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Strong axiomatization (1/4)

For finitary CCS (no recursion, finite guarded sums), P ∼ Q iff

A1 � P = Q, where A1 is :

(1) Σi∈Iµi · Pi = Σi∈Iµf(i) · Pf(i) (permutation)

(2) Σi∈Iµi · Pi + µj · Pj = Σi∈Iµi · Pi (j ∈ I) (idempotency)

(3) P | Q = Σ{µ · (P ′ | Q) | P
µ→ P ′} + Σ{µ · (P | Q′) | Q

µ→ Q′}
+Σ{τ · (P ′ | Q′) | P

α→ P ′ and Q
α→ Q′} (expansion)

(4) (νa) (Σi∈Iµi · Pi) = Σ{j∈I|µj �=a,a} µj · (νa)Pj

plus the rules for equational reasoning : reflexivity, symmetry, transitivity

and

� Pi = Qi (for all i

� Σi∈Iµi · Pi = Σi∈IµiQi

� P1 = Q1 � P2 = Q2

� (P1 | P2) = (Q1 | Q2)

� P = Q

� (νa)P = (νa)Q

Exercice 1 Show that A1 � (νb)(a · (b|c) + τ · (b|b · c)) = τ · τ · c · 0 + a · c · 0.
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Strong axiomatization (2/4)

First step : each process is provably equal to a synchronization tree

(guarded sums only), using only

(3) P | Q = Σ{µ · (P ′ | Q) | P
µ→ P ′} + Σ{µ · (P | Q′) | Q

µ→ Q′}
+Σ{τ · (P ′ | Q′) | P

α→ P ′ and Q
α→ Q′}

(4) (νa) (Σi∈Iµi · Pi) = Σ{j∈I|µj �=a,a} µj · (νa)Pj

We associate with a process P the multi-set of the sizes of all its

subterms (νa)Q and Q1 | Q2. This multi-set decreases at each

application of rules (3)-(4).
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Strong axiomatization (3/4)

Second step : If P = Σi=1...mαi · Pi and Q = Σj=m+1...nαj · Pj, and if

P ∼ Q, then P and Q are provably equal, using only

(1) Σi∈Iµi · Pi = Σi∈Iµf(i) · Pf(i) (f permutation)

(2) Σi∈Iµi · Pi + µj · Pj = Σi∈Iµi · Pi (j ∈ I)

Induction on size(P )+size(Q) : Let � be the equivalence relation on

{1, . . . n} defined by i � j iff αi = αj and Pi ∼ Pj.

By strong bisimilarity, each � equivalence class contains at least one

element of [1, m] and at least one element of [m + 1, n]. Now for each of

the equivalence classes we pick one representative in [1, m] and one in

[m + 1, n]. Call them p1, . . . , pk and q1, . . . , qk, respectively. Then we

have :

� Σi=1...mαi.P = Σl=1...kαpl ·Ppl and � Σj=m+1...nαj ·Pj = Σl=1...kαql ·Pql

with Ppl ∼ Pql for all l, so we can apply induction.

(Note that the finiteness of sums is crucial.)
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Weak axiomatization (1/6)

For finitary CCS, P ≈ Q iff A1 + A2 � P = Q, where A2 is :

(τ0) P = τ · P
(τ1) τ · P + R = P + τ · P + R

(τ2) α · (τ · P + Q) + R = α · (τ · P + Q) + α · P + R

(In general, we do not have � P + Q = τ · P + Q.)
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Weak axiomatization (2/6)

We can limit ourselves to synchronization trees (ST).

There is a notion of ST in fully standard form such that :

- each ST P is provably equal (by A2) to a ST in fully standard form

- if P, Q are in fully standard form and P ≈ Q, then P and Q are

provably equal
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Weak axiomatization (3/6)

Definition : P = Σi∈Iµi · Pi is in fully standard form if and only if

each Pi is in fully standard form and

∀µ, P ′ (P
µ⇒ P ′ and P ′ �= P ) ⇒ P

µ→ P ′
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Weak axiomatization (4/6)

Lemma : For any ST P , if P
µ⇒ P ′ and P �= P ′, then � P = P + µ.P ′.

