Introduction to Expressivenes in Concurrency

Frank D. Valencia
CNRS-LIX Ecole Polytechnique

Nov-Dec. 2007/MPRI

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIOUE

Motivation: The Notion of Expressiveness

Is the model \mathcal{M}^{\prime} as expressive as the model \mathcal{M}, written $\mathcal{M}^{\prime} \succeq \mathcal{M}$?

- In Automata Theory: $\mathcal{M}^{\prime} \succeq \mathcal{M}$ iff there exists a $f: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ s.t. for each $M \in \mathcal{M}, \mathcal{L}(f(M))=\mathcal{L}(M)$.
- E.g. $T M \succ P D S \succ F S A$ and the Chomsky Hierarchy: $U G \succ C S G \succ C F G \succ R G$
- The notion of expressiveness is well-understood and settled in automata theory.

Motivation: Expressiveness in Process Calculi

Is the calculus \mathcal{C}^{\prime} as expressive as the calculus \mathcal{C}, written $\mathcal{C}^{\prime} \succeq \mathcal{C}$?

- In Concurrency Theory there is no yet an agreement upon expressiveness. In particular, there is no "Church-Turing Thesis" for Concurrency Theory.
- Intuitively $\mathcal{C}^{\prime} \succeq \mathcal{C}$ iff for all $P \in \mathcal{C}$, there exists an encoding $\llbracket P \rrbracket \in \mathcal{C}^{\prime}$ of P satisfying some correcteness criteria-e.g, preservation of behavioral equivalence: $P \sim \llbracket P \rrbracket$.

Motivation: Relevance of expressiveness studies

Many of the expressiveness studies Concurrency Theory resemble those for Logic, Formal Grammars, Distributed Computating. They involve:

- Identifying minimal set of operators for a given calculus. E.g., Is match/summation redundant in the π-calculus ?
- Identifying minimal terms forms for a given calculus. E.g., Is the asynchronous/monadic π-calculus as expressive as the synchronous/polyadic π-calculus ?
- Identifying meaningul decidable fragments of a given calculus. E.g., Is barbed equivalence decidable for CCS with replication ?
- Identifying problems a given calculus cannot solve. E.g., Can the asynchronous π calculus solve the leader election problem.
- Comparing conceptually different calculi. E.g., Can Ambients be encoded in the π-calculus?

Outline

(1) Introduction

- Notions/Notations
- Encodings: Classic Encodings
- Expressiveness Criteria
(2) Terms and Operators Expressiveness
- Recursion vs Replication in π
- Polyadicity vs Monadicity in π
- Computional Expressiveness in Process Calculi
- Linearity vs Persistence in $A \pi$
(3) Expressing Power of Asynchronous Pi.
- Encoding summations in $A \pi$.
- Electoral Systems in π

4 Exercises and Solutions

The π-calculus

The π-calculus (fragment) given in previous lectures:

Syntax:

$P, Q \quad::=$| 0 | nil |
| :--- | :--- |
| $P \\| Q$ | parallel composition of P and Q |
| $\bar{c}\langle v\rangle . P$ | output v on channel c and resume as P |
| $c(x) \cdot P$ | input from channel c |
| $(\boldsymbol{\nu} x) P$ | new channel name creation |
| $!P$ | replication |

Free names (alpha-conversion follows accordingly):

$$
\begin{aligned}
\operatorname{fn}(\mathbf{0}) & =\emptyset & \operatorname{fn}(P \| Q) & =\operatorname{fn}(P) \cup \operatorname{fn}(Q) \\
\operatorname{fn}(\bar{c}\langle v\rangle . P) & =\{c, v\} \cup \operatorname{fn}(P) & \operatorname{fn}(c(x) . P) & =(\operatorname{fn}(P) \backslash\{x\}) \cup\{c\} \\
\operatorname{fn}((\boldsymbol{\nu} x) P) & =\operatorname{fn}(P) \backslash\{x\} & \operatorname{fn}(!P) & =\operatorname{fn}(P)
\end{aligned}
$$

Sometimes we use $P \mid Q$ and $\bar{c} v . P$ for $P \| Q$ and $\bar{c}\langle v\rangle . P$.

The π-calculus

Reduction relation

Structural congruence:

$$
\begin{array}{rlrl}
P \| 0 & \equiv P & P \| Q & \equiv Q \| P \\
(P \| Q)\|R \equiv P\|(Q \| R) & !P & \equiv P \|!P \\
(\boldsymbol{\nu} x)(\boldsymbol{\nu} y) P \equiv(\boldsymbol{\nu} y)(\boldsymbol{\nu} x) P
\end{array}
$$

Reduction rules:

$$
\begin{gathered}
\text { REACT } \bar{c}\langle v\rangle \cdot P\|c(x) \cdot Q \longrightarrow P\| Q\{v / x\} \\
{ }^{\text {PAR }} \frac{P \longrightarrow P^{\prime}}{P\left\|Q \longrightarrow P^{\prime}\right\| Q} \quad \text { RES } \frac{P \longrightarrow P^{\prime}}{(\boldsymbol{\nu} x) P \longrightarrow(\boldsymbol{\nu} x) P^{\prime}} \text { STRUCT } \frac{P \equiv P^{\prime} \longrightarrow Q^{\prime} \equiv Q}{P \longrightarrow Q}
\end{gathered}
$$

The π-calculus

Early Transitions

$$
\text { OuT } \overline{\bar{x} y \cdot P \xrightarrow{\bar{x} y} P} \quad \text { InP } \overline{x(z) \cdot P \xrightarrow{x y} P\{y / z\}}
$$

Comm-L $\frac{P \xrightarrow{\bar{x} y} P^{\prime} Q \xrightarrow{x y} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \quad$ PAR-L $\frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \quad \operatorname{bn}(\alpha) \cap \mathrm{fn}(Q)=\emptyset$
CLOSE-L $\frac{P \xrightarrow{\bar{x}(z)} P^{\prime} \quad Q \xrightarrow{x z} Q^{\prime}}{P \mid Q \xrightarrow{\tau} \nu z\left(P^{\prime} \mid Q^{\prime}\right)} \quad z \notin \mathrm{fn}(Q)$

$$
\text { RES } \frac{P \xrightarrow{\alpha} P^{\prime}}{\nu z P \xrightarrow{\alpha} \nu z P^{\prime}} \quad z \notin \mathrm{n}(\alpha) \quad \text { OPEN } \frac{P \xrightarrow{\bar{x}_{z}} P^{\prime}}{\boldsymbol{\nu} z P \xrightarrow{\bar{x}(z)} P^{\prime}} \quad z \neq x
$$

$$
\text { REP-ACT } \quad \frac{P \xrightarrow{\alpha} P^{\prime}}{!P \xrightarrow{\alpha} P^{\prime} \mid!P} \quad \text { REP-COMM } \quad \frac{P \xrightarrow{\bar{x} y} P^{\prime} \quad P \xrightarrow{x y} P^{\prime \prime}}{!P \xrightarrow{\tau}\left(P^{\prime} \mid P^{\prime \prime}\right) \mid!P}
$$

$$
\text { REP-CLOSE } \xrightarrow{P \xrightarrow{\bar{x}(z)} P^{\prime} \quad P \xrightarrow{x z} P^{\prime \prime}} \quad z \notin \mathrm{fn}(P)
$$

Barbed Equivalences

Recall that $P \downarrow_{\mu}(\mu \in\{x, \bar{x}\})$ iff $\exists \vec{z}, y, Q, R$ such that $x \notin \vec{z}$ and $P \equiv(\nu \vec{z})(\pi \cdot Q \| R)$ and $\pi=x(y)$ if $\mu=x$ else $\pi=\bar{x}\langle y\rangle$. Also $P \Downarrow_{\mu}$ iff $\exists Q, P \longrightarrow^{*} Q$ and $Q \downarrow_{\mu}$.

Definition (Barbed Bisimilarity)

(1) R is a barbed simulation iff for every $(P, Q) \in R$:

- If $P \longrightarrow P^{\prime}$ then $\exists Q^{\prime}: Q \longrightarrow{ }^{*} Q^{\prime} \wedge\left(P^{\prime}, Q^{\prime}\right) \in R$.
- If $P \downarrow_{\mu}$ then $Q \Downarrow_{\mu}$.
(2) (Barbed Bisimilarity) $P \dot{\sim} Q$ iff there is R such that R and R^{-1} are barbed simulations and $(P, Q) \in R$.
(3) (Barbed Congruence) $P \cong c \quad Q$ iff $K[P] \approx K[Q]$ for every K.

(Early) Bisimulation Equivalences

Definition (Bisimilarity)

(1) R is a (strong) simulation iff for every $(P, Q) \in R$:

- If $P \xrightarrow{\alpha} P^{\prime}$ then $\exists Q^{\prime}: Q \xrightarrow{\alpha} Q^{\prime} \wedge\left(P^{\prime}, Q^{\prime}\right) \in R$.
(2) (Strong Bisimilarity) $P \sim Q$ iff there is R such that R and R^{-1} are simulations and $(P, Q) \in R$.
(3) (Strong Full Bisimilarity) $P \sim^{c} Q$ iff $P \sigma \sim Q \sigma$ for every substitution σ.

