Introduction to Expressivenes in Concurrency

Frank D. Valencia CNRS-LIX Ecole Polytechnique

Nov-Dec. 2007/MPRI

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

Motivation: The Notion of Expressiveness

Is the model \mathcal{M}' as expressive as the model \mathcal{M} , written $\mathcal{M}' \succeq \mathcal{M}$?

- In Automata Theory: $\mathcal{M}' \succeq \mathcal{M}$ iff there exists a $f : \mathcal{M} \to \mathcal{M}'$ s.t. for each $M \in \mathcal{M}$, $\mathcal{L}(f(M)) = \mathcal{L}(M)$.
- E.g. TM ≻ PDS ≻ FSA and the Chomsky Hierarchy: UG ≻ CSG ≻ CFG ≻ RG
- The notion of expressiveness is well-understood and settled in automata theory.

Motivation: Expressiveness in Process Calculi

Is the calculus \mathcal{C}' as expressive as the calculus $\mathcal{C},$ written $\mathcal{C}' \succeq \mathcal{C}$?

- In Concurrency Theory there is no yet an agreement upon expressiveness. In particular, there is no "Church-Turing Thesis" for Concurrency Theory.
- Intuitively C' ≥ C iff for all P ∈ C, there exists an encoding [[P]] ∈ C' of P satisfying some correcteness criteria–e.g, preservation of behavioral equivalence: P ~ [[P]].

Motivation: Relevance of expressiveness studies

Many of the expressiveness studies Concurrency Theory resemble those for Logic, Formal Grammars, Distributed Computating. They involve:

- Identifying minimal set of operators for a given calculus. E.g., Is match/summation redundant in the π -calculus ?
- Identifying minimal terms forms for a given calculus. E.g., Is the asynchronous/monadic π -calculus as expressive as the synchronous/polyadic π -calculus ?
- Identifying meaningul decidable fragments of a given calculus. E.g., Is barbed equivalence decidable for CCS with replication ?
- Identifying problems a given calculus cannot solve. E.g., Can the asynchronous π calculus solve the leader election problem.
- Comparing conceptually different calculi. E.g., Can Ambients be encoded in the $\pi\text{-calculus}$?

Outline

Introduction

- Notions/Notations
- Encodings: Classic Encodings
- Expressiveness Criteria
- 2 Terms and Operators Expressiveness
 - Recursion vs Replication in π
 - Polyadicity vs Monadicity in π
 - Computional Expressiveness in Process Calculi
 - Linearity vs Persistence in $A\pi$
- 3 Expressing Power of Asynchronous Pi.
 - Encoding summations in $A\pi$.
 - Electoral Systems in π
- 4 Exercises and Solutions

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions

The π -calculus

Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

The π -calculus (fragment) given in previous lectures:

Syntax:

 $\begin{array}{rcl} P,Q & ::= & \mathbf{0} & \mbox{nil} \\ & P \mid \mid Q & \mbox{parallel composition of } P \mbox{ and } Q \\ \hline c\langle v \rangle.P & \mbox{output } v \mbox{ on channel } c \mbox{ and resume as } P \\ c(x).P & \mbox{ input from channel } c \\ (\nu x)P & \mbox{ new channel name creation} \\ P & \mbox{ replication} \end{array}$

Free names (alpha-conversion follows accordingly):

Sometimes we use $P \mid Q$ and $\overline{c}v.P$ for $P \parallel Q$ and $\overline{c}\langle v \rangle.P$.

Notions/Notations

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions

The π -calculus

Reduction relation

Structural congruence:

$$P \parallel 0 \equiv P \qquad P \parallel Q \equiv Q \parallel P$$

$$(P \parallel Q) \parallel R \equiv P \parallel (Q \parallel R) \qquad !P \equiv P \parallel !P$$

$$(\nu x)(\nu y)P \equiv (\nu y)(\nu x)P$$

$$P \parallel (\nu x)Q \equiv (\nu x)(P \parallel Q) \text{ if } x \notin \text{fn}(P)$$

Reduction rules:

React
$$\overline{c}\langle v \rangle . P \parallel c(x) . Q \longrightarrow P \parallel Q\{v_x\}$$

$$\Pr_{\text{PAR}} \frac{P \longrightarrow P'}{P \mid\mid Q \longrightarrow P' \mid\mid Q} \quad \text{res} \quad \frac{P \longrightarrow P'}{(\nu x)P \longrightarrow (\nu x)P'} \quad \frac{P \equiv P' \longrightarrow Q' \equiv Q}{P \longrightarrow Q}$$

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

The π -calculus

Early Transitions

$$\begin{array}{cccc} \text{Out} & \overline{xy}, P \xrightarrow{\overline{xy}} P & \text{Inp} & \overline{x(z)}, P \xrightarrow{xy} P\{y|z\} \\ \text{Comm-L} & \frac{P \xrightarrow{\overline{xy}} P' & Q \xrightarrow{xy} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'} & \text{Par-L} & \frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q} & \text{bn}(\alpha) \cap \text{fn}(Q) = \emptyset \\ & \text{Close-L} & \frac{P \xrightarrow{\overline{x}(z)}}{P \mid Q \xrightarrow{\tau} \nu z (P' \mid Q')} & z \notin \text{fn}(Q) \\ \text{Res} & \frac{P \xrightarrow{\alpha} P'}{\nu z P \xrightarrow{\alpha} \nu z P'} & z \notin \text{n}(\alpha) & \text{Open} & \frac{P \xrightarrow{\overline{x}z} P'}{\nu z P \xrightarrow{\overline{x}(z)} P'} & z \neq x \\ \text{Rep-ACT} & \frac{P \xrightarrow{\alpha} P'}{!P \xrightarrow{\alpha} P' \mid !P} & \text{Rep-Comm} & \frac{P \xrightarrow{\overline{x}y} P' & P \xrightarrow{xy} P''}{!P \xrightarrow{\tau} (P' \mid P'') \mid !P} \\ \text{Rep-Close} & \frac{P \xrightarrow{\overline{x}(z)} P' & P \xrightarrow{xz} P''}{!P \xrightarrow{\tau} (\nu z (P' \mid P'')) \mid !P} & z \notin \text{fn}(P) \end{array}$$

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Barbed Equivalences

Recall that $P \downarrow_{\mu} (\mu \in \{x, \bar{x}\})$ iff $\exists \vec{z}, y, Q, R$ such that $x \notin \vec{z}$ and $P \equiv (\nu \vec{z})(\pi.Q \parallel R)$ and $\pi = x(y)$ if $\mu = x$ else $\pi = \overline{x}\langle y \rangle$. Also $P \downarrow_{\mu}$ iff $\exists Q, P \longrightarrow^{*} Q$ and $Q \downarrow_{\mu}$.

