Concurrency 4

CCS : Axiomatization, unique solutions, Hennessy-Milner logi

```
Pierre-Louis Curien (CNRS - Université Paris 7)
    MPRI concurrency course 2006/2007 with :
Francesco Zappa Nardelli (INRIA Rocquencourt)
        Catuscia Palamidessi (INRIA - Futurs)
            Roberto Amadio (Paris 7)
(http://mpri.master.univ-paris7.fr/C-2-3.html)
```


Strong axiomatization (1/4)

For finitary CCS (no recursion, finite guarded sums), $P \sim Q$ iff $\mathcal{A}_{1} \vdash P=Q$, where \mathcal{A}_{1} is:
(1) $\Sigma_{i \in I} \mu_{i} \cdot P_{i}=\Sigma_{i \in I} \mu_{f(i)} \cdot P_{f(i)} \quad$ (permutation)
(2) $\Sigma_{i \in I} \mu_{i} \cdot P_{i}+\mu_{j} \cdot P_{j}=\Sigma_{i \in I} \mu_{i} \cdot P_{i} \quad(j \in I) \quad$ (idempotency)
(3) $\quad P \mid Q=\Sigma\left\{\mu \cdot\left(P^{\prime} \mid Q\right) \mid P \xrightarrow{\mu} P^{\prime}\right\}+\Sigma\left\{\mu \cdot\left(P \mid Q^{\prime}\right) \mid Q \xrightarrow{\mu} Q^{\prime}\right\}$

$$
+\Sigma\left\{\tau \cdot\left(P^{\prime} \mid Q^{\prime}\right) \mid P \xrightarrow{\alpha} P^{\prime} \text { and } Q \xrightarrow{\bar{\alpha}} Q^{\prime}\right\} \quad \text { (expansion) }
$$

(4) $\quad(\nu a)\left(\Sigma_{i \in I} \mu_{i} \cdot P_{i}\right)=\Sigma_{\left\{j \in I \mid \mu_{j} \neq a, \bar{a}\right\}} \mu_{j} \cdot(\nu a) P_{j}$
plus the rules for equational reasoning : reflexivity, symmetry, transitivity and

$$
\begin{array}{ccc}
\vdash P_{i}=Q_{i}(\text { for all } i & \vdash P_{1}=Q_{1} \vdash P_{2}=Q_{2} & \vdash P=Q \\
\hline \vdash \Sigma_{i \in I} \mu_{i} \cdot P_{i}=\Sigma_{i \in I} \mu_{i} Q_{i} & \vdash\left(P_{1} \mid P_{2}\right)=\left(Q_{1} \mid Q_{2}\right) & \left.\frac{\vdash(\nu a) P=(\nu a) Q}{\vdash}+\frac{\vdash}{\vdash}\right)
\end{array}
$$

Exercice 1 Show that $\mathcal{A}_{1} \vdash(\nu b)(a \cdot(b \mid c)+\tau \cdot(b \mid \bar{b} \cdot c))=\tau \cdot \tau \cdot c \cdot 0+a \cdot c \cdot 0$.

Strong axiomatization (2/4)

First step : each process is provably equal to a synchronization tree (guarded sums only), using only

$$
\begin{gather*}
P \mid Q=\Sigma\left\{\mu \cdot\left(P^{\prime} \mid Q\right) \mid P \xrightarrow{\mu} P^{\prime}\right\}+\Sigma\left\{\mu \cdot\left(P \mid Q^{\prime}\right) \mid Q \xrightarrow{\mu} Q^{\prime}\right\} \tag{3}\\
+\Sigma\left\{\tau \cdot\left(P^{\prime} \mid Q^{\prime}\right) \mid P \xrightarrow{\alpha} P^{\prime} \text { and } Q \xrightarrow{\bar{\alpha}} Q^{\prime}\right\} \\
(\nu a)\left(\Sigma_{i \in I} \mu_{i} \cdot P_{i}\right)=\Sigma_{\left\{j \in I \mid \mu_{j} \neq a, \bar{a}\right\}} \mu_{j} \cdot(\nu a) P_{j} \tag{4}
\end{gather*}
$$

We associate with a process P the multi-set of the sizes of all its subterms $(\nu a) Q$ and $Q_{1} \mid Q_{2}$. This multi-set decreases at each application of rules (3)-(4).

Strong axiomatization (3/4)

Second step : If $P=\Sigma_{i=1 \ldots m} \alpha_{i} \cdot P_{i}$ and $Q=\Sigma_{j=m+1 \ldots n} \alpha_{j} \cdot P_{j}$, and if $P \sim Q$, then P and Q are provably equal, using only
(1) $\Sigma_{i \in I} \mu_{i} \cdot P_{i}=\Sigma_{i \in I} \mu_{f(i)} \cdot P_{f(i)} \quad$ (f permutation)
(2) $\Sigma_{i \in I} \mu_{i} \cdot P_{i}+\mu_{j} \cdot P_{j}=\Sigma_{i \in I} \mu_{i} \cdot P_{i} \quad(j \in I)$

Induction on size $(P)+\operatorname{size}(Q):$ Let \leftrightharpoons be the equivalence relation on $\{1, \ldots n\}$ defined by $i \leftrightharpoons j$ iff $\alpha_{i}=\alpha_{j}$ and $P_{i} \sim P_{j}$.
By strong bisimilarity, each \leftrightharpoons equivalence class contains at least one element of $[1, m]$ and at least one element of $[m+1, n]$. Now for each of the equivalence classes we pick one representative in $[1, m]$ and one in $[m+1, n]$. Call them p_{1}, \ldots, p_{k} and q_{1}, \ldots, q_{k}, respectively. Then we have :
$\vdash \Sigma_{i=1 \ldots m} \alpha_{i} \cdot P=\Sigma_{l=1 \ldots k} \alpha_{p_{l}} \cdot P_{p_{l}} \quad$ and $\quad \vdash \Sigma_{j=m+1 \ldots n} \alpha_{j} \cdot P_{j}=\Sigma_{l=1 \ldots k} \alpha_{q_{l}} \cdot P_{q_{l}}$ with $P_{p_{l}} \sim P_{q_{l}}$ for all l, so we can apply induction.
(Note that the finiteness of sums is crucial.)