The weak versions \approx and \approx^{c} are obtained by replacing $Q \xrightarrow{\alpha} Q^{\prime}$ with $Q \stackrel{\hat{\alpha}}{\longrightarrow} Q^{\prime}$ where $\xrightarrow{\hat{\alpha}}$ is $\xrightarrow{\tau} \xrightarrow{\alpha} \xrightarrow{\tau}^{*}$ if $\alpha \neq \tau$, and $\xrightarrow{*}$ otherwise.

Encodings

Encoding

An encoding $\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is a map from \mathcal{C} to \mathcal{C}^{\prime}. The encoding of $P \in \mathcal{C}$ is denoted as $\llbracket P \rrbracket$.

Encodings: [•] : $\pi^{2} \rightarrow \pi$

Recall the encoding of the bi-adic π-calculus (π^{2}) into π.

Example

[Milner 91] The encoding $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ is defined as

$$
\begin{aligned}
& \llbracket \bar{x}\left\langle z_{1}, z_{2}\right\rangle \cdot P \rrbracket=(\nu w) \bar{x}\langle w\rangle \cdot \bar{w}\left\langle z_{1}\right\rangle \cdot \bar{w}\left\langle z_{2}\right\rangle \cdot \llbracket P \rrbracket \\
& \llbracket x\left(y_{1}, y_{2}\right) \cdot Q \rrbracket=x(w) \cdot w\left(y_{1}\right) \cdot w\left(y_{2}\right) \cdot \llbracket Q \rrbracket
\end{aligned}
$$

$\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ is a homomorphism for the other cases.

- In what sense is $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ correct ?
- Question: How about the encoding from asynchronous $\pi(A \pi)$ into π ?

Encodings: $\llbracket \cdot \rrbracket: \pi \rightarrow A \pi$

Definition (Synchronous into asynchronous)

[Boudol 92] The encoding $\llbracket \cdot \rrbracket: \pi \rightarrow A \pi$ is defined as

$$
\begin{aligned}
\llbracket \bar{x}\langle z\rangle \cdot P \rrbracket & =(\nu w)(\bar{x}\langle w\rangle \| w(u) \cdot(\bar{u}\langle z\rangle \| \llbracket P \rrbracket)) \\
\llbracket x(y) \cdot Q \rrbracket & =x(w) \cdot(\nu u)(\bar{w}\langle u\rangle \| u(y) \cdot \llbracket Q \rrbracket)
\end{aligned}
$$

【. $\mathbb{I}: A \pi \rightarrow \pi$ is a homomorphism for the other cases.

- How about using a protocol of two exchanges only ?

Two steps protocol

[Honda-Tokoro 92]. The encoding $\llbracket \cdot \rrbracket: \pi \rightarrow A \pi$ is defined as

$$
\begin{aligned}
& \llbracket \bar{x}\langle z\rangle \cdot P \rrbracket=x(w) \cdot(\bar{w}\langle z\rangle \| \llbracket P \rrbracket) \\
& \llbracket x(y) \cdot Q \rrbracket=(\nu w)(\bar{x}\langle w\rangle \| w(y) \cdot \llbracket Q \rrbracket)
\end{aligned}
$$

Encodings: $\llbracket \cdot \rrbracket: K \pi \rightarrow \pi$

- K K extends π with finitely many paremetric recursive definitions: $P:=\ldots \mid K\langle\vec{z}\rangle$
- Each $K\langle\vec{z}\rangle$ has a unique $K(\vec{y}) \stackrel{\text { def }}{=} P$ with $|\vec{z}|=|\vec{y}|$.
- Transition rule: (Cons) $K\langle\vec{z}\rangle \xrightarrow{\tau} P\{\vec{z} / \vec{y}\}$ if $K(\vec{y}) \stackrel{\text { def }}{=} P$.
- Let $K^{1} \pi$ be $K \pi$ but with a single monadic definition.

Definition (Encoding of $K^{1} \pi$)

[Milner 91] The encoding $\llbracket \cdot \rrbracket: K^{1} \pi \rightarrow \pi$ is defined as $\llbracket P \rrbracket=(\nu k)\left(\llbracket P \rrbracket_{0} \| \llbracket K(y) \stackrel{\text { def }}{=} P \rrbracket_{0}\right)$ where

$$
\begin{array}{ll}
\llbracket K\langle z\rangle \rrbracket_{0} & =\bar{k}\langle z\rangle \\
\llbracket K(y) \stackrel{\text { def }}{=} P \rrbracket_{0} & =!k(w) \cdot \llbracket P \rrbracket_{0}
\end{array}
$$

$\llbracket \cdot \rrbracket_{0}$ is a homomorphism for the other cases.

Expressiveness Criteria

Correctness Criteria

In what sense are the above encodings "correct" ?
The most commonly used criteria/requirenment for correctness of the encodings are:

- Preservation of Behavioral Equivalence.
- Preservation of Observations.
- Operational Correspondence.
- Full Abstraction.
- Structural Requirements: Compositionality and Homomorphisms.

Expressiveness Criteria: Preservation of Equivalence

Semantic Preservation wrt \bowtie

$\forall P \in \mathcal{C}$, we must have $\llbracket P \rrbracket \bowtie P$.

- Typically \bowtie is some bisimilarity relation.
- Natural and it could be a very strong correspondence depending on the chosen \bowtie.
- But it presupposes that the source and taget calculi are equipped with \bowtie.
- $\llbracket \rrbracket: \pi^{2} \rightarrow \pi$ satisfies the above with $\bowtie=\dot{\approx}$ but not for $\bowtie=\cong^{c}$.
- $\llbracket \rrbracket: K^{1} \pi \rightarrow \pi$ satisfies the above with $\bowtie=\cong$ c.

Expressiveness Criteria: Preservation of Observables

Preservation of Observations

$\forall P \in \mathcal{C}$, we must have obs $(\llbracket P \rrbracket)=\operatorname{obs}(P)$.
Here obs(.) denotes a set of observations than can be made of processes in $\mathcal{C} \cup \mathcal{C}^{\prime}$: Typically barbs, traces, divergence, test, failures.

- Observations such as barbs and traces are not enough to capture process behaviour.
- Failures are often enough.
- $\llbracket \rrbracket: \pi^{2} \rightarrow \pi$ satisfies the above for barbs but not for tests.
- $\llbracket \rrbracket: K^{1} \pi \rightarrow \pi$ satisfies the above for barbs and tests.

Expressiveness Criteria: Operational Correspondence

Operational correspondence

$\forall P, Q \in \mathcal{C}$, (a) If $P \longrightarrow Q$ then $\llbracket P \rrbracket \longrightarrow^{*} \bowtie \llbracket Q \rrbracket$ and (b) $\forall R$ if $\llbracket P \rrbracket \longrightarrow R$ then $\exists R^{\prime}$ s.t. $P \longrightarrow R^{\prime}$ and $R \bowtie \llbracket R^{\prime} \rrbracket$.

- (a) Preservation of reduction steps (Soundness).
- (b) Reflexion of reduction steps (Completeness).
- It conveys the notion of operational simulation.
- Significant aspects are not covered (e.g., some observables)
- $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ satisfies the above for $\bowtie=\cong c$.
- $\llbracket \rrbracket!K^{1} \pi \rightarrow \pi$ satisfies the above for $\bowtie=\cong c$ and for label transitions.

Expressiveness Criteria: Full Abstraction

Full Abstraction

$\forall P, Q \in \mathcal{C}, P \bowtie_{\mathcal{C}} Q$ if and only if $\llbracket P \rrbracket \bowtie_{\mathcal{C}^{\prime}} \llbracket Q \rrbracket$.
I.e. equivalent processes are mapped into equivalent processes.

- If Direction: Soundness.
- Only-If Direction: Completeness.
- Useful when $\llbracket P \rrbracket$ and P cannot be compared directly.
- Completeness could be too demanding if \bowtie is a congruence.
- $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ is fully abstract sound but not complete for $\bowtie=\cong$.
- $\llbracket \cdot \rrbracket: K^{1} \pi \rightarrow \pi$ is fully abstract $\bowtie=\cong{ }^{c}$.

Expressiveness Criteria: Weak Full Abstraction

Weak Full Abstraction

$\forall P, Q \in \mathcal{C}$,
$K[P] \bowtie_{\mathcal{C}} K[Q]$ for all \mathcal{C}-context K
if and only if
$\llbracket K \rrbracket[\llbracket P \rrbracket] \bowtie_{\mathcal{C}^{\prime}} \llbracket K \rrbracket[\llbracket Q \rrbracket]$ for all \mathcal{C}-context K.
Here \bowtie is typically a non-congruence like barbed bisimulation, trace equivalence, etc.