Definition (Barbed Bisimilarity)

R is a barbed simulation iff for every (P, Q) ∈ R:
 If P → P' then ∃Q': Q →* Q' ∧ (P', Q') ∈ R.
 If P ↓_µ then Q ↓_µ.
 (2) (Barbed Bisimilarity) P ≈ Q iff there is R such that R and R⁻¹ are barbed simulations and (P, Q) ∈ R.
 (3) (Barbed Congruence) P ≅^c Q iff K[P] ≈ K[Q] for every K.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

(Early) Bisimulation Equivalences

Definition (Bisimilarity)

(1) *R* is a *(strong) simulation* iff for every $(P, Q) \in R$:

- If $P \xrightarrow{\alpha} P'$ then $\exists Q': Q \xrightarrow{\alpha} Q' \land (P', Q') \in R$.

(2) (Strong Bisimilarity) $P \sim Q$ iff there is R such that R and R^{-1} are simulations and $(P, Q) \in R$.

(3) (Strong Full Bisimilarity) $P \sim^{c} Q$ iff $P\sigma \sim Q\sigma$ for every substitution σ .

The weak versions \approx and \approx^{c} are obtained by replacing $Q \xrightarrow{\alpha} Q'$ with $Q \xrightarrow{\hat{\alpha}} Q'$ where $\xrightarrow{\hat{\alpha}}$ is $\xrightarrow{\tau} \xrightarrow{*} \xrightarrow{\alpha} \xrightarrow{\tau} \xrightarrow{*}$ if $\alpha \neq \tau$, and $\xrightarrow{\tau} \xrightarrow{*}$ otherwise.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions

Encodings

Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Encoding

An encoding $\llbracket \cdot \rrbracket : \mathcal{C} \to \mathcal{C}'$ is a map from \mathcal{C} to \mathcal{C}' . The encoding of $P \in \mathcal{C}$ is denoted as $\llbracket P \rrbracket$.

Introduction Not

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Encodings: $\llbracket \cdot \rrbracket : \pi^2 \to \pi$

Recall the encoding of the bi-adic π -calculus (π^2) into π .

Example

[Milner 91] The encoding $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ is defined as

$$\begin{bmatrix} \overline{x} \langle z_1, z_2 \rangle . P \end{bmatrix} = (\nu w) \overline{x} \langle w \rangle . \overline{w} \langle z_1 \rangle . \overline{w} \langle z_2 \rangle . \llbracket P \rrbracket \\ \begin{bmatrix} x(y_1, y_2) . Q \end{bmatrix} = x(w) . w(y_1) . w(y_2) . \llbracket Q \rrbracket$$

 $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ is a homomorphism for the other cases.

- In what sense is $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ correct ?
- Question: How about the encoding from asynchronous π ($A\pi$) into π ?

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Encodings:
$$\llbracket \cdot \rrbracket : \pi \to A\pi$$

Definition (Synchronous into asynchronous)

[Boudol 92] The encoding $\llbracket \cdot \rrbracket : \pi \to A\pi$ is defined as

$$\begin{bmatrix} \overline{x} \langle z \rangle . P \end{bmatrix} = (\nu w) (\overline{x} \langle w \rangle \parallel w(u) . (\overline{u} \langle z \rangle \parallel \llbracket P \rrbracket)) \\ \llbracket x(y) . Q \end{bmatrix} = x(w) . (\nu u) (\overline{w} \langle u \rangle \parallel u(y) . \llbracket Q \rrbracket)$$

 $\llbracket \cdot \rrbracket : A\pi \to \pi$ is a homomorphism for the other cases.

• How about using a protocol of two exchanges only ?

Two steps protocol

[Honda-Tokoro 92]. The encoding $\llbracket \cdot \rrbracket : \pi \to A\pi$ is defined as

$$\begin{bmatrix} \overline{x} \langle z \rangle . P \end{bmatrix} = x(w) . (\overline{w} \langle z \rangle \parallel \llbracket P \rrbracket) \\ \llbracket x(y) . Q \rrbracket = (\nu w) (\overline{x} \langle w \rangle \parallel w(y) . \llbracket Q \rrbracket)$$

Frank D. Valencia CNRS-LIX Ecole Polytechnique

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Encodings: $\llbracket \cdot \rrbracket : K\pi \to \pi$

- $K\pi$ extends π with finitely many paremetric recursive definitions: $P := \ldots | K \langle \vec{z} \rangle$
- Each $K\langle \vec{z} \rangle$ has a unique $K(\vec{y}) \stackrel{\text{def}}{=} P$ with $|\vec{z}| = |\vec{y}|$.
- Transition rule: (Cons) $K\langle \vec{z} \rangle \xrightarrow{\tau} P\{\vec{z}/\vec{y}\}$ if $K(\vec{y}) \stackrel{\text{def}}{=} P$.
- Let $K^1\pi$ be $K\pi$ but with a single monadic definition.

Definition (Encoding of $K^1\pi$)

[Milner 91] The encoding $\llbracket \cdot \rrbracket : \mathcal{K}^1 \pi \to \pi$ is defined as $\llbracket P \rrbracket = (\nu k)(\llbracket P \rrbracket_0 \parallel \llbracket \mathcal{K}(y) \stackrel{\text{def}}{=} P \rrbracket_0)$ where

$$\llbracket K\langle z \rangle \rrbracket_0 = \overline{k} \langle z \rangle \llbracket K(y) \stackrel{\text{def}}{=} P \rrbracket_0 = !k(w) . \llbracket P \rrbracket_0$$

 $\llbracket \cdot
rbracket_0$ is a homomorphism for the other cases.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria

Correctness Criteria

In what sense are the above encodings "correct" ?

The most commonly used criteria/requirenment for correctness of the encodings are:

- Preservation of Behavioral Equivalence.
- Preservation of Observations.
- Operational Correspondence.
- Full Abstraction.
- Structural Requirements: Compositionality and Homomorphisms.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria: Preservation of Equivalence

Semantic Preservation wrt \bowtie

- $\forall P \in \mathcal{C}$, we must have $\llbracket P \rrbracket \bowtie P$.
 - Typically \bowtie is some bisimilarity relation.
 - Natural and it could be a very strong correspondence depending on the chosen ⋈.
 - But it presupposes that the source and taget calculi are equipped with ⋈.
 - $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ satisfies the above with $\bowtie = \stackrel{:}{\approx}$ but not for $\bowtie = \cong^{c}$.
 - $\llbracket \cdot \rrbracket : K^1 \pi \to \pi$ satisfies the above with $\bowtie = \cong^{\mathsf{c}}$.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria: Preservation of Observables

Preservation of Observations

 $\forall P \in \mathcal{C}$, we must have $obs(\llbracket P \rrbracket) = obs(P)$.