Then, given P = Σi∈Iµi ·Pi, first convert each Pi to a fully standard form

P ′
i . Next, consider all (νj , P ′′

j ) such that P ′ = Σi∈Iµi · P ′
i

νj⇒ P ′′
j . Then

� P = Σi∈Iµi · P ′
i = Σi∈Iµi · P ′

i + Σjνj · P ′′
j = Q′

and Q′ is in fully standard form :

- Each P ′′
j , being a subterm of some P ′

i , is in fully standard form.

- Suppose Q′ ν⇒ Q′′, passing through P ′′
j0

:

1. ν = νj0 = α and P ′′
j0

τ⇒ Q′′. Then

(P ′ νj0⇒ P ′′
j0

and P ′′
j0

τ⇒ Q′′) ⇒ P ′ ν⇒ Q′′

2. νj0 = τ and P ′
j0

ν⇒ P ′′. Then we get also P ′ ν⇒ Q′′.

Then by definition of Q′ we have ν = νj1 and Q′′ = P ′′
j1

for some j1.
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Weak axiomatization (5/6)

Proof of the lemma (by induction on size(P )) :

(1) P
µ→ P ′. Then P = P1 + µ · P ′ and � P = P + µ · P ′ by idempotency.

(2) P
τ→ P ′′ µ⇒ P ′ and P ′ �= P ′′. Then P = P1 + τ · P ′′, and hence

� P = P + P ′′ by (τ1). By induction we have � P ′′ = P ′′ + µ · P ′, so we

conclude :

� P = P + P ′′ = P + (P ′′ + µ · P ′) = (P + P ′′) + µ · P ′ = P + µ · P ′

(3) µ = α, P
α→ P ′′ τ⇒ P ′, and P ′ �= P ′′. Then P = P1 + α · P ′′, and by

induction � P ′′ = P ′′ + τ · P ′. Hence, by (τ2) :

� P = P1 + α · P ′′ = P1 + α · (P ′′ + τ · P ′)

= P1 + α · (P ′′ + τ · P ′) + α · P ′ = P + α · P ′
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Weak axiomatization (6/6)

If P = Σi∈Iµi · Pi and Q = Σj∈Jνj · Qj are in fully standard form and

P ≈ Q, then we have “almost” P ∼ Q.

Indeed, for every P
µi→ Pi there exists Q′ such that Q′ ≈ Pi and Q

µi⇒ Q′,
and hence Q

µi→ Q′, the only possible exception being when µi = τ and

Q′ = Q.

We prove � P = Q by induction on size(P )+size(Q). If the exceptional

case does not apply, we proceed as for strong bisimulation. Otherwise :

∃ i0 (µi0 = τ and Pi0 ≈ Q and � ∃ j (µj = τ and Qj ≈ Pi0))

Now, we have :

(Q ≈ Σi∈Iµi · Pi and � ∃ j (µj = τ and Qj ≈ Pi0)) ⇒ Q ≈ Σi∈I\{i0}µi · Pi

Hence by induction � Pi0 = Q and � Q = Σi∈I\{i0}µi · Pi, and we

conclude with (τ1) and (τ0) :

� Q = τ · Q = Q + τ.Q = Σi∈I\{i0}µi · Pi + τ.Pi0 = P

10



.

Unique solutions (1/13)

Definition : A process variable K is weakly guarded in P (notation

wg(K, P )) if each occurrence of K is within some subterm of the form

µ · P ′ of P . Formally :

wg(K, Σi∈Iµi · Pi)

(K �= L)

wg(K, L)

wg(K, P1) wg(K, P2)

wg(K, P1|P2)

wg(K, P )

wg(K, (νa)P

wg(K, P1) . . . wg(K; Pn) (K �∈ �L)

wg(K, (let �L = �P in Li))

Unique solution theorem (strong case) : If �K = �P is a system of

equations where all K’s are weakly guarded in all P ’s, and if �Q and �R

are solutions of the system in the sense that �Q ∼ �P [ �K ← �Q] and
�R ∼ �P [ �K ← �R], then �Q ∼ �R.
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Unique solutions (2/13)

Lemma : If K1, . . . , Kn are weakly guarded in some process P , and if

P [ �K ← �Q]
µ→ T for some Q and T , then T has the form P ′[ �K ← �Q] for

some P ′ such that P
µ→ P ′ (and hence P [ �K ← �Q′] µ→ P ′[ �K ← �Q′] for any

other Q′).