- Completeness wrt "encoded contexts".
- $\llbracket \rrbracket: \pi^{2} \rightarrow \pi$ is weakly fully abstract for $\bowtie=\dot{\sim}$.

Expressiveness Criteria: Compositionality

Compositionality and Homomorphism

(1) The encoding $\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is compositional wrt an n-ary operator op if and only if there exists a \mathcal{C}^{\prime}-context K with n-holes such that $\llbracket o p\left(P_{1}, \ldots, P_{n}\right) \rrbracket=K\left[\llbracket P_{1} \rrbracket, \ldots, \llbracket P_{n} \rrbracket\right]$.
(2) $\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is weakly compositional iff $\exists K, \forall P \llbracket P \rrbracket=K\left[\llbracket P \rrbracket^{\prime}\right]$ where $\llbracket \cdot \rrbracket^{\prime}$ is compositional.
(3) $\llbracket \cdot \rrbracket: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is homomorphic wrt an n-ary operator op in \mathcal{C} if and only if $\llbracket o p\left(P_{1}, \ldots, P_{n}\right) \rrbracket=o p\left(\llbracket P_{1} \rrbracket, \ldots, \llbracket P_{n} \rrbracket\right)$.

- Homomorphism is sometimes required for the parallel operator:

$$
\llbracket P|Q \rrbracket=\llbracket P \rrbracket| \llbracket Q \rrbracket .
$$

- Compositionality and its weak version are often required.
- $\llbracket . \rrbracket: \pi^{2} \rightarrow \pi$ is compositional for all the operators.
- $\llbracket \cdot \rrbracket$: $K^{1} \pi \rightarrow \pi$ is not compositional but weakly compositional.

Correctness of $\llbracket \cdot \rrbracket: K^{1} \pi \rightarrow \pi$.

Let $\llbracket \cdot \rrbracket: K^{1} \pi \rightarrow \pi$ be the encoding from $K \pi$ with a single monadic recursive definitions into π.

Theorem (Operational Correspondence)

$$
\begin{aligned}
& \text { (1) If } P \xrightarrow{\alpha} Q \text { then } \llbracket P \rrbracket \xrightarrow{\alpha} \sim \llbracket Q \rrbracket \\
& \text { (2) If } \llbracket P \rrbracket \xrightarrow{\alpha} R \text { then } \exists Q P \xrightarrow{\longrightarrow} Q \text { and } R \sim \llbracket Q \rrbracket \text {. }
\end{aligned}
$$

Proof.

(1) and (2) proceed by induction on the inference and on the size of processes using the Replication Theorem.

Theorem (Replication Theorem (Sangiorgi's Book))

If x occurs in $P_{i}(i \in I)$ and R only in output subject position then $(\nu x)\left(\prod_{i \in I} P_{i} \|!x(y) \cdot R\right) \sim^{c} \prod_{i \in I}(\nu x)\left(P_{i} \|!x(y) . R\right)$.

Correctness of $\llbracket \cdot \rrbracket: K^{1} \pi \rightarrow \pi$.

Theorem (Semantic Preservation wrt \sim^{c})

$P \sim^{c} \llbracket P \rrbracket$

Proof.

Verify that $\mathcal{R}=\{(P, \llbracket P \rrbracket)\}$ is a bisimulation up-to \sim using the Operational Correspondence. Also \mathcal{R} is closed under substitutions.

Theorem (Full Abstraction)

$P \cong \mathrm{c} Q$ iff $\llbracket P \rrbracket \cong{ }^{\mathrm{c}} \llbracket Q \rrbracket$.

Proof.

Since $\sim^{c}=\cong$ and the Semantic preservation wrt \sim^{c}.

Correctness of $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$.

Let $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ be the encoding from bi-adic π to π.

Theorem (Operational Correspondence)

$$
\begin{aligned}
& \text { (1) if } P \longrightarrow Q \text { then } \llbracket P \rrbracket \longrightarrow^{*} \llbracket Q \rrbracket \text { and } \\
& \text { (2) If } \llbracket P \rrbracket \longrightarrow \text { then } \exists Q ; P \xrightarrow{\longrightarrow} \text { and } R \cong \subset Q \rrbracket \text {. }
\end{aligned}
$$

The proof of (1) is by induction on the inference. The proof (2) is rather involved because arbitrary application of \equiv in $\llbracket P \rrbracket \longrightarrow R$.

Theorem (preservation of barbs)

$P \downarrow_{\mu}$ iff $\llbracket P \rrbracket \downarrow_{\mu}$

Theorem (Semantic preservation wrt $\dot{\sim}$)

$\llbracket P \rrbracket \approx P$.

Frank D. Valencia CNRS-LIX Ecole Polytechnique

Correctness of $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$.

Corollary (Soundness)

If $\llbracket P \rrbracket \cong \cong^{c} \llbracket Q \rrbracket$ then $P \cong \cong^{c} Q$.

Proof.

From the homomorphic definition of $\llbracket \rrbracket \rrbracket$ and the preservation of $\dot{\approx}$. $K[P] \tilde{\sim} \llbracket K[P] \rrbracket=\llbracket K \rrbracket \llbracket P \rrbracket] \dot{\sim} \llbracket K \rrbracket \llbracket \llbracket Q \rrbracket]=\llbracket K[Q \rrbracket \rrbracket \dot{\approx} C[Q]$

Correctness of $[\cdot]: \pi^{2} \rightarrow \pi$.

Corollary (Soundness)

If $\llbracket P \rrbracket \cong \cong^{c} \llbracket Q \rrbracket$ then $P \cong \cong^{c} Q$.

Exercises :

- Show that the encoding is not complete. I.e., $P \cong{ }^{c} Q$ does not imply $\llbracket P \rrbracket \cong \mathrm{c} \llbracket Q \rrbracket$.
- Are the encodings $\llbracket \cdot \rrbracket: A \pi \rightarrow \pi$ by Boudol and Honda complete wrt \cong c ? If not, prove it.
- Define a weakly compositional encoding $\llbracket \cdot \rrbracket: K \pi \rightarrow \pi$ which is sound wrt \cong^{c} ? Is your encoding complete \cong^{c} ? If not, argue why.
Open Question: Is there a compositional encoding $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ fully-abstract wrt $\cong c$.

Trios

A trios process is a polyadic π process whose prefixes are of the form $\pi^{\prime} . \pi . \pi^{\prime \prime} .0$. Trios processes can encode arbitrary polyadic π processes [Parrow'01].

Exercise Give an encoding $\llbracket \cdot \rrbracket$ from π^{0} processes into π^{0} trios processes. Argue that $\llbracket P \rrbracket \approx P$.

Replication vs Recursion in CCS

Notice that π^{0} is CCS with replication instead of recursive definitions $C C S_{!}$.

- Is $C C S_{!}$as expressive as $C C S$? We shall conclude this section we a survey on these kind of Recursion vs Replication results.

References

- Kohei Honda, Mario Tokoro: An Object Calculus for Asynchronous Communication. ECOOP 1991: 133-147. 1991.
- Gerard Boudol: Asynchrony and the π-calculus. Rapport de Recherche RR-1702, INRIA-Sophia Antipolis. 1992
- Robin Milner: The Polyadic pi-Calculus: A Tutorial. Technical Report LFCS report ECS-LFCS-91-180, University of Edinburgh. 1994.
- J. Aranda, C. Di Giusto, C. Palamidessi and F. Valencia. On Recursion, Replication and Scope Mechanisms in Process Calculi. To appear in FMCO'06. (C)Springer-Verlag. 2007.

Computational Expressiveness of CCS

Language of a process :

$$
L(P)=\left\{s \in \mathcal{L}^{*} \mid \exists Q: P \stackrel{s}{\Longrightarrow} Q \wedge \forall \alpha \in A c t: Q \not{ }^{\alpha}\right\} .
$$

Theorem (CCS can generate CFL)

For any context-free grammar G, there exists a CCS process P_{G} such that $s \in L(G)$ iff $s \in L\left(P_{G}\right)$.

Proof.

Hint: Consider productions in Chomsky Normal form: $A \rightarrow B . C$ or $A \rightarrow a$. For the case B.C provide a definition $A(\ldots) \stackrel{\text { def }}{=} \ldots$ which allows for the sequentialization of B and C.

Computational Expressiveness of CCS

Theorem

CCS is Turing-Expressive.

This can be shown by encoding Minsky Machines.

Minsky's Two-Counter Machines

Sequence of labelled instructions on two counters c_{0} and c_{1} :

$$
\begin{aligned}
& L_{i}: \text { halt } \\
& L_{i}: c_{n}:=c_{n}+1 ; \text { goto } L_{j} \\
& L_{i}: \text { if } c_{n}=0 \text { then goto } L_{j} \text { else } c_{n}:=c_{n}-1 ; \text { goto } L_{k}
\end{aligned}
$$

The machine: 1) starts at $\left.L_{1}, 2\right)$ halts if control reaches the location of a halt instruction and 3) computes the value n if it halts with $c_{0}=n$.