Here obs(.) denotes a set of observations than can be made of processes in $\mathcal{C}\cup\mathcal{C}'$: Typically barbs, traces, divergence, test, failures.

- Observations such as barbs and traces are not enough to capture process behaviour.
- Failures are often enough.
- $\left[\!\left[\cdot\right]\!\right]:\pi^2\to\!\pi$ satisfies the above for barbs but not for tests.
- $\llbracket \cdot \rrbracket : K^1 \pi \to \pi$ satisfies the above for barbs and tests.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria: Operational Correspondence

Operational correspondence

$$\begin{array}{l} \forall P, Q \in \mathcal{C}, \text{ (a) If } P \longrightarrow Q \text{ then } \llbracket P \rrbracket \longrightarrow^* \bowtie \ \llbracket Q \rrbracket \text{ and} \\ \text{(b) } \forall R \text{ if } \llbracket P \rrbracket \longrightarrow R \text{ then } \exists R' \text{ s.t. } P \longrightarrow R' \text{ and } R \bowtie \ \llbracket R' \rrbracket. \end{array}$$

- (a) Preservation of reduction steps (Soundness).
- (b) Reflexion of reduction steps (Completeness).
- It conveys the notion of operational simulation.
- Significant aspects are not covered (e.g., some observables)
- $[\![\cdot]\!]:\pi^2\to\!\!\pi$ satisfies the above for $\bowtie=\ \cong^{\mathsf{c}}$.
- $[\![\cdot]\!]: {\cal K}^1\pi \to \pi$ satisfies the above for $\bowtie = \cong^{\sf c}$ and for label transitions.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria: Full Abstraction

Full Abstraction

 $\forall P, Q \in \mathcal{C}, P \bowtie_{\mathcal{C}} Q \text{ if and only if } \llbracket P \rrbracket \bowtie_{\mathcal{C}'} \llbracket Q \rrbracket.$

I.e. equivalent processes are mapped into equivalent processes.

- If Direction: Soundness.
- Only-If Direction: Completeness.
- Useful when [P] and P cannot be compared directly.
- Completeness could be too demanding if \bowtie is a congruence.
- $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ is fully abstract sound but not complete for $\bowtie = \cong^{\mathsf{c}}$.
- $\llbracket \cdot \rrbracket : K^1 \pi \to \pi$ is fully abstract $\bowtie = \ \cong^{\mathsf{c}}$.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria: Weak Full Abstraction

Weak Full Abstraction

 $\begin{array}{l} \forall P, Q \in \mathcal{C}, \\ K[P] \bowtie_{\mathcal{C}} K[Q] \text{ for all } \mathcal{C}\text{-context } K \\ \text{ if and only if} \\ \llbracket K \rrbracket \llbracket P \rrbracket] \bowtie_{\mathcal{C}'} \llbracket K \rrbracket \llbracket Q \rrbracket] \text{ for all } \mathcal{C}\text{-context } K. \end{array}$

Here \bowtie is typically a non-congruence like barbed bisimulation, trace equivalence, etc.

- Completeness wrt "encoded contexts".
- $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ is weakly fully abstract for $\bowtie = \dot{\approx}$.

Terms and Operators Expressiveness Expressing Power of Asynchronous Pi. Exercises and Solutions Notions/Notations Encodings: Classic Encodings Expressiveness Criteria

Expressiveness Criteria: Compositionality

Compositionality and Homomorphism

(1) The encoding $\llbracket \cdot \rrbracket : \mathcal{C} \to \mathcal{C}'$ is compositional wrt an *n*-ary operator *op* if and only if there exists a \mathcal{C}' -context K with *n*-holes such that $\llbracket op(P_1, \ldots, P_n) \rrbracket = K[\llbracket P_1 \rrbracket, \ldots, \llbracket P_n \rrbracket]$. (2) $\llbracket \cdot \rrbracket : \mathcal{C} \to \mathcal{C}'$ is weakly compositional iff $\exists K, \forall P \llbracket P \rrbracket = K[\llbracket P \rrbracket']$ where $\llbracket \cdot \rrbracket'$ is compositional. (3) $\llbracket \cdot \rrbracket : \mathcal{C} \to \mathcal{C}'$ is homomorphic wrt an *n*-ary operator *op* in \mathcal{C} if and only if $\llbracket op(P_1, \ldots, P_n) \rrbracket = op(\llbracket P_1 \rrbracket, \ldots, \llbracket P_n \rrbracket)$.

- Homomorphism is sometimes required for the parallel operator: $\llbracket P \mid Q \rrbracket = \llbracket P \rrbracket \mid \llbracket Q \rrbracket.$
- Compositionality and its weak version are often required.
- $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ is compositional for all the operators.
- $\llbracket \cdot \rrbracket : \mathcal{K}^1 \pi \to \pi$ is not compositional but weakly compositional.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Correctness of $\llbracket \cdot \rrbracket : K^1 \pi \to \pi$.

Let $\llbracket \cdot \rrbracket : \mathcal{K}^1 \pi \to \pi$ be the encoding from $\mathcal{K}\pi$ with a single monadic recursive definitions into π .

Theorem (Operational Correspondence)

(1) If $P \xrightarrow{\alpha} Q$ then $\llbracket P \rrbracket \xrightarrow{\alpha} \sim \llbracket Q \rrbracket$ (2) If $\llbracket P \rrbracket \xrightarrow{\alpha} R$ then $\exists Q P \longrightarrow Q$ and $R \sim \llbracket Q \rrbracket$.

Proof.

(1) and (2) proceed by induction on the inference and on the size of processes using the Replication Theorem.

Theorem (Replication Theorem (Sangiorgi's Book))

If x occurs in P_i $(i \in I)$ and R only in output subject position then $(\nu x)(\prod_{i \in I} P_i ||!x(y).R) \sim^{c} \prod_{i \in I} (\nu x)(P_i ||!x(y).R).$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Correctness of
$$\llbracket \cdot \rrbracket : K^1 \pi \to \pi$$
.

Theorem (Semantic Preservation wrt \sim^{c})

 $P \sim^{\mathsf{c}} \llbracket P \rrbracket$

Proof.

