Concurrency 3

CCS : Bisimulation "up to", weak and strong bisimulation

Pierre-Louis Curien (CNRS – Université Paris 7)

MPRI concurrency course 2006/2007 with :

Francesco Zappa Nardelli (INRIA Rocquencourt) Catuscia Palamidessi (INRIA - Futurs) Roberto Amadio (Paris 7)

(http://mpri.master.univ-paris7.fr/C-2-3.html)

Bisimilarity is not trace equivalence

As automata $P = a \cdot (b + c)$ and $Q = a \cdot b + a \cdot c$ recognize the same language $\{ab, ac\}$ of traces.

As processes, they are not bisimilar (Q does not even simulate P). P keeps the choice after performing a, Q not.

Think of *a* as inserting 40 cents, *b* as getting tea and *c* as getting coffee. Imagine a vending machine with a slot for *a* and two buttons for *b* and *c*. The machine allows you to press *b* (resp. *c*) only if action *b* (resp. *c*) can be performed. As a customer you will prefer *P*.

Strucural equivalence

.

Exercice 1 Show that structural equivalence \equiv is included in (strong) bisimulation \sim .

Variations on bisimilarity (1/3)

A bisimulation up to \sim is a relation \mathcal{R} such that for all P,Q :

 $P \mathcal{R} Q \Rightarrow \forall \mu, P' \ (P \xrightarrow{\mu} P' \Rightarrow \exists Q' Q \xrightarrow{\mu} Q' \text{ and } P' \sim \mathcal{R} \sim Q') \text{ and conversely}$

If \mathcal{R} is strong bisimulation up to \sim , then $\mathcal{R} \subseteq \sim$.

Exercice 2 Prove it.

.

Hence, to show $P \sim Q$, it is enough to find a bisimulation up to \sim such that $P \mathcal{R} Q$.

Variations on bisimilarity (2/3)

As an example, take

 $\begin{array}{lll} \textit{Sem} = \mathsf{P} \cdot \textit{Sem}' & \textit{Sem}^0 = \mathsf{P} \cdot \textit{Sem}^1 \\ \textit{Sem}' = \mathsf{V} \cdot \textit{Sem} & \textit{Sem}^1 = \mathsf{P} \cdot \textit{Sem}^2 + \mathsf{V} \cdot \textit{Sem}^0 \\ \textit{Sem}^2 = \mathsf{P} \cdot \textit{Sem}^3 + \mathsf{V} \cdot \textit{Sem}^1 \\ \textit{Sem}^3 = \mathsf{V} \cdot \textit{Sem}^2 \end{array}$

Then a (strong) bisimulation up-to witnessing that $(Sem|Sem|Sem) \sim Sem^0$ is, say :

{ ((Sem|Sem|Sem), Sem⁰)
 ((Sem'|Sem|Sem), Sem¹)
 ((Sem'|Sem|Sem'), Sem²)
 ((Sem'|Sem'|Sem'), Sem³) }

Variations on bisimilarity (3/3)

For any LTS, one can change Act to Act^{\star} (words of actions), setting

.

$$P \xrightarrow{s} Q \text{ if } \begin{cases} s = \mu_1 \dots \mu_n \text{ and} \\ (\exists P_1, \dots, P_n \ (P_n = Q \text{ and } P \xrightarrow{\mu_1} P_1 \dots \xrightarrow{\mu_n} P_n)) \end{cases}$$

This yields a new LTS, call it LTS* (the path LTS) . Then the notions of LTS and of LTS* bisimulation coincide.

From strong to weak bisimulation (1/2)

Take the LTS of CCS, with $Act = L \cup \overline{L} \cup \{tau\}$, call it Strong. The bisimulation for this system is called strong bisimulation.

Take Strong* (its path LTS).

Consider the following LTS, call it Weak^{\dagger}, with the same set of actions as Strong^{\star} :

 $P \stackrel{s}{\Rightarrow} Q$ if and only if $(\exists t \ P \stackrel{t}{\rightarrow} Q \text{ and } \hat{s} = \hat{t})$

where the function $s\mapsto \hat{s}$ is defined as follows :

 $\hat{\epsilon} = \epsilon$ $\hat{\tau} = \epsilon$ $\hat{\alpha} = \alpha$ $\hat{s\mu} = \hat{s\mu}$

The idea is that weak bisimulation is bisimulation with possibly τ actions intersperced.