Computational Expressiveness of CCS

Definition (A Counter C)

$$
\begin{array}{ll}
C & \stackrel{\text { def }}{=} \\
C^{\prime}(I) & \stackrel{\text { def }}{=} \text { dec. } \bar{I} .0+i n c .(\nu I)\left(C^{\prime}\langle I\rangle \| I . C\right) \\
\text { d }\left(I^{\prime}\right)\left(C^{\prime}\left\langle I^{\prime}\right\rangle \| I^{\prime} . C^{\prime}\langle I\rangle\right)
\end{array}
$$

For counters X and Y replace C with X, resp Y, and isz, inc, dec with isz X, inc X, dec X, resp isz Y, inc Y, dec Y.

Instructions are represented as processes waiting for an input on its label.

Example

L_{2} : if $X=0$ then goto L_{4} else goto L_{8} and L_{4} : halt can be represented as $L_{2} \stackrel{\text { def }}{=} I_{2}$.($\left.\overline{\text { isz }} . \bar{I}_{4} \cdot L_{2}+\overline{\operatorname{dec} X} . \overline{\text { inc } X} . \bar{I}_{8} \cdot L_{2}\right)$ and $L_{4} \stackrel{\text { def }}{=} I_{4} \cdot \overline{h a l t}$.

Computational Expressiveness of CCS

Definition (A program M)

A program $M(X, Y)=L_{1}: I_{1} ; \ldots ; L_{n}: I_{n}$ can be encoded as

$$
\llbracket M(X, Y) \rrbracket=\left(\nu I_{1} \ldots I_{n}\right)\left(\bar{I}_{1} .0\left\|L_{1}\right\| \ldots\left\|L_{n}\right\| X \| Y\right)
$$

The correctness is stated as follows:

Theorem (Correctness)

$M(X, Y)$ computes n on X if and only if

$$
\left(\llbracket M \rrbracket \| \text { halt.Dec } c_{n}\right) \Downarrow \begin{aligned}
& \overline{y e s} \\
& \hline
\end{aligned}
$$

where for $n>0, \operatorname{Dec}_{n}=\overline{\operatorname{dec} X} . D e c_{n-1}$ and $\operatorname{Dec}_{0}=\overline{i s z X} . \overline{y e s}$

Computational Expressiveness of $\operatorname{CCS} \pi^{0}=C C S$

Theorem (π^{0} can generate REG)

Given a regular expression e, there exists a CCS! process P_{e} such that $s \in L(e)$ iff $s \in L\left(P_{e}\right)$.

Exercise. Write a CCS! process P such that $L(P)=a^{*} c$.

Computational Expressiveness of $\operatorname{CCS} \pi^{0}=C C S$

Theorem (π^{0} can generate REG)

Given a regular expression e, there exists a CCS process P_{e} such that $s \in L(e)$ iff $s \in L\left(P_{e}\right)$.

Proof.

Definition 4. Given a regular expression e, we define $\llbracket e \rrbracket$ as the CCS! process (νm) $\left(\llbracket e \rrbracket_{m} \mid m\right)$ where $\llbracket e \rrbracket_{m}$, with $m \notin f n(\llbracket e \rrbracket)$, is inductively defined as follows:

$$
\begin{array}{ll}
\llbracket \emptyset \rrbracket_{m}= & D I V \\
\llbracket \epsilon \rrbracket_{m}= & \bar{m} \\
\llbracket a \rrbracket_{m}= & a \cdot \bar{m} \\
\llbracket e_{1}+e_{2} \rrbracket_{m}= \begin{cases}\llbracket e_{1} \rrbracket_{m} & \text { if } L\left(e_{2}\right)=\emptyset \\
\llbracket e_{2} \rrbracket_{m} & \text { if } L\left(e_{1}\right)=\emptyset \\
\llbracket e_{1} \rrbracket_{m}+\llbracket e_{2} \rrbracket_{m} & \text { otherwise }\end{cases} \\
\llbracket e_{1} \cdot e_{2} \rrbracket_{m}=\begin{array}{lll}
\left(\nu m_{1}\right)\left(\llbracket e_{1} \rrbracket_{m_{1}} \mid m_{1} \cdot \llbracket e_{2} \rrbracket_{m}\right) \text { with } m_{1} \notin f n\left(e_{1}\right) & \text { if } L(e)=\emptyset
\end{array} \\
\llbracket e^{*} \rrbracket_{m}= \begin{cases}\bar{m} & \text { otherwise } \\
\left(\nu m^{\prime}\right)\left(\overline{m^{\prime}}\left|!m^{\prime} \cdot \llbracket e \rrbracket_{m^{\prime}}\right| m^{\prime} \cdot \bar{m}\right) \text { with } m^{\prime} \notin f n(e)\end{cases}
\end{array}
$$

Frank D. Valencia CNRS-LIX Ecole Polytechnique

Computational Expressiveness of $\operatorname{CCS} \pi^{0}=C C S$

Theorem (π^{0} can generate REG)

Given a regular expression e, there exists a CCS! process P_{e} such that $s \in L(e)$ iff $s \in L\left(P_{e}\right)$.

But CCS! can generate CFL languages too.
Exercise. Write a CCS! process Q such that $L(Q)=a^{n} b^{n}$. Hint: Recall the process P such that $L(P)=a^{n} c$.

Computational Expressiveness of $\pi^{0}=$ CCS

- CCS! is also Turing Expressive: It can also encode Minsky Machines.
- The encoding is unfaithfull: $\llbracket M \rrbracket$ can evolve into a process which does NOT correspond to any computation of M.
- Such process however never terminates (i.e., it is divergent).
- In fact, CCS! cannot encode even CFG faithfully.
- The following theorem and $a^{n} b^{n} c$ are central to this impossibility result:

Theorem

Let $P \in C C S!$. Suppose that $P \stackrel{\text { s. } \alpha}{\Longrightarrow}$ where $s \in$ Act* . Then $P \xrightarrow{s^{\prime} . \alpha}$ for some $s^{\prime} \in$ Act* whose length is bounded by a value depending only on the size of P.

Computational Expressiveness of $\pi^{0}=$ CCS

The construction in CCS! differs for registers.

Counter in CCS!

$$
\begin{aligned}
C \stackrel{\text { def }}{=} \bar{c} \| \quad & !c .(\nu m, i, d, u)(\bar{m}\|!m .(i n c . \bar{i}+d e c . \bar{d})\| \\
& !i .\left(\bar{m}\left\|\overline{i n c^{\prime}}\right\| \bar{u}\left\|d \cdot u \cdot\left(\bar{m} \| \overline{d e c^{\prime}}\right)\right\|\right. \\
& \text { d. }(\overline{i s z}\|u \cdot D I V\| \bar{c}))
\end{aligned}
$$

Instructions: L_{2} : if $X=0$ then goto L_{4} else goto L_{8} can be modelled as

$$
!l_{2} \cdot \overline{\operatorname{dec} X} \cdot\left(\operatorname{dec}^{\prime} X \cdot \overline{I_{4}}+i s z X \cdot \overline{I_{8}}\right)
$$

Computational Expressiveness of $\pi^{0}=$ CCS

Theorem (Correctness)

$M(X, Y)$ computes n on X if and only if

$$
\exists Q:(\llbracket M \rrbracket \| \text { halt.Dec } n) \Longrightarrow(Q \| \overline{y e s}) \wedge Q \nrightarrow
$$

where for $n>0 \operatorname{Dec}_{n}=\overline{\operatorname{dec} X} . \operatorname{dec}^{\prime} X . \operatorname{Dec}_{n-1}$ and $D_{0}=i s z X . \overline{y e s}$.

References

- N. Busi, M.. Gabbrielli, G. Zavattaro: Comparing Recursion, Replication, and Iteration in Process Calculi. ICALP 2004: 307-319.
- N. Busi, M.. Gabbrielli, G. Zavattaro: Replication vs. Recursive Definitions in Channel Based Calculi. ICALP 2003: 133-144.
- J. Aranda, C. Di Giusto, M. Nielsen and F. Valencia. CCS with Replication in the Chomsky Hierarchy: The Expressive Power of Divergence. APLAS'07.

Linearity.

Linearity of messages and input processes.

- In the π-calculus outputs (messages) and inputs are linear.
- E.g. the parallel composition

$$
\bar{x} z|x(y) \cdot P| x(w) \cdot Q
$$

reduces either

- to

$$
P\{z / y\} \mid Q
$$

- or to

$$
P \mid Q\{z / w\}
$$

Persistence.

Persistence of messages.

- Other calculi follow a different pattern: Messages are persistent. E.g.:
- Concurrent Constraint Programming (CCP)[Saraswat'90] where
information can only increase during computation.
- Several Calculi for Security (e.g., Winskel\&Crazolara's SPL) to model a Dolev-Yao assumption:
"The Spy sees and remembers every message in transit"

Persistence.
 Persistence of messages and input process.