Verify that $\mathcal{R} = \{(P, \llbracket P \rrbracket)\}$ is a bisimulation up-to \sim using the Operational Correspondence. Also \mathcal{R} is closed under substitutions.

Theorem (Full Abstraction)

 $P \cong^{\mathsf{c}} Q \text{ iff } \llbracket P \rrbracket \cong^{\mathsf{c}} \llbracket Q \rrbracket.$

Proof.

Since $\sim^{\mathsf{c}} = \cong^{\mathsf{c}}$ and the Semantic preservation wrt \sim^{c} .

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Correctness of $\llbracket \cdot \rrbracket : \pi^2 \to \pi$.

Let $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ be the encoding from bi-adic π to π .

Theorem (Operational Correspondence)

(1) if $P \longrightarrow Q$ then $\llbracket P \rrbracket \longrightarrow^* \llbracket Q \rrbracket$ and (2) If $\llbracket P \rrbracket \longrightarrow R$ then $\exists Q; P \longrightarrow Q$ and $R \cong^c \llbracket Q \rrbracket$.

The proof of (1) is by induction on the inference. The proof (2) is rather involved because arbitrary application of \equiv in $\llbracket P \rrbracket \longrightarrow R$.

Theorem (preservation of barbs)

 $P\downarrow_{\mu} iff \llbracket P \rrbracket \downarrow_{\mu}$

Theorem (Semantic preservation wrt $\stackrel{.}{\approx}$)

 $\llbracket P \rrbracket \stackrel{\cdot}{\approx} P.$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Correctness of
$$\llbracket \cdot \rrbracket : \pi^2 \to \pi$$
.

Corollary (Soundness)

If
$$\llbracket P \rrbracket \cong^{\mathsf{c}} \llbracket Q \rrbracket$$
 then $P \cong^{\mathsf{c}} Q$.

Proof.

From the homomorphic definition of $\llbracket \cdot \rrbracket$ and the preservation of \approx . $\mathcal{K}[P] \approx \llbracket \mathcal{K}[P] \rrbracket = \llbracket \mathcal{K} \rrbracket \llbracket \llbracket P \rrbracket] \approx \llbracket \mathcal{K} \rrbracket \llbracket \llbracket \mathcal{Q} \rrbracket] = \llbracket \mathcal{K}[Q] \rrbracket \approx \mathcal{C}[Q] \square$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

```
If \llbracket P \rrbracket \cong^{\mathsf{c}} \llbracket Q \rrbracket then P \cong^{\mathsf{c}} Q.
```

Correctness of $\llbracket \cdot \rrbracket : \pi^2 \to \pi$.

Exercises :

- Show that the encoding is not complete. I.e., P ≅^c Q does not imply [[P]] ≅^c [[Q]].
- Are the encodings [[·]] : Aπ → π by Boudol and Honda complete wrt ≅^c ? If not, prove it.
- Define a weakly compositional encoding [[·]]: Kπ → π which is sound wrt ≅^c ? Is your encoding complete ≅^c ? If not, argue why.

Open Question: Is there a compositional encoding $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ fully-abstract wrt \cong^c .

Trios

A trios process is a polyadic π process whose prefixes are of the form $\pi'.\pi.\pi''.0$. Trios processes can encode arbitrary polyadic π processes [Parrow'01].

Exercise Give an encoding $\llbracket \cdot \rrbracket$ from π^0 processes into π^0 trios processes. Argue that $\llbracket P \rrbracket \approx P$.

Replication vs Recursion in CCS

Notice that π^0 is CCS with replication instead of recursive definitions $CCS_!$.

• Is CCS₁ as expressive as CCS? We shall conclude this section we a survey on these kind of Recursion vs Replication results.

References

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

- Kohei Honda, Mario Tokoro: *An Object Calculus for Asynchronous Communication*. ECOOP 1991: 133-147. 1991.
- Gerard Boudol: Asynchrony and the π -calculus. Rapport de Recherche RR-1702, INRIA-Sophia Antipolis. 1992
- Robin Milner: The Polyadic pi-Calculus: A Tutorial. Technical Report LFCS report ECS-LFCS-91-180, University of Edinburgh. 1994.
- J. Aranda, C. Di Giusto, C. Palamidessi and F. Valencia. *On Recursion, Replication and Scope Mechanisms in Process Calculi.* To appear in FMCO'06. ©Springer-Verlag. 2007.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS

Language of a process : $L(P) = \{ s \in \mathcal{L}^* | \exists Q : P \xrightarrow{s} Q \land \forall \alpha \in Act : Q \not\xrightarrow{\alpha} \}.$

Theorem (CCS can generate CFL)

For any context-free grammar G, there exists a CCS process P_G such that $s \in L(G)$ iff $s \in L(P_G)$.

Proof.

Hint: Consider productions in Chomsky Normal form: $A \rightarrow B.C$ or $A \rightarrow a$. For the case B.C provide a definition $A(\ldots) \stackrel{\text{def}}{=} \ldots$ which allows for the sequentialization of B and C.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS

Theorem

CCS is Turing-Expressive.

This can be shown by encoding Minsky Machines.

Minsky's Two-Counter Machines

Sequence of labelled instructions on two counters c_0 and c_1 :

$$\begin{array}{rcl} L_i & : & \text{halt} \\ L_i & : & c_n := c_n + 1; \text{goto } L_j \\ L_i & : & \text{if } c_n = 0 \text{ then goto } L_i \text{ else } c_n := c_n - 1; \text{ goto } L_k \end{array}$$

The machine: 1) starts at L_1 , 2) halts if control reaches the location of a halt instruction and 3) computes the value n if it halts with $c_0 = n$.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS

Definition (A Counter C)

$$C \stackrel{\texttt{def}}{=} isz.C + inc.(\nu I)(C'\langle I \rangle \parallel I.C)$$

$$C'(I) \stackrel{\text{def}}{=} dec.\overline{I}.0 + inc.(\nu I')(C'\langle I'\rangle \parallel I'.C'\langle I\rangle)$$

For counters X and Y replace C with X, resp Y, and *isz*, *inc*, *dec* with iszX, *incX*, *decX*, resp iszY, *incY*, *decY*.

Instructions are represented as processes waiting for an input on its label.