Let Weak be the LTS on Act whose transitions are $P \stackrel{\mu}{\Rightarrow} Q$, that is :

$$P \stackrel{\tau}{\Rightarrow} Q$$
 if and only if $P \stackrel{\tau}{\rightarrow}{}^{\star} Q \quad P \stackrel{\alpha}{\Rightarrow} Q$ if and only if $P \stackrel{\tau}{\rightarrow}{}^{\star} \stackrel{\alpha}{\rightarrow} \stackrel{\tau}{\rightarrow}{}^{\star} Q$

Then one has $Weak^{\dagger} = Weak^{\star}$.

From strong to weak bisimulation (2/2)

None of the three equivalent definitions of weak bisimulation obtained from the LTS's (Weak, Weak[†], Weak^{*}) is practical. The following is a fourth, equivalent, and more tractable version :

A weak bisimulation is a relation ${\mathcal R}$ such that

 $P \mathcal{R} Q \Rightarrow \forall \mu, P' \ (P \xrightarrow{\mu} P' \Rightarrow \exists Q' \ Q \xrightarrow{\mu} Q' \text{ and } P' \mathcal{R} Q') \text{ and conversely}$

(Note the dissymptry between the use of $\xrightarrow{\mu}$ on the left and of $\xrightarrow{\mu}$ on the right.)

Two processes are weakly bisimilar if (notation $P \approx Q$) if there exists a weak bisimulation \mathcal{R} such that $P \mathcal{R} Q$.

Bisimulation is a congruence (1/6)

We define \sim^* inductively by the following rules :

$P\sim Q$	$P \sim^* Q$	$P \sim^* Q Q$	$Q \sim^* R$
$\overline{P \sim^* Q}$	$Q \sim^* P$	$P \sim^*$	R
$\forall i \in I \ P_i \sim^* Q_i$	$P_1 \sim^*$	$Q_1 \ P_2 \sim^* Q_2$	$P \sim^* Q$
$\overline{\Sigma_{i\in I}\mu_i\cdot P_i}\sim^* \Sigma_{i\in I}\mu_i\cdot Q_i$	$P_1 \mid P$	$Q_2 \sim^* Q_1 \mid Q_2$	$(\nu a)P \sim^* (\nu a)Q$

Clearly $\sim \subseteq \sim^*$ and \sim^* is a congruence, by construction. It is enough to show that \sim^* is a bisimulation (since then $\sim = \sim^*$ is a congruence).

Bisimulation is a congruence (2/6)

Proof by rule induction. We look at case $P_1 \mid P_2 \sim^* Q_1 \mid Q_2$:

1. (backward) decomposition phase : if $P_1|P_2 \xrightarrow{\mu} P'$, then $P' = P'_1|P'_2$ and three cases may occur, corresponding to the three rules for parallel composition in the labelled operational semantics. We only consider the synchronisation case. If $P_1 \xrightarrow{a} P'_1$ and $P_2 \xrightarrow{\overline{a}} P'_2$, then

2. by induction there exists Q'_1 such that $Q_1 \xrightarrow{a} Q'_1$ and $P'_1 \sim^* Q'_1$, and there exists Q'_2 such that $Q_2 \xrightarrow{\overline{a}} Q'_2$ and $P'_2 \sim^* Q'_2$.

3. Hence (forward phase) we have $Q_1 \mid Q_2 \xrightarrow{\tau} Q'_1 \mid Q'_2$ and $P'_1 \mid P'_2 \sim^* Q'_1 \mid Q'_2$.

Bisimulation is a congruence (3/6)

 \approx is also a congruence (for our choice of language with guarded sums).

Same proof technique : define \approx^* . For the forward phase, we use the following properties, which are true :

$$(P \stackrel{\mu}{\Rightarrow} P') \Rightarrow ((\nu a)P \stackrel{\mu}{\Rightarrow} (\nu a)Q') (Q_1 \stackrel{\mu}{\Rightarrow} Q'_1) \Rightarrow (Q_1 \mid Q_2 \stackrel{\mu}{\Rightarrow} Q'_1 \mid Q_2) (Q_1 \stackrel{a}{\Rightarrow} Q'_1 \text{ and } Q_2 \stackrel{\overline{a}}{\Rightarrow} Q'_2) \Rightarrow (Q_1 \mid Q_2 \stackrel{\tau}{\Rightarrow} Q'_1 \mid Q'_2)$$

Bisimulation is a congruence (4/6)

Consider CCS with prefix and sums instead of guarded sums, i.e., replace $\sum_{i \in I} \mu_i \cdot P_i$ by two constructs $\sum_{i \in I} P_i$ and $a \cdot P$, with rules

 $\frac{P_i \xrightarrow{\mu} P'_i}{\sum_{i \in I} P_i \xrightarrow{\mu} P'_i} \qquad \frac{\mu \cdot P \xrightarrow{\mu} P}{\mu \cdot P \xrightarrow{\mu} P}$

Then strong bisimulation is a congruence, and weak bisimulation is not a congruence.