- Persistent π input processes model functions, procedures and higher-order communication (also arises in the notion of ω-receptiveness) [Sangiorgi'99].
- Persistent messages and input processes can be used to reason about protocols that can run unboundedly (see [Blanchet'04]).

Linearity vs Persistence.

- Does the persistence assumption restrict the kind of systems that can be reasoned about? E.g.
- Can some security attacks based on linear messages be impossible to model under the persistent message assumption of SPL?
- Is Linear CCP more expressive than CCP ?

Linearity vs Persistence.

To study the expressiveness of fragments of π capturing the above sources of persistence:

- A : Asynch. π-calculus, here denoted simply as π :

$$
P, Q:=\bar{x} z|x(y) . P| \quad P|Q| \quad(\nu x) P \mid \quad!P
$$

- PO : Persistent-output (messages) π :

$$
P, Q:=\overline{!} x z|x(y) . P \quad| \quad P|Q| \quad(\nu x) P|\quad| P
$$

- PIm: Persistent-input π :

$$
P, Q:=\bar{x} z|\quad!x(y) . P| \quad P|Q| \quad(\nu x) P|\quad| P
$$

- $P \pi$: Persistent (input \& ouput) π :

$$
P, Q:=!_{x}^{-} \quad|\quad!x(y) . P \quad| \quad P|Q| \quad(\nu x) P \quad \mid \quad!P
$$

Encodings \& Interpretations

Some studies on Linearity vs Persistence have reported:

- The (non) existance of, compositional encodings between the fragments fully-abstract wrt barbed congruence and barbed bisimilarity.
- The Turing-Completeness of $P \pi$.
- A compositional FOL interpretation of $P \pi$.

Frank D. Valencia CNRS-LIX Ecole Polytechnique

Applications: Decidability

As applications of the above and classic FOL results there are

- Decidability results of barbed-congruence for n-adic versions.

	$P \pi$	$P O \pi$	$P I \pi$
0	yes	yes	no
1	$?$	no	
2	no		

- Identify meaningful decidable infinite-state mobile classes of π processes.

Impossibility of a sound encoding of π in $P \pi$

Impossibility of Sound Encodings

There is no encoding $\llbracket \cdot \rrbracket: \pi \rightarrow P \pi$, homomorphic wrt parallel composition, such that $\llbracket P \rrbracket \cong{ }^{\mathrm{c}} \llbracket Q \rrbracket$ implies $P \cong{ }^{\mathrm{c}} Q$.

- $\cong c$ is barbed congruence for $P \pi$ (the result also holds for barbed bisimilarity)
- Key property: in $P \pi$, for every $P, P \mid P \cong{ }^{c} P$.
- Key property is not trivial for $P=(\nu x) Q$ and it does not hold with mismatch. Notice that $R=!x(y) \cdot!x\left(y^{\prime}\right) \cdot\left[y \neq y^{\prime}\right] . t$ distinguishes $Q=(\nu z)!\bar{x} z$ from $Q \mid Q$.

Impossibility of a sound encoding of π in $P \pi$

Theorem

There is no encoding $\llbracket \llbracket: \pi \rightarrow P \pi$, homomorphic wrt parallel composition, such that $\llbracket P \rrbracket \cong{ }^{\mathrm{c}} \llbracket Q \rrbracket$ implies $P \cong{ }^{\mathrm{c}} Q$.

The proof involves the following lemmas:
(1) If $P \longrightarrow Q$ then $P \sigma \longrightarrow Q \sigma$.

- Does it hold with mistmatch?
(2) $P \cong{ }^{\mathrm{c}} Q$ iff $\forall R, \sigma: P \sigma\|R \dot{\sim} Q \sigma\| R$. (Textbook)
(3) $P \dot{\sim} Q$ iff $P \stackrel{\sim}{\simeq} Q$ where
- $\dot{\sim}$ is barbed bisimilarity for $P \pi$ and
- $P \stackrel{\circ}{\simeq} Q$ holds iff $\left.P \Downarrow_{\bar{x}} \Longleftrightarrow Q \Downarrow_{\bar{x}}\right)$
(4) $P \| P \cong \mathrm{c} P$.

Take $P=Q\|Q, Q=\bar{x}\| x . x . \bar{t}$. Notice that $P \oiiint^{c} Q$. But from (4) $\llbracket P \rrbracket=\llbracket Q \rrbracket \| \llbracket Q \rrbracket \cong c \llbracket Q \rrbracket$. It remains to prove (3) and (4).

FOL Characterization of $P \pi$

FOL Interpretation of $P \pi$
$\llbracket!\bar{x} z \rrbracket=\operatorname{out}(x, z), \llbracket!x(y) \cdot P \rrbracket=\forall_{y} \operatorname{out}(x, y) \Rightarrow \llbracket P \rrbracket$
$\llbracket(\nu x) P \rrbracket=\exists_{x} \llbracket P \rrbracket, \quad \llbracket P \mid Q \rrbracket=\llbracket P \rrbracket \wedge \llbracket Q \rrbracket$.

- Input and "new" binders are interpreted as universal and existential quantifiers.

Theorem: FOL Characterization of Barbed Observability

$$
\llbracket P \rrbracket \vDash \exists_{z} \text { out }(x, z) \text { if and only if } P \Downarrow_{\bar{x}}
$$

- With mismatchand $\llbracket x \neq y \cdot P \rrbracket=x \neq y \Rightarrow \llbracket P \rrbracket$,

$$
Q=(\nu y)\left(\nu y^{\prime}\right)\left[y \neq y^{\prime}\right]!!\bar{x} z \Downarrow_{\bar{x}} \text { but } \llbracket Q \rrbracket k=\exists_{z} \text { out }(x, z) .
$$

FOL Characterization of $P \pi$

- Consider the following example:
- In $P=!x(y) \cdot Q \mid(\nu z)!x z$, by extruding the private name z, we can conclude that $(\nu z) Q\{z / y\}$ is executed in P.
- In $\llbracket P \rrbracket=\forall_{y}$ out $(x, y) \Rightarrow \llbracket Q \rrbracket \wedge \exists_{z}$ out (x, z), by moving the existential z to outermost position, we conclude that $\exists_{z} \llbracket Q \rrbracket\{z / y\}$ is a logical consequence of $\llbracket P \rrbracket$.
- FOL interpretation captures name extrusion ($P \pi$-calculus mobility) in FOL via existential and universal quantifiers.

Encoding $A \pi$ in the semi-persistent calculi

Consider $S=\bar{x} u|\bar{x} w| x(y) \cdot \bar{y} m \mid x(y) \cdot \bar{y} n$. Want an encoding $\llbracket S \rrbracket$ in the semi-persistent calculi s.t.:

- $\llbracket S \rrbracket=\llbracket \bar{x}\langle u\rangle \rrbracket|\llbracket \bar{x}\langle w\rangle \rrbracket| \llbracket x(y) \cdot \bar{y} m \rrbracket \mid \llbracket x(y) \cdot \bar{y} n \rrbracket$ behaves
- either as (a) $\llbracket \bar{u}\langle m\rangle \rrbracket \mid \llbracket \bar{w}\langle n\rangle \rrbracket$ or as (b) $\llbracket \bar{w}\langle m\rangle \rrbracket \mid \llbracket \bar{u}\langle n\rangle \rrbracket$.
- Problem: In either case input and outputs are both consumed. In the semi-persistent calculi either input or outputs cannot be consumed.

Encoding $A \pi$ in $P O \pi$

- The encoding $\llbracket \rrbracket!\pi \rightarrow P / \pi$ is a homomorphism for all operators but:

$$
\begin{aligned}
& \llbracket x(\vec{y}) \cdot P \rrbracket=(\nu t f)(\bar{t} \mid!x(\vec{y}) \cdot(\nu l)(\bar{l} \mid \\
& !t .!l .(\llbracket P \rrbracket \mid!\bar{f}) \mid \\
& \text { !f.!l. } \bar{x}\langle\vec{y}\rangle) \text {) }
\end{aligned}
$$

- The idea is a suitable combination of locking and forwarding mechanisms: If the $\llbracket x(y) . P \rrbracket$ has already received a message then it forwards the current message.
- Key property: In asynch. π, forwarders (e.g., !x(y). $\bar{x} y$) are barbed congruent to the null process 0 .

Theorem

Every (asynch) π process P is (weak) barbed congruent to $\llbracket P \rrbracket$.