Example

 $\begin{array}{l} L_2: \text{if } X=0 \text{ then goto } L_4 \text{ else goto } L_8 \text{ and } L_4: \textit{halt can be} \\ \text{represented as } L_2 \stackrel{\text{def}}{=} l_2.(\overline{\textit{iszX}}.\overline{l}_4.L_2 + \overline{\textit{decX}}.\overline{\textit{incX}}.\overline{l}_8.L_2) \text{ and} \\ L_4 \stackrel{\text{def}}{=} l_4.\overline{\textit{halt}} \end{array}. \end{array}$

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS

Definition (A program M)

A program $M(X, Y) = L_1 : I_1; ...; L_n : I_n$ can be encoded as

$$\llbracket M(X, Y) \rrbracket = (\nu I_1 \dots I_n) (\bar{I}_1 \dots \parallel L_1 \parallel \dots \parallel L_n \parallel X \parallel Y)$$

The correctness is stated as follows:

Theorem (Correctness)

M(X, Y) computes n on X if and only if

 $(\llbracket M \rrbracket \parallel halt.Dec_n) \Downarrow_{\overline{yes}}$

where for n > 0, $Dec_n = \overline{decX}$. Dec_{n-1} and $Dec_0 = \overline{iszX}$. \overline{yes}

Recursion vs Replication in π Polyadicity vs Monadicity in π **Computional Expressiveness in Process Calculi** Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS $\pi^0 = CCS_1$

Theorem (π^0 can generate REG)

Given a regular expression e, there exists a CCS! process P_e such that $s \in L(e)$ iff $s \in L(P_e)$.

Exercise. Write a CCS! process P such that $L(P) = a^*c$.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS $\pi^0 = CCS_!$

Theorem (π^0 can generate REG)

Given a regular expression e, there exists a CCS process P_e such that $s \in L(e)$ iff $s \in L(P_e)$.

Proof.

Fran

Definition 4. Given a regular expression e, we define [e] as the CCS₁ process (νm) $([e]]_m \mid m)$ where $[e]]_m$, with $m \notin fn([e])$, is inductively defined as follows:

$$\begin{split} \llbracket \emptyset \rrbracket_{m} &= & DIV \\ \llbracket e \rrbracket_{m} &= & \overline{m} \\ \llbracket a \rrbracket_{m} &= & a.\overline{m} \\ \llbracket a \rrbracket_{m} &= & a.\overline{m} \\ \llbracket e_{1} \rrbracket_{m} &= & a.\overline{m} \\ \llbracket e_{2} \rrbracket_{m} & \text{if } L(e_{2}) = \emptyset \\ \llbracket e_{1} \rrbracket_{m} + \llbracket e_{2} \rrbracket_{m} & \text{if } L(e_{1}) = \emptyset \\ \llbracket e_{1} \rrbracket_{m} + \llbracket e_{2} \rrbracket_{m} & \text{otherwise} \\ \llbracket e_{1.e_{2}} \rrbracket_{m} &= & (\nu m_{1})(\llbracket e_{1} \rrbracket_{m_{1}} \mid m_{1}.\llbracket e_{2} \rrbracket_{m}) \text{ with } m_{1} \notin fn(e_{1}) \\ \llbracket e^{\star} \rrbracket_{m} &= & \begin{cases} \overline{m} & \text{if } L(e) = \emptyset \\ (\nu m')(\overline{m'} \mid !m'.\llbracket e \rrbracket_{m'} \mid m'.\overline{m}) \text{ with } m' \notin fn(e) & \text{otherwise} \end{cases} \\ \text{K D. Valencia CNRS-LIX Ecole Polytechnique} & \text{Expressiveness} \end{cases}$$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of CCS $\pi^0 = CCS_!$

Theorem (π^0 can generate REG)

Given a regular expression e, there exists a CCS! process P_e such that $s \in L(e)$ iff $s \in L(P_e)$.

But CCS! can generate CFL languages too.

Exercise. Write a CCS! process Q such that $L(Q) = a^n b^n$. *Hint:* Recall the process P such that $L(P) = a^n c$.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of $\pi^0 = CCS_!$

- CCS! is also Turing Expressive: It can also encode Minsky Machines.
- The encoding is unfaithfull: **[***M***]** can evolve into a process which does NOT correspond to any computation of *M*.
 - Such process however never terminates (i.e., it is divergent).
- In fact, CCS! cannot encode even CFG faithfully.
 - The following theorem and $a^n b^n c$ are central to this impossibility result:

Theorem

Let $P \in CCS$!. Suppose that $P \stackrel{s.\alpha}{\Longrightarrow}$ where $s \in Act^*$. Then $P \stackrel{s'.\alpha}{\Longrightarrow}$ for some $s' \in Act^*$ whose length is bounded by a value depending only on the size of P.
Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of $\pi^0 = CCS_!$

The construction in CCS! differs for registers.

Counter in CCS!

$$C \stackrel{\text{def}}{=} \overline{c} \parallel \frac{!c.(\nu m, i, d, u)(\overline{m} \parallel!m.(inc.\overline{i} + dec.\overline{d}) \parallel}{!i.(\overline{m} \parallel \overline{inc'} \parallel \overline{u} \parallel d.u.(\overline{m} \parallel \overline{dec'}) \parallel} \\ \frac{!i.(\overline{m} \parallel \overline{inc'} \parallel \overline{u} \parallel d.u.(\overline{m} \parallel \overline{dec'}) \parallel}{d.(\overline{isz} \parallel u.DIV \parallel \overline{c})}$$

Instructions: L_2 : if X = 0 then goto L_4 else goto L_8 can be modelled as

 $!I_2.\overline{decX}.(dec'X.\overline{I_4} + iszX.\overline{I_8})$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Computational Expressiveness of $\pi^0 = CCS_!$

Theorem (Correctness)

M(X, Y) computes n on X if and only if

$$\exists Q : (\llbracket M \rrbracket \parallel halt.Dec_n) \Longrightarrow (Q \parallel \overline{yes}) \land Q \not \longrightarrow$$

where for n > 0 $Dec_n = \overline{decX}.dec'X.Dec_{n-1}$ and $D_0 = iszX.\overline{yes}$.

References

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

- N. Busi, M.. Gabbrielli, G. Zavattaro: *Comparing Recursion, Replication, and Iteration in Process Calculi.* ICALP 2004: 307-319.
- N. Busi, M.. Gabbrielli, G. Zavattaro: *Replication vs. Recursive Definitions in Channel Based Calculi*. ICALP 2003: 133-144.
- J. Aranda, C. Di Giusto, M. Nielsen and F. Valencia. *CCS* with Replication in the Chomsky Hierarchy: The Expressive Power of Divergence. APLAS'07.

Linearity. Linearity of messages and input processes.

- In the π -calculus outputs (messages) and inputs are *linear*.
- E.g. the parallel composition

$$\bar{x}z \mid x(y).P \mid x(w).Q$$

reduces either

to

 $P\{z/y\} \mid Q$

or to

 $P \mid Q\{z/w\}$

Persistence. Persistence of messages.