By induction on the size of the proof of P [K ← Q]
µ→ T , and by cases on

the structure of P . We pick three cases :

P = K : This case cannot happen by the weak guardedness assumption.

Case P = P1|P2 and

P1[ �K ← �Q]
µ→ T1

(P1|P2)[ �K ← �Q]
µ→ T1|(S2[ �K ← �Q]) = T

Then by induction (K is weakly guarded in P1) we know that

∃P ′
1 (P1

µ→ P ′
1 and T1 = P ′

1[ �K ← �Q])

Then, setting P ′ = P ′
1|P2, we have P

µ→ P ′ and T = P ′[ �K ← �Q].
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Unique solutions (3/13)

Case P = (let �L = �S in Li) and

Si[ �K ← �Q][�L ← (let �L = �S[ �K ← �Q] in �L)]
µ→ T

(let �L = �S in Li)
µ→ T

(By definition, (let �L = �S in Li)[ �K ← �Q] = (let �L = �S[ �K ← �Q] in Li).)

We have (commuting substitutions) :

Si[ �K ← �Q][�L ← (let �L = �S[ �K ← �Q] in �L)] = Si[�L ← (let �L = �Si in �L)][ �K ← �Q]

We apply induction to S′
i = Si[�L ← (let �L = �Si in �L)] (the proof of

S′
i[

�K ← �Q]
µ→ T is shorter, and K is weakly guarded in Si, hence a fortiori

in S′
i). Hence ∃P ′ (S′

i

µ→ P ′ and T = P ′[ �K ← �Q]). Finally, by folding :

Si[�L ← (let �L = �Si in �L)]
µ→ P ′

P
µ→ P ′
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Unique solutions (4/13)

Proof of the theorem : the set of all pairs

(S[ �K ← �Q], S[ �K ← �R])

where S is arbitrary, is a bisimulation up to ∼.

(And hence, in particular, taking S = Ki : Qi ∼ Ri.)

Let S′ = S[ �K ← �P ]. The key remark is that K is weakly guarded in S′.
We have

S[ �K ← �Q] ∼ S[ �K ← �P [ �K ← �Q]] = S′[ �K ← �Q]

Hence if S[ �K ← �Q]
µ→ Q′, then S′[ �K ← �Q]

µ→ Q′′ for some Q′′ such that

Q′ ∼ Q′′. By the lemma, there exists P ′ such that

S′ µ→ P ′ and Q′′ = P ′[ �K ← �Q] and S′[ �K ← �R]
µ→ P ′[ �K ← �R]

Finally, since S′[ �K ← �R] ∼ S[ �K ← �R], there exists R′ such that

S[ �K ← �R]
µ→ R′ and P ′[ �K ← �R] ∼ R′. Putting everything together, we

have :

Q′ ∼ P ′[ �K ← �Q] R P ′[ �K ← �R] ∼ R′
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Unique solutions (5/13)

For weak bisimulation, we need strengthened hypotheses.

Definition : A process variable K is guarded in P if each occurrence of

K is within some subterm of the form α · P ′ of P .

A process variable K is sequential in P if no occurrence of K is within a

subterm of P which is a parallel composition.

Example : K is weakly guarded, but neither guarded nor sequential in

(τ · K|a · 0).
Unique solution theorem (weak case) : If �K = �P is a system of

equations where all K’s are guarded and sequential in all P ’s, and if �Q

and �R are solutions of the system in the sense that �Q ≈ �P [ �K ← �Q] and
�R ≈ �P [ �K ← �R] , then �Q ≈ �R.
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Unique solutions (6/13)

We need to be able to apply the lemma repeatedly (for τ-actions).

Hence we need to have that when P
µ→ P ′ then P ′ is again guarded.

This is true under the additional sequential assumption :

1. If P is sequential and if P
µ→ P ′, then P ′ is sequential ;

2. If P is sequential and guarded and if P
τ→ P ′, then P ′ is guarded.

Exercice 2 Prove it.