Weak axiomatization (1/6)

For finitary CCS, $P \approx Q$ iff $\mathcal{A}_{1}+\mathcal{A}_{2} \vdash P=Q$, where \mathcal{A}_{2} is:
$\left(\tau_{0}\right) \quad P=\tau \cdot P$
$\left(\tau_{1}\right) \quad \tau \cdot P+R=P+\tau \cdot P+R$
$\left(\tau_{2}\right) \quad \alpha \cdot(\tau \cdot P+Q)+R=\alpha \cdot(\tau \cdot P+Q)+\alpha \cdot P+R$
(In general, we do not have $\vdash P+Q=\tau \cdot P+Q$.)

Weak axiomatization (2/6)

We can limit ourselves to synchronization trees (ST).
There is a notion of ST in fully standard form such that :

- each ST P is provably equal (by \mathcal{A}_{2}) to a ST in fully standard form
- if P, Q are in fully standard form and $P \approx Q$, then P and Q are provably equal

Weak axiomatization (3/6)

Definition : $P=\Sigma_{i \in I} \mu_{i} \cdot P_{i}$ is in fully standard form if and only if
each P_{i} is in fully standard form and
$\forall \mu, P^{\prime}\left(P \stackrel{\mu}{\Rightarrow} P^{\prime}\right.$ and $\left.P^{\prime} \neq P\right) \Rightarrow P \xrightarrow{\mu} P^{\prime}$

Weak axiomatization (4/6)

Lemma: For any ST P, if $P \stackrel{\mu}{\Rightarrow} P^{\prime}$ and $P \neq P^{\prime}$, then $\vdash P=P+\mu \cdot P^{\prime}$.
Then, given $P=\Sigma_{i \in I} \mu_{i} \cdot P_{i}$, first convert each P_{i} to a fully standard form P_{i}^{\prime}. Next, consider all $\left(\nu_{j}, P_{j}^{\prime \prime}\right)$ such that $P^{\prime}=\Sigma_{i \in I} \mu_{i} \cdot P_{i}^{\prime} \stackrel{\nu_{j}}{\Rightarrow} P_{j}^{\prime \prime}$. Then

$$
\vdash P=\Sigma_{i \in I} \mu_{i} \cdot P_{i}^{\prime}=\Sigma_{i \in I} \mu_{i} \cdot P_{i}^{\prime}+\Sigma_{j} \nu_{j} \cdot P_{j}^{\prime \prime}=Q^{\prime}
$$

and Q^{\prime} is in fully standard form:

- Each $P_{j}^{\prime \prime}$, being a subterm of some P_{i}^{\prime}, is in fully standard form.
- Suppose $Q^{\prime} \stackrel{\nu}{\Rightarrow} Q^{\prime \prime}$, passing through $P_{j_{0}}^{\prime \prime}$:

1. $\nu=\nu_{j_{0}}=\alpha$ and $P_{j_{0}}^{\prime \prime} \stackrel{\tau}{\Rightarrow} Q^{\prime \prime}$. Then

$$
\left(P^{\prime} \stackrel{\nu_{j_{0}}}{\Rightarrow} P_{j_{0}}^{\prime \prime} \text { and } P_{j_{0}}^{\prime \prime} \stackrel{\tau}{\Rightarrow} Q^{\prime \prime}\right) \Rightarrow P^{\prime} \stackrel{\nu}{\Rightarrow} Q^{\prime \prime}
$$

2. $\nu_{j_{0}}=\tau$ and $P_{j_{0}}^{\prime} \stackrel{\nu}{\Rightarrow} P^{\prime \prime}$. Then we get also $P^{\prime} \stackrel{\nu}{\Rightarrow} Q^{\prime \prime}$.

Then by definition of Q^{\prime} we have $\nu=\nu_{j_{1}}$ and $Q^{\prime \prime}=P_{j_{1}}^{\prime \prime}$ for some j_{1}.

Weak axiomatization (5/6)

Proof of the lemma (by induction on size (P)):
(1) $P \xrightarrow{\mu} P^{\prime}$. Then $P=P_{1}+\mu \cdot P^{\prime}$ and $\vdash P=P+\mu \cdot P^{\prime}$ by idempotency.
(2) $P \xrightarrow{\tau} P^{\prime \prime} \stackrel{\mu}{\Rightarrow} P^{\prime}$ and $P^{\prime} \neq P^{\prime \prime}$. Then $P=P_{1}+\tau \cdot P^{\prime \prime}$, and hence
$\vdash P=P+P^{\prime \prime}$ by $\left(\tau_{1}\right)$. By induction we have $\vdash P^{\prime \prime}=P^{\prime \prime}+\mu \cdot P^{\prime}$, so we conclude :

$$
\vdash P=P+P^{\prime \prime}=P+\left(P^{\prime \prime}+\mu \cdot P^{\prime}\right)=\left(P+P^{\prime \prime}\right)+\mu \cdot P^{\prime}=P+\mu \cdot P^{\prime}
$$

(3) $\mu=\alpha, P \xrightarrow{\alpha} P^{\prime \prime} \stackrel{\tau}{\Rightarrow} P^{\prime}$, and $P^{\prime} \neq P^{\prime \prime}$. Then $P=P_{1}+\alpha \cdot P^{\prime \prime}$, and by induction $\vdash P^{\prime \prime}=P^{\prime \prime}+\tau \cdot P^{\prime}$. Hence, by $\left(\tau_{2}\right)$:

$$
\begin{aligned}
\vdash P=P_{1}+\alpha \cdot P^{\prime \prime} & =P_{1}+\alpha \cdot\left(P^{\prime \prime}+\tau \cdot P^{\prime}\right) \\
& =P_{1}+\alpha \cdot\left(P^{\prime \prime}+\tau \cdot P^{\prime}\right)+\alpha \cdot P^{\prime}=P+\alpha \cdot P^{\prime}
\end{aligned}
$$

Weak axiomatization (6/6)