- Other calculi follow a different pattern: *Messages are persistent*. E.g.:
- Concurrent Constraint Programming (CCP)[Saraswat'90] where

information can only increase during computation.

• Several *Calculi for Security* (e.g., Winskel&Crazolara's SPL) to model a Dolev-Yao assumption:

"The Spy sees and remembers every message in transit"

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Terms and Operators Expressiveness} \\ \mbox{Expressing Power of Asynchronous Pi,} \\ \mbox{Exercises and Solutions} \end{array} \qquad \begin{array}{c} \mbox{Recursion vs Replication in } \pi \\ \mbox{Polyadicity vs Monadicity in } \pi \\ \mbox{Computional Expressiveness in Process Calculi} \\ \mbox{Linearity vs Persistence in } A\pi \end{array}$

Persistence. Persistence of messages and input process.

- Persistent π input processes model functions, procedures and higher-order communication (also arises in the notion of ω -receptiveness) [Sangiorgi'99].
- Persistent messages and input processes can be used to reason about protocols that can run unboundedly (see [Blanchet'04]).

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Linearity vs Persistence.

- Does the persistence assumption restrict the kind of systems that can be reasoned about ? E.g.
- Can some security attacks based on linear messages be impossible to model under the persistent message assumption of SPL?
- Is Linear CCP more expressive than CCP ?

Introduction R Terms and Operators Expressiveness Power of Asynchronous Pi. Expressing Power of Asynchronous Pi. Exercises and Solutions L

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Linearity vs Persistence.

To study the expressiveness of fragments of π capturing the above sources of persistence:

• $A\pi$: Asynch. π -calculus, here denoted simply as π :

 $P,Q := \bar{x}z \mid x(y).P \mid P \mid Q \mid (\nu x)P \mid !P$

• $PO\pi$: *Persistent-output* (messages) π :

 $P,Q := \overline{!}xz \mid x(y).P \mid P \mid Q \mid (\nu x)P \mid !P$

• $PI\pi$: Persistent-input π :

 $P,Q := \bar{x}z \mid !x(y).P \mid P \mid Q \mid (\nu x)P \mid !P$

• $P\pi$: *Persistent* (input & ouput) π :

 $P,Q := \overline{!xz} \mid !x(y).P \mid P \mid Q \mid (\nu x)P \mid !P$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Encodings & Interpretations

Some studies on Linearity vs Persistence have reported:

- The (non) existance of, *compositional encodings* between the fragments *fully-abstract* wrt barbed congruence and barbed bisimilarity.
- The *Turing-Completeness* of $P\pi$.
- A *compositional FOL* interpretation of $P\pi$.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Applications: Decidability

As applications of the above and classic FOL results there are

• Decidability results of *barbed-congruence* for *n*-adic versions.

	Ρπ	ΡΟπ	$PI\pi$
0	yes	yes	no
1	?	no	
2	no		

• Identify meaningful decidable *infinite-state* mobile classes of π processes.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Impossibility of a sound encoding of π in $P\pi$

Impossibility of Sound Encodings

There is no encoding $\llbracket \cdot \rrbracket : \pi \to P\pi$, homomorphic wrt parallel composition, such that $\llbracket P \rrbracket \cong^{c} \llbracket Q \rrbracket$ implies $P \cong^{c} Q$.

- ^c is barbed congruence for Pπ
 (the result also holds for barbed bisimilarity)
- Key property: in $P\pi$, for every $P, P \mid P \cong^{c} P$.
- Key property is not trivial for P = (vx)Q and it does not hold with mismatch. Notice that R =!x(y).!x(y').[y ≠ y'].t distinguishes Q = (vz)!xz from Q | Q.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Impossibility of a sound encoding of π in $P\pi$

Theorem

There is no encoding $\llbracket \cdot \rrbracket : \pi \to P\pi$, homomorphic wrt parallel composition, such that $\llbracket P \rrbracket \cong^{c} \llbracket Q \rrbracket$ implies $P \cong^{c} Q$.

The proof involves the following lemmas:

$$If P \longrightarrow Q then P \sigma \longrightarrow Q \sigma.$$

• Does it hold with mistmatch?

 $P \approx Q \text{ iff } P \stackrel{\sim}{\simeq} Q \text{ where }$

- \dot{pprox} is barbed bisimilarity for ${\it P}\pi$ and
- $P \stackrel{\circ}{\simeq} Q$ holds iff $P \Downarrow_{\overline{X}} \iff Q \Downarrow_{\overline{X}}$)

 $P \parallel P \cong^{\mathsf{c}} P.$

Take $P = Q \parallel Q$, $Q = \overline{x} \parallel x.x.\overline{t}$. Notice that $P \not\cong^{c} Q$. But from (4) $\llbracket P \rrbracket = \llbracket Q \rrbracket \parallel \llbracket Q \rrbracket \cong^{c} \llbracket Q \rrbracket$. It remains to prove (3) and (4).

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

FOL Characterization of $P\pi$

FOL Interpretation of $P\pi$

$$\llbracket !\bar{x}z \rrbracket = out(x,z), \quad \llbracket !x(y).P \rrbracket = \forall_y out(x,y) \Rightarrow \llbracket P \rrbracket \\ \llbracket (\nu x)P \rrbracket = \exists_x \llbracket P \rrbracket, \quad \llbracket P \mid Q \rrbracket = \llbracket P \rrbracket \land \llbracket Q \rrbracket.$$

• *Input* and *"new"* binders are interpreted as *universal* and *existential* quantifiers.

Theorem: FOL Characterization of Barbed Observability

 $\llbracket P \rrbracket \models \exists_z out(x, z) \text{ if and only if } P \Downarrow_{\bar{x}}$

• With mismatch and $\llbracket x \neq y.P \rrbracket = x \neq y \Rightarrow \llbracket P \rrbracket$, $Q = (\nu y)(\nu y')[y \neq y'].! \bar{x}z \downarrow_{\bar{x}}$ but $\llbracket Q \rrbracket \not\models \exists_z out(x, z).$

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

FOL Characterization of $P\pi$

- Consider the following example:
- In P = |x(y), Q| (νz)!xz, by extruding the private name z, we can conclude that $(\nu z)Q\{z/y\}$ is executed in P.
- In $\llbracket P \rrbracket = \forall_y out(x, y) \Rightarrow \llbracket Q \rrbracket \land \exists_z out(x, z)$, by moving the existential z to outermost position, we conclude that $\exists_z \llbracket Q \rrbracket \{z/y\}$ is a *logical consequence* of $\llbracket P \rrbracket$.
- FOL interpretation captures name extrusion (*P*π-calculus mobility) in FOL via *existential* and *universal* quantifiers.