Encoding $A \pi$ in $P O \pi$

- Consider the encoding $\llbracket \cdot \rrbracket: \pi \rightarrow P O \pi$:

$$
\begin{aligned}
\llbracket \bar{x}\langle\vec{z}\rangle \rrbracket & =(\nu s)(!\bar{x}\langle s\rangle \mid s(r)!!\bar{r}\langle\vec{\lambda}) \\
\llbracket x(\vec{y}) \cdot P \rrbracket & =x(s) \cdot(\nu r)(!!\bar{s}\langle r\rangle \mid r(\vec{y}) \cdot \llbracket P \rrbracket)
\end{aligned}
$$

- Problem: An encoded input may get deadlocked. E.g.,
- Consider $\llbracket \bar{x}\langle u\rangle \rrbracket|\llbracket \bar{x}\langle w\rangle \rrbracket| \llbracket x(y) . P \rrbracket \mid \llbracket x(y) \cdot Q \rrbracket$.
- Suppose $\llbracket x(y) . P \rrbracket$ gets the u of $\llbracket \bar{x}\langle u\rangle \rrbracket$. Then $\llbracket x(y) \cdot Q \rrbracket$ may input the broadcast s of $\llbracket \bar{x}\langle u\rangle \rrbracket$ and get stuck waiting on r unable to interact with $\llbracket \bar{x}\langle w\rangle \rrbracket$.
- But this wouldn't be a problem if inputs were persistent as in $P I \pi$: If a copy becomes unable to interact with, there is always another able to.
- Solution: Encode first π into $P I \pi$ and then compose the صncodinos
Frank D. Valencia CNRS-LIX Ecole Polytechnique

References on Linearity vs Persistence

- C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity vs Persistence in the Asynchronous Pi Calculus. LICS 2006:59-68.
- D. Cacciagrano, F. Corradini, J. Aranda, F. Valencia. Persistence and Testing Semantics in the Asynchronous Pi Calculus. EXPRESS'07.

Expressive Power of Asynchronous Communication

Motivation: To understand the expressive power of $A \pi$.

- It's theory is simpler and somewhat more satisfactory.
- We've seen how it encodes (synchronous, polyadic) π. Recall e.g., Boudol's encoding.
- But for the encodings are for π without summation.
- We shall see how it encodes various forms of summation.
- We shall see it cannot encode arbitrary summation.
- We'll do this by using electoral problems solvable in π but not in $A \pi$.

Some Distintive Properties for $A \pi$

(1) If $P \xrightarrow{\bar{x}\langle y\rangle} P^{\prime}$ then $P \equiv \bar{x}\langle y\rangle \| P^{\prime}$.
(2) If $P \xrightarrow{\bar{x}\langle y\rangle} \xrightarrow{\alpha} P^{\prime}$ then $P \xrightarrow{\alpha} \xrightarrow{\bar{x}\langle y\rangle} P^{\prime} \equiv P^{\prime}$.
(3) If $P \xrightarrow{\bar{x}\langle y\rangle} \xrightarrow{x w} P^{\prime}$ with $w \notin f n(P)$ then $P \xrightarrow{\tau} \equiv P^{\prime}\{y / w\}$.

Exercise: Show (1-3) then Theorem below. Does (2) hold for \Longrightarrow ?

Theorem (Diamond Property)

Equivalences for $A \pi$

Definition (Asynchronous Barbed Bisimilarity)

(1) Asynchronous barbed bisimilarity is the largest symmetric relation \approx_{2} such that whenever $P \tilde{\approx}_{2} Q$,
(a) $P \downarrow_{T}$ implies $Q \Downarrow_{T}$
(b) $P \stackrel{r}{\rightarrow} P^{\prime}$ implies $Q \Rightarrow \dot{N}_{\alpha} P^{\prime}$.
(2) P and Q are asynchronous barbed congruent, $P \cong Q$. if $C[P] \approx_{2} C[Q]$ for every context C of $A \pi$.

Definition (Asynchronous Bisimilarity)

Asynchronous bisimilarity is the largest symmetric relation, \approx_{s}, such that whenever $P \approx_{\mathrm{A}} Q$.
(1) if $P \xrightarrow{\alpha} P^{t}$ and α is $\bar{x} y$ or $\bar{x}(x)$ or r, then $Q \stackrel{a}{\Rightarrow} \approx_{\mathrm{A}} P^{t}$
(2) if $P \xrightarrow{x y} P^{\prime}$ then (a) $Q \xrightarrow{x y} \approx_{a} P^{\prime}$ or

$$
\text { (b) } Q \Rightarrow Q^{\prime} \text { and } P^{\prime} \approx_{\Delta}\left(Q^{\prime} \mid \bar{x} y\right) .
$$

Equivalences for $A \pi$

Some useful properties in $A \pi$:
(1) If $P \approx{ }_{a} Q$ then $P \cong{ }_{a}{ }_{a} Q$.
(2) $x(y) \cdot \bar{x}\langle y\rangle \cong{ }^{c}{ }_{a} 0$ (I.e., forwarders are equivalent to 0).

Exercise: Show (2).

The π calculus with prefixed summations

The π-calculus prefixed summation π^{Σ} extends the π fragment we've considered so far with guarded summations:

- $P:=\ldots \mid \sum_{i \in I} \pi_{i} . P_{i}$

Reduction rule for summation

R-Inter

$$
\overline{\left(\bar{x} y \cdot P_{1}+M_{1}\right)\left|\left(x(z) \cdot P_{2}+M_{2}\right) \longrightarrow P_{1}\right| P_{2}\{y / z\}}
$$

Transition rule for summation

$$
\text { SUM-L } \frac{P \xrightarrow{a} P^{\prime}}{P+Q \xrightarrow{a} P^{\prime}}
$$

The π calculus with blind choice: $\pi^{\Sigma \tau}$.

In the blind-choice π-calculus, summation takes the form $\sum_{i \in I} \tau . P_{i}$.

Exercises:

(1) Give an encoding $\llbracket \cdot \rrbracket: A \pi^{\Sigma \tau} \rightarrow A \pi$ such that $\llbracket P \rrbracket \sim P$.
(2) Show that there cannot be an encoding $\llbracket \cdot \rrbracket: A \pi^{\Sigma} \rightarrow A \pi$ such that $\llbracket P \rrbracket \sim P$.

The π calculus with input-choice: $\pi^{\Sigma i}$

In input-choice π summations takes the form $\sum_{i \in I} x_{i}\left(y_{i}\right) . P_{i}$.

Encoding into Asynchronous (polyadic) π

$$
\begin{aligned}
& {\left[\Sigma_{i} x_{i}(z) \cdot P_{i}\right] \stackrel{\text { dol }}{=} \nu \ell(\operatorname{PROCEED}(\ell)} \\
& \mid \Pi_{i} x_{i}(z) \cdot(\nu p, f)\left(\bar{\ell}(p, f\rangle \mid p .\left(\operatorname{FALL}(\ell) \mid\left[P_{i}\right]\right)\right.
\end{aligned}
$$

where ℓ, p, and f are fresh and

$$
\begin{aligned}
\operatorname{PROCEED}(\ell) & \stackrel{\text { def }}{=} \ell(p, f) \cdot \bar{p} \\
\operatorname{FALL}(\ell) & \stackrel{\text { def }}{=} \ell(p, f) \cdot \bar{f} .
\end{aligned}
$$

Exercises:

(1) Let \mathcal{E} be the above encoding. Show that $\exists P: \mathcal{E}(P) \not 夫_{\mathrm{a}} P$.
(2) Give $\mathcal{E}^{\prime}: A \pi^{\Sigma i} \rightarrow A \pi$ so that $\forall P: \mathcal{E}^{\prime}(P) \approx{ }_{\mathrm{a}} P$.
(3) Then show that \mathcal{E} is neither sound nor complete.

The π calculus with input-choice: $\pi^{\Sigma i}$

Encoding into Asynchronous (polyadic) π
$\left[\Sigma_{i} x_{i}(z) \cdot P_{i}\right] \stackrel{\text { ael }}{=} \boldsymbol{\nu} \ell(\operatorname{PROCEED}(\ell)$

$$
\begin{aligned}
& \mid \Pi_{i} x_{i}(z) \cdot(\nu p, f)(\bar{\ell}(p, f\rangle \mid p \cdot\left(\operatorname{FAIL}(\ell) \mid\left[P_{i}\right]\right) \\
&\left.\left.\mid f .\left(\operatorname{FAIL}(\ell) \mid \overline{x_{i}}\langle z\rangle\right)\right)\right)
\end{aligned}
$$

where ℓ, p, and f are fresh and

$$
\begin{aligned}
\operatorname{PROCEED}(\ell) & \stackrel{\text { def }}{=} \ell(p, f) \cdot \bar{p} \\
\operatorname{FAIL}(\ell) & \stackrel{\text { def }}{=} \ell(p, f) \cdot \bar{f}
\end{aligned}
$$

Observations and Hints:

- Consider $P=\bar{x}\langle z\rangle \| x(y) \cdot \bar{y}+w(y) .0$ to show $\mathcal{E}(P) \not 夫_{a} P$.
- Note that \mathcal{E} and \mathcal{E}^{\prime} act as the identity on their images. So $\mathcal{E}(\mathcal{E}(P))=\mathcal{E}(P)$ and $\mathcal{E}\left(\mathcal{E}^{\prime}(P)\right)=\mathcal{E}^{\prime}(P)$.
- However $\mathcal{E}(P) \bowtie P$ where $\bowtie \stackrel{\text { def }}{=}$ coupled-bisimulation.