If $P=\Sigma_{i \in I} \mu_{i} \cdot P_{i}$ and $Q=\Sigma_{j \in J} \nu_{j} \cdot Q_{j}$ are in fully standard form and $P \approx Q$, then we have "almost" $P \sim Q$.
Indeed, for every $P \xrightarrow{\mu_{i}} P_{i}$ there exists Q^{\prime} such that $Q^{\prime} \approx P_{i}$ and $Q \stackrel{\mu_{i}}{\Rightarrow} Q^{\prime}$, and hence $Q \xrightarrow{\mu_{i}} Q^{\prime}$, the only possible exception being when $\mu_{i}=\tau$ and $Q^{\prime}=Q$.
We prove $\vdash P=Q$ by induction on $\operatorname{size}(P)+\operatorname{size}(Q)$. If the exceptional case does not apply, we proceed as for strong bisimulation. Otherwise :

$$
\exists i_{0} \quad\left(\mu_{i_{0}}=\tau \text { and } P_{i_{0}} \approx Q \text { and } \nexists j\left(\mu_{j}=\tau \text { and } Q_{j} \approx P_{i_{0}}\right)\right)
$$

Now, we have :

$$
\left(Q \approx \Sigma_{i \in I} \mu_{i} \cdot P_{i} \text { and } \nexists j\left(\mu_{j}=\tau \text { and } Q_{j} \approx P_{i_{0}}\right)\right) \Rightarrow Q \approx \Sigma_{i \in I \backslash\left\{i_{0}\right\}} \mu_{i} \cdot P_{i}
$$

Hence by induction $\vdash P_{i_{0}}=Q$ and $\vdash Q=\Sigma_{i \in I \backslash\left\{i_{0}\right\}} \mu_{i} \cdot P_{i}$, and we conclude with $\left(\tau_{1}\right)$ and

$$
\vdash Q=\tau \cdot Q=Q+\tau . Q=\Sigma_{i \in I \backslash\left\{i_{0}\right\}} \mu_{i} \cdot P_{i}+\tau . P_{i_{0}}=P
$$

Unique solutions (1/13)

Definition : A process variable K is weakly guarded in P (notation $w g(K, P)$) if each occurrence of K is within some subterm of the form $\mu \cdot P^{\prime}$ of P. Formally :
$\overline{w g\left(K, \Sigma_{i \in I} \mu_{i} \cdot P_{i}\right)} \quad \frac{(K \neq L)}{w g(K, L)}$

$$
\frac{w g\left(K, P_{1}\right) w g\left(K, P_{2}\right)}{w g\left(K, P_{1} \mid P_{2}\right)} \frac{w g(K, P)}{w g(K,(\nu a) P} \frac{w g\left(K, P_{1}\right) \ldots w g\left(K ; P_{n}\right)(K \notin \vec{L})}{w g\left(K,\left(\text { let } \vec{L}=\vec{P} \text { in } L_{i}\right)\right)}
$$

Unique solution theorem (strong case) : If $\vec{K}=\vec{P}$ is a system of equations where all K^{\prime} 's are weakly guarded in all P^{\prime} s, and if \vec{Q} and \vec{R} are solutions of the system in the sense that $\vec{Q} \sim \vec{P}[\vec{K} \leftarrow \vec{Q}]$ and $\vec{R} \sim \vec{P}[\vec{K} \leftarrow \vec{R}]$, then $\vec{Q} \sim \vec{R}$.

Unique solutions (2/13)

Lemma: If K_{1}, \ldots, K_{n} are weakly guarded in some process P, and if $P[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} T$ for some Q and T, then T has the form $P^{\prime}[\vec{K} \leftarrow \vec{Q}]$ for some P^{\prime} such that $P \xrightarrow{\mu} P^{\prime}$ (and hence $P\left[\vec{K} \leftarrow \overrightarrow{Q^{\prime}}\right] \xrightarrow{\mu} P^{\prime}\left[\vec{K} \leftarrow \overrightarrow{Q^{\prime}}\right]$ for any other Q^{\prime}).

By induction on the size of the proof of $P[K \leftarrow Q] \xrightarrow{\mu} T$, and by cases on the structure of P. We pick three cases :
$P=K$: This case cannot happen by the weak guardedness assumption.
Case $P=P_{1} \mid P_{2}$ and

$$
P_{1}[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} T_{1}
$$

$$
\left(P_{1} \mid P_{2}\right)[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} T_{1} \mid\left(S_{2}[\vec{K} \leftarrow \vec{Q}]\right)=T
$$

Then by induction (K is weakly guarded in P_{1}) we know that

$$
\exists P_{1}^{\prime}\left(P_{1} \xrightarrow{\mu} P_{1}^{\prime} \text { and } T_{1}=P_{1}^{\prime}[\vec{K} \leftarrow \vec{Q}]\right)
$$

Then, setting $P^{\prime}=P_{1}^{\prime} \mid P_{2}$, we have $P \xrightarrow{\mu} P^{\prime} \quad$ and $\quad T=P^{\prime}[\vec{K} \leftarrow \vec{Q}]$.

Unique solutions (3/13)

Case $P=\left(\right.$ let $\vec{L}=\vec{S}$ in $\left.L_{i}\right)$ and

$$
\frac{S_{i}[\vec{K} \leftarrow \vec{Q}][\vec{L} \leftarrow(\text { let } \vec{L}=\vec{S}[\vec{K} \leftarrow \vec{Q}] \text { in } \vec{L})] \xrightarrow{\mu} T}{\left(\text { let } \vec{L}=\vec{S} \text { in } L_{i}\right) \xrightarrow{\mu} T}
$$