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

Encoding $A\pi$ in the semi-persistent calculi

Consider $S = \bar{x}u | \bar{x}w | x(y).\bar{y}m | x(y).\bar{y}n$. Want an encoding [[S]] in the semi-persistent calculi s.t.:

- $\llbracket S \rrbracket = \llbracket \overline{x} \langle u \rangle \rrbracket \mid \llbracket \overline{x} \langle w \rangle \rrbracket \mid \llbracket x(y).\overline{y}m \rrbracket \mid \llbracket x(y).\overline{y}n \rrbracket$ behaves
- either as (a) $\llbracket \overline{u} \langle m \rangle \rrbracket$ | $\llbracket \overline{w} \langle n \rangle \rrbracket$ or as (b) $\llbracket \overline{w} \langle m \rangle \rrbracket$ | $\llbracket \overline{u} \langle n \rangle \rrbracket$.
- Problem: In either case input and outputs are both consumed. In the semi-persistent calculi either input or outputs cannot be consumed.

Encoding $A\pi$ in $PO\pi$

The encoding [[·]] : π → PIπ is a homomorphism for all operators but:

$$\llbracket x(\vec{y}).P \rrbracket = (\nu t f)(\overline{t} \mid !x(\vec{y}).(\nu l)(\overline{l} \mid !t.!l.(\llbracket P \rrbracket \mid !\overline{f}) \mid !\overline{f}) \mid !f.!l.\overline{x}\langle \vec{y} \rangle))$$

- The idea is a suitable combination of locking and forwarding mechanisms: If the [x(y).P] has already received a message then it forwards the current message.
- Key property: In asynch. π , forwarders (e.g., $!x(y).\bar{x}y$) are barbed congruent to the null process 0.

Theorem

Every (asynch) π process P is (weak) barbed congruent to $\llbracket P \rrbracket$.

Encoding $A\pi$ in $PO\pi$

• Consider the encoding $\llbracket \cdot \rrbracket : \pi \to PO\pi$:

$$\begin{split} \llbracket \overline{x} \langle \vec{z} \rangle \rrbracket &= (\nu s) (! \overline{x} \langle s \rangle \mid s(r) . ! \overline{r} \langle \vec{z} \rangle) \\ \llbracket x(\vec{y}) . P \rrbracket &= x(s) . (\nu r) (! \overline{s} \langle r \rangle \mid r(\vec{y}) . \llbracket P \rrbracket) \end{split}$$

- Problem: An encoded input may get deadlocked. E.g.,
 - Consider $\llbracket \overline{x} \langle u \rangle \rrbracket | \llbracket \overline{x} \langle w \rangle \rrbracket | \llbracket x(y).P \rrbracket | \llbracket x(y).Q \rrbracket.$
 - Suppose [[x(y).P]] gets the u of [[x(y).Q]] may input the broadcast s of [[x(u)]] and get stuck waiting on r unable to interact with [[x(w)]].
- But this wouldn't be a problem if inputs were *persistent* as in *PI*π: If a copy becomes unable to interact with, there is always another able to.
- Solution: Encode first π into $PI\pi$ and then compose the encodings Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

Recursion vs Replication in π Polyadicity vs Monadicity in π Computional Expressiveness in Process Calculi Linearity vs Persistence in $A\pi$

References on Linearity vs Persistence

- C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. *On the Expressiveness of Linearity vs Persistence in the Asynchronous Pi Calculus.* LICS 2006:59-68.
- D. Cacciagrano, F. Corradini, J. Aranda, F. Valencia. *Persistence and Testing Semantics in the Asynchronous Pi Calculus.* EXPRESS'07.

Expressive Power of Asynchronous Communication

Motivation: To understand the expressive power of $A\pi$.

- It's theory is simpler and somewhat more satisfactory.
- We've seen how it encodes (synchronous, polyadic) π . Recall e.g., Boudol's encoding.
- But for the encodings are for π without summation.
- We shall see how it encodes various forms of summation.
- We shall see it cannot encode arbitrary summation.
- We'll do this by using *electoral problems* solvable in π but not in $A\pi$.

Encoding summations in $A\pi$. Electoral Systems in π

Some Distintive Properties for $A\pi$

If
$$P \xrightarrow{\overline{x}\langle y \rangle} P'$$
 then $P \equiv \overline{x}\langle y \rangle \parallel P'$.
If $P \xrightarrow{\overline{x}\langle y \rangle} \xrightarrow{\alpha} P'$ then $P \xrightarrow{\alpha} \xrightarrow{\overline{x}\langle y \rangle} P' \equiv P'$.
If $P \xrightarrow{\overline{x}\langle y \rangle} \xrightarrow{xw} P'$ with $w \notin fn(P)$ then $P \xrightarrow{\tau} \equiv P'\{y/w\}$.
Exercise: Show (1-3) then Theorem below. Does (2) hold for \Longrightarrow ?

Theorem (Diamond Property)

Encoding summations in $A\pi$. Electoral Systems in π

Equivalences for $A\pi$

Definition (Asynchronous Barbed Bisimilarity)

- - (a) $P \downarrow_{\overline{x}}$ implies $Q \Downarrow_{\overline{x}}$
 - (b) P → P' implies Q ⇒ ≈ P'.
- (2) P and Q are asynchronous barbed congruent, P ≃^c_a Q, if C[P] ≈ⁱ_a C[Q] for every context C of Aπ.

Definition (Asynchronous Bisimilarity)

Asynchronous bisimilarity is the largest symmetric relation, \approx_a , such that whenever $P \approx_a Q$, (1) if $P \xrightarrow{\alpha} P'$ and α is \overline{xy} or $\overline{x}(x)$ or τ , then $Q \xrightarrow{\alpha} \approx_a P'$ (2) if $P \xrightarrow{xy} P'$ then (a) $Q \xrightarrow{xy} \approx_a P'$ or (b) $Q \Rightarrow Q'$ and $P' \approx_a (Q' | \overline{xy})$.

Encoding summations in $A\pi$. Electoral Systems in π

Equivalences for $A\pi$

Some useful properties in $A\pi$:

- $\bullet \quad \text{If } P \approx_{\mathsf{a}} Q \text{ then } P \cong^{\mathsf{c}}_{\mathsf{a}} Q \text{ .}$
- 2 $x(y).\overline{x}\langle y \rangle \cong^{c}_{a} 0$ (I.e., forwarders are equivalent to 0).