The π calculus with separate-choice: $\pi^{\Sigma s}$

In separate-choice summation can be $\sum_{i} x_{i}\left(y_{i}\right) \cdot P_{i}$ or $\sum_{i} \overline{x_{i}}\left\langle y_{i}\right\rangle \cdot P_{i}$
Encoding into Asynchronous (polyadic) π

$$
\begin{aligned}
& \left\{\Sigma_{i} \overline{x_{i}} d_{i}, P_{i}\right\} \stackrel{\text { dof }}{=} \nu s \quad(\operatorname{PROCEED}\langle s\rangle \\
& \left.\mid \Pi_{i} \boldsymbol{\nu} a \overline{x_{i}}\left\langle d_{i}, s, a\right\rangle .(\nu p, f)\left(\bar{a}\langle p, f\rangle\left|p .\left\{P_{i}\right\}\right| f .0\right)\right) \\
& \left\{\Sigma_{i} y_{i}(z) \cdot Q_{i}\right\} \stackrel{\text { def }}{=} \nu r \text { (PROCEED }(r) \\
& \Pi_{i} \boldsymbol{\nu} g(\bar{g} \\
& !g \cdot y_{i}(z, s, a) \cdot\left(\nu p_{1}, f_{1}\right)\left(\bar{r}\left\langle p_{1}, f_{1}\right\rangle\right. \\
& p_{1} \cdot\left(\nu p_{2}, f_{2}\right) \quad\left(\bar{s}\left\langle p_{2}, f_{2}\right\rangle\right. \\
& p_{2} \text {. (FAIL }\langle r\rangle \\
& \text { FAIL }\langle s\rangle \\
& \text { PROCEED }\langle a\rangle \\
& \text { (}\left\{Q_{i} \|\right. \text {) } \\
& f_{2} \text {. }(\operatorname{PROCEED}\langle r\rangle \\
& \text { FAIL }(s) \\
& \text { FAIL(} a \text {) } \\
& \bar{g}) \text {) } \\
& \left.\left.\left.f_{1} \cdot\left(\operatorname{FAIL}\langle r\rangle \mid \overline{y_{i}}(z, s, a\rangle\right)\right)\right)\right)
\end{aligned}
$$

The π calculus with mixed choice: π^{Σ}

In π^{Σ} summations are mixed. Can we encode them using the obvious generalization of the previous encoding of $\pi^{\Sigma s}$?

- Consider $P=x_{1}(y) \cdot P_{1}+\overline{x_{2}}\langle w\rangle \cdot P_{2} \| \overline{x_{1}}\langle w\rangle \cdot Q_{1}+x_{2}(y) \cdot Q_{2}$
- How about other encodings?

Impossibility Result

Under certain reasonable restrictions, no encoding of mixed-choice into $A \pi$ can exist.

Background: Hypergraphs

Definition (Hypergraphs)

A hypergraph is a tuple $H=\langle N, X, t\rangle$ where N, X are finite sets whose elements are called nodes and edges (or hyperedges) respectively, and t (type) is a function which assigns to each $x \in X$ a set of nodes, representing the nodes connected by x. We will also use the notation $x: n_{1}, \ldots, n_{k}$ to indicate $t(x)=\left\{n_{1}, \ldots, n_{k}\right\}$.

Definition (Automorphism)

The concept of graph automorphism extends naturally to hypergraphs: Given a hypergraph $H=\langle N, X, t\rangle$, an automorphism on H is a pair $\sigma=\left\langle\sigma_{N}, \sigma_{X}\right\rangle$ such that $\sigma_{N}: N \rightarrow N$ and $\sigma_{X}: X \rightarrow X$ are permutations which preserve the type of edges, namely for each $x \in X$, if $x: n_{1}, \ldots, n_{k}$, then $\sigma_{X}(x): \sigma_{N}\left(n_{1}\right), \ldots, \sigma_{N}\left(n_{k}\right)$.

- The orbit $n \in X$ by σ is $O_{\sigma}(n)=\left\{n, \sigma(n), \sigma^{2}(n), \ldots, \sigma^{h}(n)\right\}$ where h is the least power s.t. $\sigma^{h}=i d$.

Background: Hypergraphs

- σ is well-balanced iff all of its orbits have the same cardinality.
- E.g., (1) and (2) have a one with a single orbit of size 6, (4) has none.

Examples

Networks

- A (process) network P of size k takes the form $P_{1}\|\ldots\| P_{k}$.
- A computation C of the P takes the form:

$$
P_{1}\left|P_{2}\right| \ldots\left|P_{k} \quad \xrightarrow{\stackrel{\mu^{0}}{\longrightarrow}} \quad P_{1}^{1}\right| P_{2}^{1}|\ldots| P_{k}^{1},
$$

$$
\xrightarrow{n-1} \quad P_{1}^{n}\left|P_{2}^{n}\right| \ldots \mid P_{k}^{n}
$$

$$
\left(\xrightarrow{n^{n}} \quad \ldots\right)
$$

- $\operatorname{Proj}(C, i)$ is the contributions of P_{i} to C : The sequence of transitions performed by P_{i} in C.

$$
P_{i} \stackrel{\tilde{H}^{0}}{\Longrightarrow} P_{i}^{1} \stackrel{\tilde{\mu}^{1}}{\Longrightarrow} P_{i}^{2} \stackrel{\tilde{\mu}^{2}}{\Longrightarrow} \cdots \stackrel{\tilde{\mu}^{n-1}}{\Longrightarrow} P_{i}^{n}\left(\stackrel{\tilde{\mu}^{n}}{\Longrightarrow} \ldots\right)
$$

Electoral Networks

- A (process) network P of size k takes the form $P_{1}\|\ldots\| P_{k}$.
- A computation C of the P takes the form:

$$
\begin{aligned}
& P_{1}\left|P_{2}\right| \ldots\left|P_{k} \xrightarrow{\ddot{m}^{\circ}} \quad P_{1}^{1}\right| P_{2}^{1}|\ldots| P_{k}^{1} \\
& \xrightarrow{\mu^{2}} \quad P_{1}^{2}\left|P_{2}^{2}\right| \ldots \mid P_{k}^{2} \\
& \xrightarrow{n-\infty} P_{1}^{n}\left|P_{2}^{n}\right| \ldots \mid P_{k}^{n} \\
& \left(\stackrel{\mu^{*}}{\longrightarrow} \ldots\right. \text {) }
\end{aligned}
$$

- $\operatorname{Proj}(C, i)$ is the contributions of P_{i} to C : The sequence of transitions performed by P_{i} in C.

$$
P_{i} \stackrel{\tilde{\mu}^{0}}{\Longrightarrow} P_{i}^{1} \stackrel{\bar{\mu}^{1}}{\Longrightarrow} P_{i}^{2} \stackrel{\tilde{\mu}^{2}}{\Longrightarrow} \ldots \stackrel{\bar{\mu}^{n-1}}{\Longrightarrow} P_{i}^{n}\left(\stackrel{\bar{\mu}^{n}}{\Longrightarrow} \ldots\right)
$$

Electoral Networks in π

- A network $P=P_{1}\|\ldots\| P_{k}$ is an electoral system iff for every computation C of P :
- C can be extended to a computation C^{\prime} and
- $\exists n \leq k$ (the "leader") s.t.,
- $\forall i \leq k: \operatorname{Proj}\left(C^{\prime}, i\right)$ contains the action $\overline{\text { out } n \text {, and }}$
- no extension of C^{\prime} contains any action $\overline{\text { out }} m$ with $m \neq n$.
- The hypergraph of $P, H(P)=\langle N, X, t\rangle$ is given by:
- $N=\{1, \ldots, k\}$,
- $X=f n(P)-\{o u t\}$,
- $t(x)=\left\{n \mid x \in f n\left(P_{n}\right)\right\}$

Symmetric Electoral Networks in π

- Given $P=P_{1}\|\ldots\| P_{k}$, let σ be an automorphism on $H(P)$.
- P is symmetric wrt σ iff for each $i \leq k$,
- $P_{\sigma(i)} \equiv P_{i} \sigma$.
- P is symmetric iff symmetric wrt all automorphism on $H(P)$
- Notice that P is symmetric wrt σ then it is symmetric wrt σ^{i} ($i>1$).
- Symmetric electoral system in π^{Σ} with ring structure:

$$
P_{0}=r \cdot \overline{o m} 0+\bar{g} \cdot \overline{m u} 1
$$

$$
P_{1}=y \cdot \text { out } 1+\bar{x} \cdot \text { ouf } 0
$$

Symmetric Electoral Networks in $A \pi$.

Theorem (Impossibility of electoral systems)

Let $P=P_{1}\|\ldots\| P_{k}$ be a $A \pi$ network so that $H(P)$ is a ring with $k>1$. Assume that P is symmetric wrt σ where σ has a single orbit on $H(P)$. Then P cannot be an electoral system.