(By definition, (let $\vec{L}=\vec{S}$ in $\left.L_{i}\right)[\vec{K} \leftarrow \vec{Q}]=\left(\right.$ let $\vec{L}=\vec{S}[\vec{K} \leftarrow \vec{Q}]$ in L_{i}).)
We have (commuting substitutions) :
$S_{i}[\vec{K} \leftarrow \vec{Q}][\vec{L} \leftarrow($ let $\vec{L}=\vec{S}[\vec{K} \leftarrow \vec{Q}]$ in $\vec{L})]=S_{i}\left[\vec{L} \leftarrow\left(\right.\right.$ let $\vec{L}=\vec{S}_{i}$ in $\left.\left.\vec{L}\right)\right][\vec{K} \leftarrow \vec{Q}]$
We apply induction to $S_{i}^{\prime}=S_{i}\left[\vec{L} \leftarrow\left(\right.\right.$ let $\vec{L}=\vec{S}_{i}$ in $\left.\left.\vec{L}\right)\right]$ (the proof of $S_{i}^{\prime}[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} T$ is shorter, and K is weakly guarded in S_{i}, hence a fortiori in $\left.S_{i}^{\prime}\right)$. Hence $\exists P^{\prime}\left(S_{i}^{\prime} \xrightarrow{\mu} P^{\prime}\right.$ and $\left.T=P^{\prime}[\vec{K} \leftarrow \vec{Q}]\right)$. Finally, by folding :

$$
\frac{S_{i}\left[\vec{L} \leftarrow\left(l e t \vec{L}=\vec{S}_{i} \text { in } \vec{L}\right)\right] \xrightarrow{\mu} P^{\prime}}{P \xrightarrow{\mu} P^{\prime}}
$$

Unique solutions (4/13)

Proof of the theorem : the set of all pairs

$$
(S[\vec{K} \leftarrow \vec{Q}], S[\vec{K} \leftarrow \vec{R}])
$$

where S is arbitrary, is a bisimulation up to \sim.
(And hence, in particular, taking $S=K_{i}: Q_{i} \sim R_{i}$.)
Let $S^{\prime}=S[\vec{K} \leftarrow \vec{P}]$. The key remark is that K is weakly guarded in S^{\prime}. We have

$$
S[\vec{K} \leftarrow \vec{Q}] \sim S[\vec{K} \leftarrow \vec{P}[\vec{K} \leftarrow \vec{Q}]]=S^{\prime}[\vec{K} \leftarrow \vec{Q}]
$$

Hence if $S[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} Q^{\prime}$, then $S^{\prime}[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} Q^{\prime \prime}$ for some $Q^{\prime \prime}$ such that $Q^{\prime} \sim Q^{\prime \prime}$. By the lemma, there exists P^{\prime} such that

$$
S^{\prime} \xrightarrow{\mu} P^{\prime} \quad \text { and } \quad Q^{\prime \prime}=P^{\prime}[\vec{K} \leftarrow \vec{Q}] \quad \text { and } S^{\prime}[\vec{K} \leftarrow \vec{R}] \xrightarrow{\mu} P^{\prime}[\vec{K} \leftarrow \vec{R}]
$$

Finally, since $S^{\prime}[\vec{K} \leftarrow \vec{R}] \sim S[\vec{K} \leftarrow \vec{R}]$, there exists R^{\prime} such that $S[\vec{K} \leftarrow \vec{R}] \xrightarrow{\mu} R^{\prime}$ and $P^{\prime}[\vec{K} \leftarrow \vec{R}] \sim R^{\prime}$. Putting everything together, we have:

$$
Q^{\prime} \sim P^{\prime}[\vec{K} \leftarrow \vec{Q}] \mathcal{R} P^{\prime}[\vec{K} \leftarrow \vec{R}] \sim R^{\prime}
$$

Unique solutions (5/13)

For weak bisimulation, we need strengthened hypotheses.
Definition: A process variable K is guarded in P if each occurrence of K is within some subterm of the form $\alpha \cdot P^{\prime}$ of P.

A process variable K is sequential in P if no occurrence of K is within a subterm of P which is a parallel composition.

Example : K is weakly guarded, but neither guarded nor sequential in $(\tau \cdot K \mid a \cdot 0)$.

Unique solution theorem (weak case) : If $\vec{K}=\vec{P}$ is a system of equations where all K 's are guarded and sequential in all P^{\prime} s, and if \vec{Q} and \vec{R} are solutions of the system in the sense that $\vec{Q} \approx \vec{P}[\vec{K} \leftarrow \vec{Q}]$ and $\vec{R} \approx \vec{P}[\vec{K} \leftarrow \vec{R}]$, then $\vec{Q} \approx \vec{R}$.

Unique solutions (6/13)

We need to be able to apply the lemma repeatedly (for τ-actions). Hence we need to have that when $P \xrightarrow{\mu} P^{\prime}$ then P^{\prime} is again guarded. This is true under the additional sequential assumption:

1. If P is sequential and if $P \xrightarrow{\mu} P^{\prime}$, then P^{\prime} is sequential;
2. If P is sequential and guarded and if $P \xrightarrow{\tau} P^{\prime}$, then P^{\prime} is guarded.

Exercice 2 Prove it.

Counterexamples supporting these assumptions:

- $P=a \cdot K|\bar{a} \cdot 0 \xrightarrow{\tau} K| 0=P^{\prime}: K$ is guarded but not sequential in P, and is not guarded in P^{\prime}
- $P=\tau \cdot K \xrightarrow{\tau} K=P^{\prime}: K$ is weakly guarded in P, but (not even weakly) guarded in P^{\prime}.

Unique solutions (7/13)

Proof of the theorem. One shows that the set of all pairs

$$
(S[\vec{K} \leftarrow \vec{Q}],(S[\vec{K} \leftarrow \vec{R}])
$$

where S is any process in which all the K 's are sequential, is a bisimulation up to \approx.
Case $1: S[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} Q^{\prime}$. We proceed exactly as in the strong case, replacing

- \sim by \approx,
- $S^{\prime}[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\mu} Q^{\prime \prime}$ by $S^{\prime}[\vec{K} \leftarrow \vec{Q}] \stackrel{\mu}{\Rightarrow} Q^{\prime \prime}$, and the same for all subsequent uses of $\xrightarrow{\mu}$,
- and a single use of the lemma by repeated uses of the lemma. It is possible because the K^{\prime} 's are guarded and sequential in $S^{\prime}=S[\vec{K} \leftarrow \vec{Q}]$ (here we use the assumption on S !).