Counterexamples supporting these assumptions :

• P = a · K|a · 0 τ→ K|0 = P ′ : K is guarded but not sequential in P ,

and is not guarded in P ′

• P = τ · K τ→ K = P ′ : K is weakly guarded in P , but (not even

weakly) guarded in P ′.
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Unique solutions (7/13)

Proof of the theorem. One shows that the set of all pairs

(S[ �K ← �Q], (S[ �K ← �R])

where S is any process in which all the K’s are sequential, is a

bisimulation up to ≈.

Case 1 : S[ �K ← �Q]
µ→ Q′. We proceed exactly as in the strong case,

replacing

• ∼ by ≈,

• S′[ �K ← �Q]
µ→ Q′′ by S′[ �K ← �Q]

µ⇒ Q′′, and the same for all

subsequent uses of
µ→,

• and a single use of the lemma by repeated uses of the lemma. It is

possible because the K’s are guarded and sequential in

S′ = S[ �K ← �Q] (here we use the assumption on S !).
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Unique solutions (8/13)

Case 2 : S[ �K ← �Q]
α→ Q′. Then we begin in the same way, and we get

that S′[ �K ← �Q]
τ⇒ α→ Q′′′ τ⇒ Q′′, with Q′ ≈ Q′′.

By repeated use of the lemma, there exists P ′ such that the K’s are

sequential in P ′,

P
µ⇒ α→ P and Q′′′ = P ′[ �K ← �Q] and S′[ �K ← �Q]

τ⇒ α→ P ′[ �K ← �R]

From there, we proceed exactly as in Case 1, with the only change that

the initial assumption is now P ′[ �K ← �Q]
τ⇒ Q′′ (instead of a

µ→ – this

does not affect the rest of the argument, why ?). Thus we get R′′ such

that Q′′ (≈ R ≈) R′′ and P ′[ �K ← �R]
τ⇒ R′′, and hence : S′[ �K ← �Q]

α⇒ R′′.

Finally, since S′[ �K ← �R] ≈ S[ �K ← �R], there exists R′ such that R′′ ≈ R′

and S[ �K ← �R]
α⇒ R′. We are done, as Q′ ≈ Q′′(≈ R ≈) R′′ ≈ R′.
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Unique solutions (9/13)

We illustrate the theorem with the example of a slot machine :

Specification :

SPEC 〈x〉 = s · (τ · l · SPEC 〈x + 1〉 + Σ1≤y≤x+1τ · w · SPEC 〈x + 1 − y〉) .

Implementation : Let IO , B, D be given as follows :

(user) IO = s · b · (L · l · IO + R(y) · w〈y〉 · IO)

(bank) B〈x〉 = b · µ〈x + 1〉 · λ(y) · B〈y〉
(oracle) D = µ(z) · (L · λ〈z〉 · D + Σ1≤y≤zR〈y〉 · λ〈z − y〉 · D)

Our objective is to prove SPEC 〈n〉 ≈ SM 〈n〉,, where

SM 〈n〉 = (ν b, µ, λ, L, R)(IO | B〈n〉 | D)

We write (�ν) as shorthand for (ν b, µ, λ, L, R).
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Unique solutions (10/13)

By algebraic laws, we have :

� SM 〈n〉 = s · ((�ν)(( b · (L · l · IO + R(y) · w〈y〉 · IO)) | B〈n〉 | D))

= s · τ · ((�ν)((L · l · IO + R(y) · w〈y〉 · IO) | µ〈n + 1〉 · λ(y) · B〈y〉 | D))

= s · τ · τ · P ′

= s · P ′ = s · (τ.P ′
0 + Σ1≤y≤n+1τ · P ′

y)

where

P ′ = (�ν)

8>><
>>:

( L · l · IO + R(y) · w〈y〉 · IO
| λ(y) · B〈y〉
| L · λ〈n + 1〉 · D + Σ1≤y≤n+1R〈y〉 · λ〈n + 1 − y〉 · D)

P ′
0 = (νb, µ, λ, L, R)

8>><
>>:

(l · IO
| λ(y) · B〈y〉
| λ〈n + 1〉 · D)