The proof strategy involves:
(1) Building a computation $P \xrightarrow{\mu_{1}} P^{1} \ldots \xrightarrow{\mu_{h}} P^{h}$ so that P^{h} is a symmetric network for every $h>1$.
(2) Usind Diamond Lemma and Symmetry of P^{h-1} to build P^{h}.
(3) The symmetry cannot be broken, hence no leader can be selected.

Symmetric Electoral Networks in $A \pi$.

Corollary:

- There is no encoding $\llbracket \cdot \rrbracket: \pi^{\Sigma} \rightarrow A \pi$ such that
(1) $\llbracket P\|Q \rrbracket=\llbracket P \rrbracket\| \llbracket Q \rrbracket$
(2 $\llbracket P \sigma \rrbracket=\llbracket P \rrbracket \sigma$
(3) Preservation of obervables (actions on visible channels) on maximal computations.

Proof idea: (1) and (2) preserve symmetry and (3) distinguishes an electoral system from a non-electoral one.

Summary

Expressiveness Hierarchy

References

- Catuscia Palamidessi: Comparing The Expressive Power Of The Synchronous And Asynchronous Pi-Calculi. Mathematical Structures in Computer Science 13(5): 685-719 (2003).
- Uwe Nestmann: What is a "Good" Encoding of Guarded Choice? Inf. Comput. 156(1-2): 287-319 (2000).
- Uwe Nestmann, Benjamin C. Pierce: Decoding Choice Encodings. Inf. Comput. 163(1): 1-59 (2000)

Exercises: Non-Complete Encodings

Exercises :

- Show that the encoding $\llbracket \cdot \rrbracket: \pi^{2} \rightarrow \pi$ is not complete. I.e., $P \cong{ }^{\mathrm{c}} Q$ does not imply $\llbracket P \rrbracket \cong{ }^{\mathrm{c}} \llbracket Q \rrbracket$.
- Take $P=\bar{x}\langle y z\rangle .0 \| \bar{x}\langle y z\rangle .0$ and $Q=\bar{x}\langle y z\rangle . \bar{x}\langle y z\rangle .0$. Consider the context $K=[\cdot] \| x(u) \cdot x(w) \cdot \bar{t}\langle t\rangle$.
- Are the encodings $\llbracket \cdot \rrbracket: A \pi \rightarrow \pi$ by Boudol and Honda complete wrt \cong c ? If not, prove it.
- Boudol's as above and Honda's as above but with

$$
P=x(y) .0 \| x(y) .0 \text { and } Q=x(y) \cdot x(y) .0 .
$$

- Define a weakly compositional encoding $\llbracket \cdot \rrbracket: K \pi \rightarrow \pi$ which is sound wrt $\cong \mathrm{c}$? Is your encoding complete $\cong \mathrm{c}$? If not, argue why.
- Take the composite encoding $K \pi \rightarrow \pi^{n} \rightarrow \pi$. Notice that the polyadic communication occur on the private channels.

Exercises: Trios

A trios process is a polyadic π process whose prefixes are of the form $\pi^{\prime} . \pi . \pi^{\prime \prime} .0$. Trios processes can encode arbitrary polyadic π processes [Parrow'01].

Exercise Give an encoding $\llbracket \cdot \rrbracket$ from π^{0} processes into π^{0} trios processes so that $\llbracket P \rrbracket \approx P$.

Exercises: Trios

A trios process is a polyadic π process whose prefixes are of the form $\pi^{\prime} . \pi . \pi^{\prime \prime} .0$. Trios processes can encode arbitrary polyadic π processes [Parrow'01].

Exercise Give an encoding $\llbracket \cdot \rrbracket$ from π^{0} processes into π^{0} trios processes so that $\llbracket P \rrbracket \approx P$.

Solution

Definition 6. Given a CCS! process $P, \llbracket P \rrbracket$ is the trios-process $(\nu l)\left(\tau . \tau . \bar{l} \mid \llbracket P \rrbracket_{l}\right)$ where $\llbracket P \rrbracket_{l}$, with $l \notin n(P)$, is inductively defined as follows:

```
\(\llbracket 0 \rrbracket_{l}=\quad 0\)
\(\llbracket \alpha . P \rrbracket_{l}=\quad\left(\nu l^{\prime}\right)\left(l . \alpha \cdot \overline{l^{\prime}} \mid \llbracket P \rrbracket_{l^{\prime}}\right)\) where \(l^{\prime} \notin n(P)\)
\(\llbracket P \mid Q \rrbracket_{l}=\left(\nu l^{\prime}, l^{\prime \prime}\right)\left(l \cdot \overline{l^{\prime}} \cdot l^{\prime \prime}\left|\llbracket P \rrbracket_{l^{\prime}}\right| \llbracket P \rrbracket_{l^{\prime \prime}}\right)\) where \(l^{\prime}, l^{\prime \prime} \notin n(P) \cup n(Q)\)
\(\llbracket!P \rrbracket_{l}=\quad\left(\nu l^{\prime}\right)\left(!l \cdot \overline{l^{\prime}} \cdot \bar{l} \mid!\llbracket P \rrbracket_{l^{\prime}}\right)\) where \(l^{\prime} \notin n(P)\)
\(\llbracket(\nu x) P \rrbracket_{l}=(\nu x) \llbracket P \rrbracket_{l}\)
```


Exercises: Language of Processes

Exercises:

- Write a CCS! process P such that $L(P)=a^{*} c$.
- $P=(\nu I)(\bar{l}\|!(I . a . \bar{I})\| I . c)$
- Write a CCS! process Q such that $L(Q)=a^{n} b^{n}$.
- $P=(\nu I)(\bar{I}\|!(I . a .(\bar{l}| | u))\| I!!u . b)$

Exercises: Properties of $A \pi$

In $A \pi$ the following holds:
(1) If $P \xrightarrow{\bar{x}\langle y\rangle} P^{\prime}$ then $P \equiv \bar{x}\langle y\rangle \| P^{\prime}$.
(2) If $P \xrightarrow{\bar{x}\langle y\rangle} \xrightarrow{\alpha} P^{\prime}$ then $P \xrightarrow{\alpha} \xrightarrow{\bar{x}\langle y\rangle} P^{\prime} \equiv P^{\prime}$.
(3) $x(y) \cdot \bar{x}\langle y\rangle \cong c{ }_{a} 0$.

Exercise: Show (1) and (2) then Theorem below. Also show (3).

Theorem (Diamond Property for $A \pi$)

Exercises for Choice Operators.

In the blind-choice π-calculus, summation takes the form $\sum_{i \in I} \tau . P_{i}$.

Exercises:

(1) Give an encoding $\llbracket \cdot \rrbracket: A \pi^{\Sigma \tau} \rightarrow A \pi$ from asynchronous π with blind-choice to $A \pi$ such that $\llbracket P \rrbracket \sim P$.
(2) Show that there cannot be an encoding $\llbracket \cdot \rrbracket: A \pi^{\Sigma} \rightarrow A \pi$ from asynchronous π with choice to $A \pi$ such that $\llbracket P \rrbracket \sim P$.

Exercises for Choice Operators

Encoding into Asynchronous (polyadic) π

$$
\left[\Sigma_{i} x_{i}(z) \cdot P_{i}\right] \stackrel{\text { ael }}{=} \boldsymbol{\nu} \ell(\operatorname{PrOCEED}(\ell)
$$

$$
\begin{aligned}
& \mid \Pi_{i} x_{i}(z) \cdot(\nu p, f)(\bar{\ell}(p, f\rangle \mid p .\left(\operatorname{FALL}(\ell) \mid\left[P_{i}\right]\right) \\
&\left.\left.\mid f\left(\operatorname{FALL}(\ell) \mid \bar{x}_{i}(z\rangle\right)\right)\right)
\end{aligned}
$$

where ℓ, p, and f are fresh and

$$
\begin{array}{r}
\operatorname{PROCEED}(\ell) \\
\text { def } \ell(p, f) \cdot \bar{p} \\
\text { FAIL }(\ell) \stackrel{\text { def }}{=} \ell(p, f) \cdot \bar{f}
\end{array}
$$

Exercises:

(1) Let \mathcal{E} be the above encoding. Show that $\exists P: \mathcal{E}(P) \not 夫_{\mathrm{a}} P$.
(2) Give $\mathcal{E}^{\prime}: A \pi^{\Sigma i} \rightarrow A \pi$ so that $\forall P: \mathcal{E}^{\prime}(P) \approx{ }_{a} P$.
(3) Then show that \mathcal{E} is neither sound nor complete.

- Hint: Consider $P=\bar{x}\langle z\rangle \| x(y) \cdot \bar{y}+w(y) .0$ to show $\mathcal{E}(P) \not \approx_{a} P$.
- Hint: Note that \mathcal{E} acts as the identity on its images. So $\mathcal{E}(\mathcal{E}(P))=\mathcal{E}(P)$ and $\mathcal{E}\left(\mathcal{E}^{\prime}(P)\right)=\mathcal{E}^{\prime}(P)$.