The problem arises because more processes (like P + (Q|R)) are allowed.

Bisimulation is a congruence (5/6)

What goes wrong is the sum rule? For the forward phase, we would need the property :

$$(Q_1 \stackrel{\mu}{\Rightarrow} Q'_1) \quad \Rightarrow \quad (Q_1 + Q_2 \stackrel{\mu}{\Rightarrow} Q'_1)$$

which does not hold (take $\mu = \tau$ and $Q'_1 = Q_1$).

Counter-example : $\tau \cdot a \cdot 0 + b \cdot 0 \not\approx a \cdot 0 + b \cdot 0$

Bisimulation is a congruence (6/6)

We have left out recursion, but even so we have :

Proposition : For any process S (possibly with recursive definitions) with free variables in \vec{K} :

$$\forall \vec{Q}, \vec{Q'} \ (\vec{Q} \approx \vec{Q'} \Rightarrow S[\vec{K} \leftarrow \vec{Q}] \approx S[\vec{K} \leftarrow \vec{Q'}])$$

The proof is by induction on the size of S. The non-recursion cases follow by congruence. For the recursive definition case $S = let \ \vec{L} = \vec{P} \ in \ L_i$, the trick is to unfold :

$$\begin{split} S[\vec{K} \leftarrow \vec{Q}] &=_{\mathsf{def}} \quad let \ \vec{L} = \vec{P}[\vec{K} \leftarrow \vec{Q}] \ in \ L_j \\ &\approx \qquad P_j[\vec{K} \leftarrow \vec{Q}][\vec{L} \leftarrow (let \ \vec{L} = \vec{P} \ in \ \vec{L})] \\ &\approx_{\mathsf{ind}} \qquad P_j[\vec{K} \leftarrow \vec{Q'}][\vec{L} \leftarrow (let \ \vec{L} = \vec{P} \ in \ \vec{L})] \\ &\approx \qquad S[\vec{K} \leftarrow \vec{Q'}] \end{split}$$

Specification and weak bisimulation

HAMMERJOBBERSTRONG JOBBER $H = g \cdot H'$ $H' = p \cdot H$ $J = in \cdot S$ $S = \overline{g} \cdot U$ $K = in \cdot D$ $D = \overline{out} \cdot K$ $U = \overline{p} \cdot F$ $F = \overline{out} \cdot J$

We have : $(\nu g, h)(J \mid J \mid H) \approx K \mid K$. Their first actions are the same :

 $(\nu g, h)(J \mid J \mid H) \mathcal{R} K \mid K (\nu g, h)(S \mid J \mid H) \mathcal{R} D \mid K$ $(\nu g, h)(J \mid S \mid H) \mathcal{R} K \mid D (\nu g, h)(S \mid S \mid H) \mathcal{R} D \mid D$

The only possible sequence of actions out of, say, $(\nu g, h)(S \mid S \mid H)$ is :

 $(\nu g, h)(S \mid S \mid H) \xrightarrow{\tau} (\nu g, h)(S \mid U \mid H') \xrightarrow{\tau} (\nu g, h)(S \mid U \mid H') \xrightarrow{\overline{out}} (S \mid J \mid H)$

Hence we complete \mathcal{R} with :

$(\nu g, h)(S \mid U \mid H') \mathcal{R} D \mid D$	$(\nu g,h)(S \mid F \mid H) \mathcal{R} D \mid D$
$(u g,h)(J \mid U \mid H') \mathrel{\mathcal{R}} K \mid D$	$(u g,h)(J \mid F \mid H) \mathrel{\mathcal{R}} \mathrel{K} \mid D$
$(u g,h)(U \mid J \mid H') \mathrel{\mathcal{R}} D \mid K$	$(u g,h)(F \mid J \mid H) \mathrel{\mathcal{R}} D \mid K$