \cdot Q_{i}}{} \quad \frac{P_{1} \sim^{*} Q_{1} P_{2} \sim^{*} Q_{2}}{P_{1}\left|P_{2} \sim^{*} Q_{1}\right| Q_{2}} \quad \frac{P \sim^{*} Q}{(\nu a) P \sim^{*}(\nu a) Q}}$

Clearly $\sim \subseteq \sim^{*}$ and \sim^{*} is a congruence, by construction. It is enough to show that \sim^{*} is a bisimulation (since then $\sim=\sim^{*}$ is a congruence).

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case $P_{1}\left|P_{2} \sim^{*} Q_{1}\right| Q_{2}$:

1. (backward) decomposition phase : if $P_{1} \mid P_{2} \xrightarrow{\mu} P^{\prime}$, then $P^{\prime}=P_{1}^{\prime} \mid P_{2}^{\prime}$ and three cases may occur, corresponding to the three rules for parallel composition in the labelled operational semantics. We only consider the synchronisation case. If $P_{1} \xrightarrow{a} P_{1}^{\prime}$ and $P_{2} \xrightarrow{\bar{a}} P_{2}^{\prime}$, then
2. by induction there exists Q_{1}^{\prime} such that $Q_{1} \xrightarrow{a} Q_{1}^{\prime}$ and $P_{1}^{\prime} \sim^{*} Q_{1}^{\prime}$, and there exists Q_{2}^{\prime} such that $Q_{2} \xrightarrow{\bar{a}} Q_{2}^{\prime}$ and $P_{2}^{\prime} \sim^{*} Q_{2}^{\prime}$.
3. Hence (forward phase) we have $Q_{1}\left|Q_{2} \xrightarrow{\tau} Q_{1}^{\prime}\right| Q_{2}^{\prime}$ and $P_{1}^{\prime}\left|P_{2}^{\prime} \sim^{*} Q_{1}^{\prime}\right| Q_{2}^{\prime}$.

Bisimulation is a congruence (3/6)

\approx is also a congruence (for our choice of language with guarded sums).
Same proof technique : define \approx^{*}. For the forward phase, we use the following properties, which are true :

$$
\begin{aligned}
& \left(P \stackrel{\mu}{\Rightarrow} P^{\prime}\right) \quad \Rightarrow \quad\left((\nu a) P \stackrel{\mu}{\Rightarrow}(\nu a) Q^{\prime}\right) \\
& \left(Q_{1} \stackrel{\mu}{\Rightarrow} Q_{1}^{\prime}\right) \quad \Rightarrow \quad\left(Q_{1}\left|Q_{2} \stackrel{\mu}{\Rightarrow} Q_{1}^{\prime}\right| Q_{2}\right) \\
& \left(Q_{1} \stackrel{a}{\Rightarrow} Q_{1}^{\prime} \text { and } Q_{2} \stackrel{\bar{\sigma}}{\Rightarrow} Q_{2}^{\prime}\right) \quad \Rightarrow \quad\left(Q_{1}\left|Q_{2} \stackrel{\tau}{\Rightarrow} Q_{1}^{\prime}\right| Q_{2}^{\prime}\right)
\end{aligned}
$$

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e., replace $\Sigma_{i \in I} \mu_{i} \cdot P_{i}$ by two constructs $\Sigma_{i \in I} P_{i}$ and $a \cdot P$, with rules

$$
\frac{P_{i} \xrightarrow{\mu} P_{i}^{\prime}}{\Sigma_{i \in I} P_{i} \xrightarrow{\mu} P_{i}^{\prime}} \quad \overline{\mu \cdot P \xrightarrow{\mu} P}
$$

Then strong bisimulation is a congruence, and weak bisimulation is not a congruence.

The problem arises because more processes (like $P+(Q \mid R)$) are allowed.