Unique solutions (8/13)

Case 2: $S[\vec{K} \leftarrow \vec{Q}] \xrightarrow{\alpha} Q^{\prime}$. Then we begin in the same way, and we get that $S^{\prime}[\vec{K} \leftarrow \vec{Q}] \stackrel{\tau}{\Rightarrow} \xrightarrow{\alpha} Q^{\prime \prime \prime} \stackrel{\tau}{\Rightarrow} Q^{\prime \prime}$, with $Q^{\prime} \approx Q^{\prime \prime}$.

By repeated use of the lemma, there exists P^{\prime} such that the K^{\prime} 's are sequential in P^{\prime},

$$
P \xrightarrow{\mu} \xrightarrow{\alpha} P \quad \text { and } \quad Q^{\prime \prime \prime}=P^{\prime}[\vec{K} \leftarrow \vec{Q}] \quad \text { and } \quad S^{\prime}[\vec{K} \leftarrow \vec{Q}] \stackrel{\tau}{\Rightarrow} \xrightarrow{\alpha} P^{\prime}[\vec{K} \leftarrow \vec{R}]
$$

From there, we proceed exactly as in Case 1 , with the only change that the initial assumption is now $P^{\prime}[\vec{K} \leftarrow \vec{Q}] \stackrel{\tau}{\Rightarrow} Q^{\prime \prime}$ (instead of a $\xrightarrow{\mu}$ - this does not affect the rest of the argument, why?). Thus we get $R^{\prime \prime}$ such that $Q^{\prime \prime}(\approx \mathcal{R} \approx) R^{\prime \prime}$ and $P^{\prime}[\vec{K} \leftarrow \vec{R}] \stackrel{\tau}{\Rightarrow} R^{\prime \prime}$, and hence $: S^{\prime}[\vec{K} \leftarrow \vec{Q}] \stackrel{\alpha}{\Rightarrow} R^{\prime \prime}$.
Finally, since $S^{\prime}[\vec{K} \leftarrow \vec{R}] \approx S[\vec{K} \leftarrow \vec{R}]$, there exists R^{\prime} such that $R^{\prime \prime} \approx R^{\prime}$ and $S[\vec{K} \leftarrow \vec{R}] \stackrel{\alpha}{\Rightarrow} R^{\prime}$. We are done, as $Q^{\prime} \approx Q^{\prime \prime}(\approx \mathcal{R} \approx) R^{\prime \prime} \approx R^{\prime}$.

Unique solutions (9/13)

We illustrate the theorem with the example of a slot machine :
Specification :

$$
S P E C\langle x\rangle=s \cdot\left(\tau \cdot \bar{l} \cdot S P E C\langle x+1\rangle+\Sigma_{1 \leq y \leq x+1} \tau \cdot \bar{w} \cdot S P E C\langle x+1-y\rangle\right)
$$

Implementation : Let $I O, B, D$ be given as follows:

$$
\begin{array}{ll}
\text { (user) } & I O=s \cdot \bar{b} \cdot(L \cdot \bar{l} \cdot I O+R(y) \cdot \bar{w}\langle y\rangle \cdot I O) \\
\text { (bank) } & B\langle x\rangle=b \cdot \bar{\mu}\langle x+1\rangle \cdot \lambda(y) \cdot B\langle y\rangle \\
\text { (oracle) } & D=\mu(z) \cdot\left(\bar{L} \cdot \bar{\lambda}\langle z\rangle \cdot D+\Sigma_{1 \leq y \leq z} \bar{R}\langle y\rangle \cdot \bar{\lambda}\langle z-y\rangle \cdot D\right)
\end{array}
$$

Our objective is to prove $S P E C\langle n\rangle \approx S M\langle n\rangle$, , where

$$
S M\langle n\rangle=(\nu b, \mu, \lambda, L, R)(I O|B\langle n\rangle| D)
$$

We write $(\vec{\nu})$ as shorthand for $(\nu b, \mu, \lambda, L, R)$.

Unique solutions (10/13)

By algebraic laws, we have :

$$
\begin{aligned}
\vdash S M\langle n\rangle & =s \cdot((\vec{\nu})((\bar{b} \cdot(L \cdot \bar{l} \cdot I O+R(y) \cdot \bar{w}\langle y\rangle \cdot I O))|B\langle n\rangle| D)) \\
& =s \cdot \tau \cdot((\vec{\nu})((L \cdot \bar{l} \cdot I O+R(y) \cdot \bar{w}\langle y\rangle \cdot I O)|\bar{\mu}\langle n+1\rangle \cdot \lambda(y) \cdot B\langle y\rangle| D)) \\
& =s \cdot \tau \cdot \tau \cdot P^{\prime} \\
& =s \cdot P^{\prime}=s \cdot\left(\tau \cdot P_{0}^{\prime}+\Sigma_{1 \leq y \leq n+1} \tau \cdot P_{y}^{\prime}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& P^{\prime}=(\vec{\nu})\left\{\begin{array}{l}
(\bar{L} \cdot \bar{l} \cdot I O+R(y) \cdot \bar{w}\langle y\rangle \cdot I O \\
\mid \lambda(y) \cdot B\langle y\rangle \\
\left.\mid \bar{L} \cdot \bar{\lambda}\langle n+1\rangle \cdot D+\Sigma_{1 \leq y \leq n+1} \bar{R}\langle y\rangle \cdot \bar{\lambda}\langle n+1-y\rangle \cdot D\right)
\end{array}\right. \\
& P_{0}^{\prime}=(\nu b, \mu, \lambda, L, R)\left\{\begin{array}{l}
(\bar{l} \cdot I O \\
\mid \lambda(y) \cdot B\langle y\rangle \\
\mid \bar{\lambda}\langle n+1\rangle \cdot D)
\end{array} \quad P_{y}^{\prime}=(\nu b, \mu, \lambda, L, R)\left\{\begin{array}{l}
(\bar{w}\langle y\rangle \cdot I O \\
\mid \lambda(y) \cdot B\langle y\rangle \\
\mid \bar{\lambda}\langle n+1-y\rangle \cdot D)
\end{array}\right.\right.
\end{aligned}
$$

Unique solutions (11/13)