P ′
y = (νb, µ, λ, L, R)

8>><
>>:

(w〈y〉 · IO
| λ(y) · B〈y〉
| λ〈n + 1 − y〉 · D)
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Unique solutions (11/13)

So far, we have � SM 〈n〉 = τ.P ′
0 + Σ1≤y≤n+1τ · P ′

y, where

P ′
0 = (νb, µ, λ, L, R)

8>>><
>>>:

( l · IO
| λ(y) · B〈y〉
| λ〈n + 1〉 · D)

P ′
y = (νb, µ, λ, L, R)

8>>><
>>>:

( w〈y〉 · IO
| λ(y) · B〈y〉
| λ〈n + 1 − y〉 · D)

We shall prove � P ′
0 = l · SM 〈n + 1〉 and � P ′

y = w · SM 〈n + 1 − y〉, from

which it follows that

� SM 〈n〉 = s · (τ.l · SM 〈n + 1〉 + Σ1≤y≤n+1τ · w · SM 〈n + 1 − y〉)

and we conclude by the unique solution theorem.
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Unique solutions (12/13)

We just check � P ′
0 = l · SM 〈n + 1〉. We have :

� P ′
0 = l · (τ · SM 〈n + 1〉 + s · τ · P ′′) + τ · l · SM 〈n + 1〉

where P ′′ is such that � SM 〈n + 1〉 = s · P ′′ So we have :

� P ′
0 = l · (τ · s · P ′′ + s · τ · P ′′) + τ · l · s · P ′′

= l · (τ · s · P ′′ + s · P ′′) + τ · l · s · P ′′

= l · τ · s · P ′′ + τ · l · s · P ′′

= l · s · P ′′ + τ · l · s · P ′′

= l · s · P ′′

≈ l · SM 〈n + 1〉

22



.

Unique solutions (13/13)

Hindsight : We did not treat the constructs of CCS uniformly :

• recursion → unique solution

• the other constructions : → congruence

Note the following :

1. Formulating congruence for the recursive definitions would force us

to define bisimulation for processes with free variables K.

2. We can avoid reasoning inside recursive definitions by unfolding

them prior to the reasoning. This is exactly what happens in the

example that we just unrolled.
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Hennessy-Milner logic (1/14)

We revert to an arbitrary LTS, with its set of actions Act. We make the

assumption that the LTS is image finite :

∀P, µ ({(P ′ | P
µ→ P ′} is finite)

We write Proc for the set of all states / processes.
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Hennessy-Milner logic (2/14)

The set of formulas of Hennessy-Milner logic is defined by :

A := T | A ∧ A | ¬A | 〈µ〉A

A formula A is interpreted by the the set of processes which satisfy it,

whence two notations : [[A]] = {P | P |= A} :

[[T ]] = Proc

[[A ∧ B]] = [[A]] ∩ [[B]]

[[¬A[[= Proc \ [[A]]

〈µ〉A = {P | (∃P ′ P
µ→ P ′ and P ′ |= A)}

Derived operators : A ∨ B = ¬((¬A) ∧ (¬B)), [µ]A = ¬(〈µ〉(¬A))
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Hennessy-Milner logic (3/14)

Theorem : Under the image finiteness assumption,

P ∼ Q ⇔ {A | P |= A} = {A | Q |= A}

The theorem can be applied to finitary CCS (both strong and weak

bisimulation). When weak bisimulation is meant, we write 〈〈µ〉〉A and

[[µ]]A.

It works also for the larger fragment of CCS with finite sums and

recursive definitions where each recursively defined K is guarded and

sequential in its definition.

More generally, it works for all pair of P, Q which are both hereditarily

image finite, i.e., say, whenever P
s→ Q (s ∈ Act�), then Q is image finite.