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule? For the forward phase, we would need the property :

$$
\left(Q_{1} \stackrel{\mu}{\Rightarrow} Q_{1}^{\prime}\right) \quad \Rightarrow \quad\left(Q_{1}+Q_{2} \stackrel{\mu}{\Rightarrow} Q_{1}^{\prime}\right)
$$

which does not hold (take $\mu=\tau$ and $Q_{1}^{\prime}=Q_{1}$).
Counter-example : $\tau \cdot a \cdot 0+b \cdot 0 \not \approx a \cdot 0+b \cdot 0$

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :
Proposition: For any process S (possibly with recursive definitions) with free variables in \vec{K} :

$$
\forall \vec{Q}, \overrightarrow{Q^{\prime}}\left(\vec{Q} \approx \overrightarrow{Q^{\prime}} \Rightarrow S[\vec{K} \leftarrow \vec{Q}] \approx S\left[\vec{K} \leftarrow \overrightarrow{Q^{\prime}}\right]\right)
$$

The proof is by induction on the size of S. The non-recursion cases follow by congruence. For the recursive definition case $S=$ let $\vec{L}=\vec{P}$ in L_{j}, the trick is to unfold:

$$
\begin{array}{rlrl}
S[\vec{K} \leftarrow \vec{Q}] & =\text { def } & & \text { let } \vec{L}=\vec{P}[\vec{K} \leftarrow \vec{Q}] \text { in } L_{j} \\
& \approx & P_{j}[\vec{K} \leftarrow \vec{Q}][\vec{L} \leftarrow(\text { let } \vec{L}=\vec{P} \text { in } \vec{L})] \\
& \approx_{\text {ind }} & P_{j}\left[\vec{K} \leftarrow \overrightarrow{Q^{\prime}}\right][\vec{L} \leftarrow(\text { let } \vec{L}=\vec{P} \text { in } \vec{L})] \\
& \approx & S\left[\vec{K} \leftarrow \overrightarrow{Q^{\prime}}\right]
\end{array}
$$

Specification and weak bisimulation

$$
\begin{gathered}
\text { HAMMER } \\
H=g \cdot H^{\prime} \quad H^{\prime}=p \cdot H
\end{gathered}
$$

JOBBER

$$
\begin{array}{rlrl}
J & =\text { in } \cdot S \quad S=\bar{g} \cdot U \quad K=i n \cdot D \quad D=\overline{o u t} \cdot K \\
U & =\bar{p} \cdot F \quad F=\overline{o u t} \cdot J &
\end{array}
$$

STRONG JOBBER

We have : $(\nu g, h)(J|J| H) \approx K \mid K$. Their first actions are the same :

$$
\begin{array}{ll}
(\nu g, h)(J|J| H) \mathcal{R} K \mid K & (\nu g, h)(S|J| H) \mathcal{R} D \mid K \\
(\nu g, h)(J|S| H) \mathcal{R} K \mid D & (\nu g, h)(S|S| H) \mathcal{R} D \mid D
\end{array}
$$

The only possible sequence of actions out of, say, $(\nu g, h)(S|S| H)$ is :

$$
(\nu g, h)(S|S| H) \xrightarrow{\tau}(\nu g, h)\left(S|U| H^{\prime}\right) \xrightarrow{\tau}(\nu g, h)\left(S|U| H^{\prime}\right) \xrightarrow{\overline{o u t}}(S|J| H)
$$

Hence we complete \mathcal{R} with :

$$
\begin{array}{cl}
(\nu g, h)\left(S|U| H^{\prime}\right) \mathcal{R} D \mid D & (\nu g, h)(S|F| H) \mathcal{R} D \mid D \\
(\nu g, h)\left(J|U| H^{\prime}\right) \mathcal{R} K \mid D & (\nu g, h)(J|F| H) \mathcal{R} K \mid D \\
(\nu g, h)\left(U|J| H^{\prime}\right) \mathcal{R} D \mid K & (\nu g, h)(F|J| H) \mathcal{R} D \mid K
\end{array}
$$