So far, we have $\vdash S M\langle n\rangle=\tau \cdot P_{0}^{\prime}+\Sigma_{1 \leq y \leq n+1} \tau \cdot P_{y}^{\prime}$, where

$$
P_{0}^{\prime}=(\nu b, \mu, \lambda, L, R)\left\{\begin{array}{l}
(\bar{l} \cdot I O \\
\mid \lambda(y) \cdot B\langle y\rangle \\
\mid \bar{\lambda}\langle n+1\rangle \cdot D)
\end{array} \quad P_{y}^{\prime}=(\nu b, \mu, \lambda, L, R)\left\{\begin{array}{l}
(\bar{w}\langle y\rangle \cdot I O \\
\mid \lambda(y) \cdot B\langle y\rangle \\
\mid \bar{\lambda}\langle n+1-y\rangle \cdot D)
\end{array}\right.\right.
$$

We shall prove $\vdash P_{0}^{\prime}=\bar{l} \cdot S M\langle n+1\rangle$ and $\vdash P_{y}^{\prime}=\bar{w} \cdot S M\langle n+1-y\rangle$, from which it follows that

$$
\vdash S M\langle n\rangle=s \cdot\left(\tau . \bar{l} \cdot S M\langle n+1\rangle+\Sigma_{1 \leq y \leq n+1} \tau \cdot \bar{w} \cdot S M\langle n+1-y\rangle\right)
$$

and we conclude by the unique solution theorem.

Unique solutions (12/13)

We just check $\vdash P_{0}^{\prime}=\bar{l} \cdot S M\langle n+1\rangle$. We have :

$$
\vdash P_{0}^{\prime}=\bar{l} \cdot\left(\tau \cdot S M\langle n+1\rangle+s \cdot \tau \cdot P^{\prime \prime}\right)+\tau \cdot \bar{l} \cdot S M\langle n+1\rangle
$$

where $P^{\prime \prime}$ is such that $\vdash S M\langle n+1\rangle=s \cdot P^{\prime \prime}$ So we have :

$$
\begin{aligned}
\vdash P_{0}^{\prime} & =\bar{l} \cdot\left(\tau \cdot s \cdot P^{\prime \prime}+s \cdot \tau \cdot P^{\prime \prime}\right)+\tau \cdot \bar{l} \cdot s \cdot P^{\prime \prime} \\
& =\bar{l} \cdot\left(\tau \cdot s \cdot P^{\prime \prime}+s \cdot P^{\prime \prime}\right)+\tau \cdot \bar{l} \cdot s \cdot P^{\prime \prime} \\
& =\bar{l} \cdot \tau \cdot s \cdot P^{\prime \prime}+\tau \cdot \bar{l} \cdot s \cdot P^{\prime \prime} \\
& =\bar{l} \cdot s \cdot P^{\prime \prime}+\tau \cdot \bar{l} \cdot s \cdot P^{\prime \prime} \\
& =\bar{l} \cdot s \cdot P^{\prime \prime} \\
& \approx \bar{l} \cdot S M\langle n+1\rangle
\end{aligned}
$$

Unique solutions (13/13)

Hindsight : We did not treat the constructs of CCS uniformly :

- recursion \rightarrow unique solution
- the other constructions : \rightarrow congruence

Note the following :

1. Formulating congruence for the recursive definitions would force us to define bisimulation for processes with free variables K.
2. We can avoid reasoning inside recursive definitions by unfolding them prior to the reasoning. This is exactly what happens in the example that we just unrolled.

Hennessy-Milner Iogic (1/14)

We revert to an arbitrary LTS, with its set of actions Act. We make the assumption that the LTS is image finite :

$$
\forall P, \mu\left(\left\{\left(P^{\prime} \mid P \xrightarrow{\mu} P^{\prime}\right\} \text { is finite }\right)\right.
$$

We write Proc for the set of all states / processes.

Hennessy-Milner logic (2/14)

The set of formulas of Hennessy-Milner logic is defined by :

$$
A:=T|A \wedge A| \neg A \mid\langle\mu\rangle A
$$

A formula A is interpreted by the the set of processes which satisfy it, whence two notations : $\llbracket A \rrbracket=\{P \mid P \models A\}$:

$$
\begin{aligned}
& \llbracket T \rrbracket=P r o c \\
& \llbracket A \wedge B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket \\
& \llbracket \neg A \llbracket=P r o c \backslash \llbracket A \rrbracket \\
& \langle\mu\rangle A=\left\{P \mid\left(\exists P^{\prime} P \xrightarrow{\mu} P^{\prime} \text { and } P^{\prime} \models A\right)\right\}
\end{aligned}
$$

Derived operators : $A \vee B=\neg((\neg A) \wedge(\neg B)),[\mu] A=\neg(\langle\mu\rangle(\neg A))$

Hennessy-Milner logic (3/14)

Theorem : Under the image finiteness assumption,

$$
P \sim Q \quad \Leftrightarrow \quad\{A \mid P \models A\}=\{A \mid Q \models A\}
$$

The theorem can be applied to finitary CCS (both strong and weak bisimulation). When weak bisimulation is meant, we write $\langle\langle\mu\rangle\rangle A$ and $\llbracket \mu \rrbracket A$.

It works also for the larger fragment of CCS with finite sums and recursive definitions where each recursively defined K is guarded and sequential in its definition.

More generally, it works for all pair of P, Q which are both hereditarily image finite, i.e., say, whenever $P \xrightarrow{s} Q$ ($s \in A c t^{\star}$), then Q is image finite.

Remark: The interpretation $P \models A$ is compostional / congruential in A, not in P, hence the result does not help to establish that bisimilarity is a congruence.