Remark : The interpretation P |= A is compostional / congruential in A,

not in P , hence the result does not help to establish that bisimilarity is

a congruence.
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Hennessy-Milner logic (4/14)

Let Ln be the subset of formulas with depth of at most n, where depth

is defined by :

depth(T ) = 0 depth(A ∧ B) = max(depth(A), depth(B))

depth(¬A) = depth(A) depth(〈µ〉A) = depth(A) + 1

Remember that ∼ is the greatest fixed point of some operator GK ,

which is anti-continuous (image-finiteness !). Hence (ω stands for the

set of natural numbers) :

∼ =
\

n∈ω

∼n where ∼0= Proc × Proc and ∼n+1= GK(∼n)

Unfolding the definition of GK :

P ∼n+1 Q ⇔ ∀µ, P ′ (P
µ→ P ′ ⇒ ∃Q′ (Q

µ→ Q′ and P ′ ∼n Q′)) and conversely
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Hennessy-Milner logic (5/14)

We set Ln(P ) = {A ∈ Ln | P |= A}. We prove by induction on n :

P ∼n Q ⇔ Ln(P ) = Ln(Q)

Case n = 0. Notice that for every A ∈ L0 we have either [[A]] = ∅ or

[[A]] = Proc (by induction on A, which is 〈 〉 free). It follows that P ∈ [[A]]

if and only if Q ∈ [[A]], for arbitrary P, Q.
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Hennessy-Milner logic (6/14)

P �∼n+1 Q ⇒ Ln+1(P ) �= Ln+1(Q).

Since P �∼n+1 Q, there exists a, P ′ such that for all Q′
1, . . . Q′

n (we are

using image-finiteness) such that Q
a→ Q′ we have P ′ �∼n Q′

i for all i.

Now Ln(P ′) �= Ln(Q′
i) by induction. Hence there exists Ai in Ln(P ′) not

in Ln(Q′
i) or there exists B in Ln(Q′

i) not in Ln(P ′). But in the latter

case, we can take ¬B, hence we may assume that there exists Ai in

Ln(P ′) not in Ln(Q′
i). Let A = A1 ∧ . . . ∧ An.

Then P ′ |= A, and since Q′
i �|= Ai we have a fortiori Q′

i �|= A for all i.

From there it follows that P |= 〈a〉A and Q �|= 〈i〉A.
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Hennessy-Milner logic (7/14)

P ∼n+1 Q ⇒ Ln+1(P ) = Ln+1(Q).

Let A ∈ Ln+1(P ). We proceed by structural induction on A. The only

non-trivial case is A = 〈a〉B.

Since P |= A, there exist a, P ′ such that P
a→ P ′ and P ‘ |= B.

Since P ∼n+1 Q, there exists Q′ such that Q
a→ Q′ and P ′ ∼n Q′.

By induction, since B ∈ Ln, we get Q′ |= B and hence A ∈ Ln+1(Q).
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Hennessy-Milner logic (8/14)

How should we adapt this to overcome the image finiteness limitation ?

We have to go to infinite conjunctions.

Ordinals are needed on both sides of the equivalence

P ∼κ Q ⇔ Lκ(P ) = Lκ(Q)

• On the left side, this is because the non image-finiteness entails

non-anti-continuity of the operator of which ∼ is a fixpoint. And it is

always true that ∼ is the intersection of the ∼κ, but we then have to go

beyond ordinal ω.

• on the right side, this is because of infinite branching, as the depth of

a sum is the sup of the depths. In this way we may reach, say, depth

ω = sup{1, . . . , n, . . .}.
Exercice 3 Show that aω + Σn∈ωai (with infinite sum) and Σn∈ωai

satisfy the same formulas (without infinite conjunction) but are not

bisimilar (where a0 = 0, ai+1 = a · ai, aω = (let K = a · K in K)). (Hint :

prove that if aω |= A, then ai |= A for all sufficiently large i, and for this

use the alternative syntax A := T | F | A ∧ A | A ∨ A | 〈µ〉A)
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Hennessy-Milner logic (9/14)

Recall that P = a · (b + c) and Q = a · b + a · c are not bisimilar.