Hennessy-Milner logic (4/14)

Let L_{n} be the subset of formulas with depth of at most n, where depth is defined by :

$$
\begin{array}{ll}
\operatorname{depth}(T)=0 & \operatorname{depth}(A \wedge B)=\max (\operatorname{depth}(A), \operatorname{depth}(B)) \\
\operatorname{depth}(\neg A)=\operatorname{depth}(A) & \operatorname{depth}(\langle\mu\rangle A)=\operatorname{depth}(A)+1
\end{array}
$$

Remember that \sim is the greatest fixed point of some operator G_{K}, which is anti-continuous (image-finiteness!). Hence (ω stands for the set of natural numbers) :

$$
\sim=\bigcap_{n \in \omega} \sim_{n} \quad \text { where } \quad \sim_{0}=\text { Proc } \times \text { Proc } \quad \text { and } \quad \sim_{n+1}=G_{K}\left(\sim_{n}\right)
$$

Unfolding the definition of G_{K} :
$P \sim_{n+1} Q \Leftrightarrow \forall \mu, P^{\prime}\left(P \xrightarrow{\mu} P^{\prime} \Rightarrow \exists Q^{\prime}\left(Q \xrightarrow{\mu} Q^{\prime}\right.\right.$ and $\left.\left.P^{\prime} \sim_{n} Q^{\prime}\right)\right)$ and conversely

Hennessy-Milner logic (5/14)

We set $L_{n}(P)=\left\{A \in L_{n} \mid P \models A\right\}$. We prove by induction on n :

$$
P \sim_{n} Q \quad \Leftrightarrow \quad L_{n}(P)=L_{n}(Q)
$$

Case $n=0$. Notice that for every $A \in L_{0}$ we have either $\llbracket A \rrbracket=\emptyset$ or $\llbracket A \rrbracket=\operatorname{Proc}$ (by induction on A, which is $\langle-\rangle$ free). It follows that $P \in \llbracket A \rrbracket$ if and only if $Q \in \llbracket A \rrbracket$, for arbitrary P, Q.

Hennessy-Milner Iogic (6/14)

$P \not \chi_{n+1} Q \Rightarrow L_{n+1}(P) \neq L_{n+1}(Q)$.
Since $P \not \chi_{n+1} Q$, there exists a, P^{\prime} such that for all $Q_{1}^{\prime}, \ldots Q_{n}^{\prime}$ (we are using image-finiteness) such that $Q \xrightarrow{a} Q^{\prime}$ we have $P^{\prime} \not \chi_{n} Q_{i}^{\prime}$ for all i.

Now $L_{n}\left(P^{\prime}\right) \neq L_{n}\left(Q_{i}^{\prime}\right)$ by induction. Hence there exists A_{i} in $L_{n}\left(P^{\prime}\right)$ not in $L_{n}\left(Q_{i}^{\prime}\right)$ or there exists B in $L_{n}\left(Q_{i}^{\prime}\right)$ not in $L_{n}\left(P^{\prime}\right)$. But in the latter case, we can take $\neg B$, hence we may assume that there exists A_{i} in $L_{n}\left(P^{\prime}\right)$ not in $L_{n}\left(Q_{i}^{\prime}\right)$. Let $A=A_{1} \wedge \ldots \wedge A_{n}$.

Then $P^{\prime} \models A$, and since $Q_{i}^{\prime} \not \models A_{i}$ we have a fortiori $Q_{i}^{\prime} \not \equiv A$ for all i.
From there it follows that $P \models\langle a\rangle A$ and $Q \not \vDash\langle i\rangle A$.

Hennessy-Milner Iogic (7/14)

$P \sim_{n+1} Q \Rightarrow L_{n+1}(P)=L_{n+1}(Q)$.
Let $A \in L_{n+1}(P)$. We proceed by structural induction on A. The only non-trivial case is $A=\langle a\rangle B$.

Since $P \models A$, there exist a, P^{\prime} such that $P \xrightarrow{a} P^{\prime}$ and $P^{‘} \models B$.
Since $P \sim_{n+1} Q$, there exists Q^{\prime} such that $Q \xrightarrow{a} Q^{\prime}$ and $P^{\prime} \sim_{n} Q^{\prime}$.
By induction, since $B \in L_{n}$, we get $Q^{\prime} \models B$ and hence $A \in L_{n+1}(Q)$.

Hennessy-Milner logic (8/14)

How should we adapt this to overcome the image finiteness limitation ? We have to go to infinite conjunctions.

Ordinals are needed on both sides of the equivalence

$$
P \sim_{\kappa} Q \quad \Leftrightarrow \quad L_{\kappa}(P)=L_{\kappa}(Q)
$$

- On the left side, this is because the non image-finiteness entails non-anti-continuity of the operator of which \sim is a fixpoint. And it is always true that \sim is the intersection of the \sim_{κ}, but we then have to go beyond ordinal ω.
- on the right side, this is because of infinite branching, as the depth of a sum is the sup of the depths. In this way we may reach, say, depth $\omega=\sup \{1, \ldots, n, \ldots\}$.

Exercice 3 Show that $a^{\omega}+\Sigma_{n \in \omega} a^{i}$ (with infinite sum) and $\Sigma_{n \in \omega} a^{i}$ satisfy the same formulas (without infinite conjunction) but are not bisimilar (where $a^{0}=0, a^{i+1}=a \cdot a^{i}, a^{\omega}=($ let $K=a \cdot K$ in $K)$). (Hint : prove that if $a^{\omega} \models A$, then $a^{i} \models A$ for all sufficiently large i, and for this use the alternative syntax $A:=T|F| A \wedge A|A \vee A|\langle\mu\rangle A)$

Hennessy-Milner Iogic (9/14)

Recall that $P=a \cdot(b+c)$ and $Q=a \cdot b+a \cdot c$ are not bisimilar.
Here is a formula that separates them :

$$
P \models\langle a\rangle(\langle b\rangle T \wedge\langle c\rangle T) \quad Q \not \models\langle a\rangle(\langle b\rangle T \wedge\langle c\rangle T)
$$

Hennessy-Milner logic (10/14)