Here is a formula that separates them :

P |= 〈a〉(〈b〉T ∧ 〈c〉T ) Q �|= 〈a〉(〈b〉T ∧ 〈c〉T )
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Hennessy-Milner logic (10/14)

As a more sophisticated example, we show the correctness of the

unbounded counter (cf. course CCS-2) :

C = inc · (C � C) + dec · D D = d · C + z · B B = inc · (C � B) + zero · B
Notation : 〈〈ε〉〉A = A and 〈〈as〉〉A = 〈〈a〉〉(〈〈s〉〉A) (similarly for 〈s〉A, [[s]]A,

[s]A). F = ¬T . #inc(s) is the number of occurrences of inc in s. ≤ is the

prefix ordering. We define :

(s � 0) = (∀ s′ ≤ s (#inc(s′) ≥ #dec(s′)) ∧
∀ s′ (s′0 ≤ s ⇒ (#inc(s′) = #dec(s′))))

(s � 0) = (s � 0) ∧ (#inc(s) > #dec(s))

(s = 0) = (s � 0) ∧ (#inc(s) = #dec(s))

We shall show C |=AC where :

AC =

8<
:

(
V

s�0〈〈s〉〉T ) ∧ (
V

s�0[[s]](〈〈inc〉〉T ) ∧ 〈〈dec〉〉T ∧ [[zero]]F )) ∧
(
V

s=0[[s]](〈〈inc〉〉T ∧ 〈〈zero〉〉T ∧ [[dec]]F )) ∧ (
V

s��0[[s]]F )
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Hennessy-Milner logic (11/14)

It can be shown, using algebraic laws and unique solution (as for the

slot machine), that C ≈ Cnt0, where (specification) :

Cnt0 = inc · Cnt1 + zero · Cnt0

Cntn = inc · Cntn+1 + dec · Cntn−1

Then, by the logical characterization of bisimilarity, our goal can be

reformulated as Cnt0 |=AC . Since the execution of Cnt0 involves no τ

actions, satisfaction of AC is equivalent to satisfaction of the same

formula where all 〈〈s〉〉 and [[s]] are replaced by 〈s〉 and [s] , respectively.
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Hennessy-Milner logic (12/14)

We are thus left to show :

Cnt0 |=
8<
:

(
V

s�0〈s〉T ) ∧ (
V

s�0[s](〈inc〉T ) ∧ 〈dec〉T ∧ [zero]F )) ∧
(
V

s=0[s](〈inc〉T ∧ 〈zero〉T ∧ [dec]F )) ∧ (
V

s��0[s]F )

This is an easy consequence of the following equivalence, which is

proved by induction on the length of s :

Cnt0
s→ P ⇔ (s � 0 and P = C#inc(s)−#dec(s))

It can be shown that the formula AC is a characteristic formula for C,

i.e. that Q |= A if and only if Q ≈ C.
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Hennessy-Milner logic (13/14)

Some perspective. It looks like :

• (weak) bisimilation or equational techniques used to show P ≈ Q

where P is an “implementation” and Q is a “specification” is a

tool for total correctness

• Hennessy-Milner logic or its extensions used to show P |= A where

P is a process and A is a property is a tool for partial correctness.
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Hennessy-Milner logic (14/14)

But the picture is more mixed :

1. One can express a property of a process P in the form of another

process Q and prove that P satisifes Q in the sense that for a

suitable context C one has C[P ] ≈ Q. See Milner’s red book

[chapter 5] for an example where P is a scheduler of n tasks

initiated in cycle each by an action ai, C implements hiding of all

the other actions of the tasks, and Q = a1 · . . . · an · Q.

2. For finite state LTS’s, there is a characteristic formula (cf.

example above) for each process / state, in an extension of the

logic with a greatest fixed point operator (see, e.g. the course

notes at http://www.cs.aau.dk/~luca/SV/intro2ccs.pdf)
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Beyond Hennessy-Milner

Given a formula A, consider the following property, or set of processes

(‘no matter what transitions are made, A always holds” ) :

Inv(A)= {P | ∀ s (P
s→ P ′ ⇒ P ′ |= A)} =

^
s∈Act�

[s]A

Proposition : Inv(F ) is the greatest fixed point of the equation

X = A ∧ (
V

a∈Act [a]X) in P(Proc).

Exercice 4 Prove it

More generally, safety and liveness properties (“whathever state is

reached, it is possible to continue in such way”) can be expressed by

means of greatest and least fixed points, respectively (much more on

this in the notes at http://www.cs.aau.dk/~luca/SV/intro2ccs.pdf).

Exercice 5 Find a formula that distinguishes the two processes of

exercice 2.
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