As a more sophisticated example, we show the correctness of the unbounded counter (cf. course CCS-2) :
$C=$ inc $\cdot(C \frown C)+\operatorname{dec} \cdot D \quad D=\bar{d} \cdot C+\bar{z} \cdot B \quad B=$ inc $\cdot(C \frown B)+$ zero $\cdot B$
Notation : $\langle\langle\epsilon\rangle\rangle A=A$ and $\langle\langle a s\rangle\rangle A=\langle\langle a\rangle\rangle(\langle\langle s\rangle\rangle A$) (similarly for $\langle s\rangle A, \llbracket s \rrbracket A$, $[s] A) . F=\neg T$. \# inc (s) is the number of occurrences of inc in $s . \leq$ is the prefix ordering. We define :

$$
\begin{aligned}
(s \succeq 0)= & \left(\forall s^{\prime} \leq s\left(\#_{\text {inc }}\left(s^{\prime}\right) \geq \#_{\operatorname{dec}}\left(s^{\prime}\right)\right) \wedge\right. \\
& \left.\forall s^{\prime}\left(s^{\prime} 0 \leq s \Rightarrow\left(\#_{\text {inc }}\left(s^{\prime}\right)=\#_{\operatorname{dec}}\left(s^{\prime}\right)\right)\right)\right) \\
(s \succ 0)= & (s \succeq 0) \wedge\left(\#_{\text {inc }}(s)>\#_{\operatorname{dec}}(s)\right) \\
(s=0)= & (s \succeq 0) \wedge\left(\#_{\text {inc }}(s)=\#_{\operatorname{dec}}(s)\right)
\end{aligned}
$$

We shall show $C \models A_{C}$ where :

$$
A_{C}=\left\{\begin{array}{l}
\left.\left(\bigwedge_{s \succeq 0}\langle\langle s\rangle\rangle T\right) \wedge\left(\bigwedge_{s \succ 0} \llbracket s \rrbracket(\langle\langle\mathrm{inc}\rangle\rangle T) \wedge\langle\langle\mathrm{dec}\rangle\rangle T \wedge \llbracket \text { zero } \rrbracket F\right)\right) \wedge \\
\left(\bigwedge_{s=0} \llbracket s \rrbracket(\langle\langle\mathrm{inc}\rangle\rangle T \wedge\langle\langle\mathrm{zero}\rangle\rangle T \wedge \llbracket \mathrm{dec} \rrbracket F)\right) \wedge\left(\bigwedge_{s \nsucceq 0} \llbracket s \rrbracket F\right)
\end{array}\right.
$$

Hennessy-Milner logic (11/14)

It can be shown, using algebraic laws and unique solution (as for the slot machine), that $C \approx C n t_{0}$, where (specification) :

$$
\begin{aligned}
& C n t_{0}=\text { inc } \cdot C n t_{1}+\text { zero } \cdot C n t_{0} \\
& C n t_{n}=\text { inc } \cdot C n t_{n+1}+\mathrm{dec} \cdot \text { Cnt }_{n-1}
\end{aligned}
$$

Then, by the logical characterization of bisimilarity, our goal can be reformulated as $C n t_{0} \models A_{C}$. Since the execution of $C n t_{0}$ involves no τ actions, satisfaction of A_{C} is equivalent to satisfaction of the same formula where all $\langle\langle s\rangle\rangle_{\text {- }}$ and $\llbracket s \rrbracket_{\text {- }}$ are replaced by $\langle s\rangle_{-}$and $[s]_{-}$, respectively.

Hennessy-Milner logic (12/14)

We are thus left to show:

$$
C n t_{0} \models\left\{\begin{array}{l}
\left.\left(\bigwedge_{s \succeq 0}\langle s\rangle T\right) \wedge\left(\bigwedge_{s \succ 0}[s](\langle\text { inc }\rangle T) \wedge\langle\operatorname{dec}\rangle T \wedge[\text { zero }] F\right)\right) \wedge \\
\left(\bigwedge_{s=0}[s](\langle\text { inc }\rangle T \wedge\langle\text { zero }\rangle T \wedge[\operatorname{dec}] F)\right) \wedge\left(\bigwedge_{s \nsucceq 0}[s] F\right)
\end{array}\right.
$$

This is an easy consequence of the following equivalence, which is proved by induction on the length of s :

$$
C n t_{0} \xrightarrow{s} P \quad \Leftrightarrow\left(s \succeq 0 \text { and } P=C_{\#_{\mathrm{inc}}}(s)-\#_{\mathrm{dec}^{(s)}}\right)
$$

It can be shown that the formula A_{C} is a characteristic formula for C, i.e. that $Q \models A$ if and only if $Q \approx C$.

Hennessy-Milner logic (13/14)

Some perspective. It looks like :

- (weak) bisimilation or equational techniques used to show $P \approx Q$ where P is an "implementation" and Q is a "specification" is a tool for total correctness
- Hennessy-Milner logic or its extensions used to show $P \models A$ where P is a process and A is a property is a tool for partial correctness.

Hennessy-Milner logic (14/14)

But the picture is more mixed :

1. One can express a property of a process P in the form of another process Q and prove that P satisifes Q in the sense that for a suitable context C one has $C[P] \approx Q$. See Milner's red book [chapter 5] for an example where P is a scheduler of n tasks initiated in cycle each by an action a_{i}, C implements hiding of all the other actions of the tasks, and $Q=a_{1} \cdot \ldots \cdot a_{n} \cdot Q$.
2. For finite state LTS's, there is a characteristic formula (cf. example above) for each process / state, in an extension of the logic with a greatest fixed point operator (see, e.g. the course notes at http://www.cs.aau.dk/ $1 u c a / S V / i n t r o 2 c c s . p d f)$

Beyond Hennessy-Milner

Given a formula A, consider the following property, or set of processes ('no matter what transitions are made, A always holds") :

$$
\operatorname{Inv}(A)=\left\{P \mid \forall s\left(P \xrightarrow{s} P^{\prime} \Rightarrow P^{\prime} \models A\right)\right\}=\bigwedge_{s \in A c t^{\star}}[s] A
$$

Proposition : $\operatorname{Inv}(F)$ is the greatest fixed point of the equation $X=A \wedge\left(\bigwedge_{a \in \operatorname{Act}}[a] X\right)$ in $\mathcal{P}($ Proc $)$.
Exercice 4 Prove it
More generally, safety and liveness properties ("whathever state is reached, it is possible to continue in such way") can be expressed by means of greatest and least fixed points, respectively (much more on this in the notes at http://www.cs.aau.dk/ ${ }^{\sim}$ luca/SV/intro2ccs.pdf).
Exercice 5 Find a formula that distinguishes the two processes of exercice 2.