Exercise: Show (2).

Encoding summations in $A\pi$. Electoral Systems in π

The π calculus with prefixed summations

The π -calculus prefixed summation π^{Σ} extends the π fragment we've considered so far with guarded summations:

•
$$P := \ldots \mid \sum_{i \in I} \pi_i . P_i$$

Reduction rule for summation

R-INTER

$$(\overline{x}y.P_1 + M_1) \mid (x(z).P_2 + M_2) \longrightarrow P_1 \mid P_2\{y/z\}$$

Transition rule for summation

SUM-L
$$\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'}$$

Encoding summations in $A\pi$. Electoral Systems in π

The π calculus with blind choice: $\pi^{\Sigma \tau}$

In the blind-choice $\pi\text{-calculus, summation takes the form }\sum_{i\in I} \tau.P_i$.

Exercises:

- Give an encoding $\llbracket \cdot \rrbracket : A\pi^{\Sigma\tau} \to A\pi$ such that $\llbracket P \rrbracket \sim P$.
- Show that there cannot be an encoding $\llbracket \cdot \rrbracket : A\pi^{\Sigma} \to A\pi$ such that $\llbracket P \rrbracket \sim P$.

Encoding summations in $A\pi$. Electoral Systems in π

The π calculus with input-choice: $\pi^{\Sigma i}$

In input-choice π summations takes the form $\sum_{i \in I} x_i(y_i) . P_i$.

Encoding into Asynchronous (polyadic) π

$$\begin{split} & [\Sigma_i \, x_i(z) . \, P_i] \stackrel{\text{def}}{=} \boldsymbol{\nu} \ell(\text{ PROCEED}(\ell) \\ & |\Pi_i \, x_i(z) . \, (\boldsymbol{\nu} p, f) \ (\overline{\ell}(p, f) \mid p. \left(\text{FAIL}(\ell) \mid [P_i] \right) \\ & | f. \left(\text{FAIL}(\ell) \mid \overline{x_i}(z) \right))) \end{split} \\ & \text{where } \ell, \, p, \text{ and } f \text{ are fresh and} \\ & \text{PROCEED}(\ell) \quad \stackrel{\text{def}}{=} \quad \ell(p, f) . \overline{p} \end{split}$$

 $FAIL(\ell) \stackrel{\text{def}}{=} \ell(p, f). \overline{f}$.

Exercises:

- **1** Let \mathcal{E} be the above encoding. Show that $\exists P : \mathcal{E}(P) \not\approx_{a} P$.
- **2** Give $\mathcal{E}' : A\pi^{\Sigma i} \to A\pi$ so that $\forall P : \mathcal{E}'(P) \approx_a P$.
- **③** Then show that \mathcal{E} is neither sound nor complete.

Encoding summations in $A\pi$. Electoral Systems in π

The π calculus with input-choice: $\pi^{\Sigma i}$

Encoding into Asynchronous (polyadic) π

$$\begin{split} \left[\Sigma_{i} \, x_{i}(z) . \, P_{i} \right] &\stackrel{\text{def}}{=} \boldsymbol{\nu} \ell \left(\begin{array}{c} \text{PROCEED} \left(\ell \right) \\ & | \Pi_{i} \, x_{i}(z) . \left(\boldsymbol{\nu} p, f \right) \left(\overline{\ell} \langle p, f \rangle \mid p. \left(\text{FAIL}(\ell) \mid [P_{i}] \right) \\ & | f. \left(\text{FAIL}(\ell) \mid \overline{x_{i}} \langle z \rangle \right) \right) \right) \\ \text{where } \ell, \, p, \, \text{and } f \text{ are fresh and} \\ \\ \begin{array}{c} \text{PROCEED} \left(\ell \right) &\stackrel{\text{def}}{=} \ell(p, f) . \, \overline{p} \\ & \text{FAIL} \left(\ell \right) &\stackrel{\text{def}}{=} \ell(p, f) . \, \overline{f} \, . \end{split}$$

Observations and Hints:

- Consider $P = \overline{x}\langle z \rangle \parallel x(y).\overline{y} + w(y).0$ to show $\mathcal{E}(P) \not\approx_a P$.
- Note that \mathcal{E} and \mathcal{E}' act as the identity on their images. So $\mathcal{E}(\mathcal{E}(P)) = \mathcal{E}(P)$ and $\mathcal{E}(\mathcal{E}'(P)) = \mathcal{E}'(P)$.
- However $\mathcal{E}(P) \bowtie P$ where $\bowtie \stackrel{\text{def}}{=}$ coupled-bisimulation.

Encoding summations in $A\pi$. Electoral Systems in π

The π calculus with separate-choice: $\pi^{\Sigma s}$

In separate-choice summation can be $\sum_i x_i(y_i) P_i$ or $\sum_i \overline{x_i} \langle y_i \rangle P_i$

Encoding into Asynchronous (polyadic) π

```
\{\!\{\Sigma_i \,\overline{x_i} d_i, P_i\}\!\} \stackrel{\text{def}}{=} \nu s \ (\text{PROCEED}(s))
\prod_i \nu_q (\overline{q})
                         !g. y_i(z, s, a). (\nu p_1, f_1) (\overline{r} \langle p_1, f_1 \rangle)
                                                     p_1.(\nu p_2, f_2) \ (\ \overline{s}(p_2, f_2))
                                                                      p_2. (FAIL(r)
                                                                               FAIL(s)
                                                                               PROCEED(a)
                                                                               \{Q_i\}\}
                                                                      f_2. (PROCEED(r)
                                                                               FAIL(s)
                                                                               FAIL(a)
                                                                               \overline{q}))
                                                     | f_1. (FAIL(r) | \overline{y_i}(z, s, a))))
```

Encoding summations in $A\pi$. Electoral Systems in π

The π calculus with mixed choice: π^{Σ}

In π^{Σ} summations are mixed. Can we encode them using the obvious generalization of the previous encoding of $\pi^{\Sigma s}$?

- Consider $P = x_1(y).P_1 + \overline{x_2}\langle w \rangle.P_2 \parallel \overline{x_1}\langle w \rangle.Q_1 + x_2(y).Q_2$
- How about other encodings?

Impossibility Result

Under certain reasonable restrictions, no encoding of mixed-choice into $A\pi$ can exist.

Encoding summations in $A\pi$. Electoral Systems in π

Background: Hypergraphs

Definition (Hypergraphs)

A hypergraph is a tuple $H = \langle N, X, t \rangle$ where N, X are finite sets whose elements are called *nodes* and *edges* (or *hyperedges*) respectively, and t (*type*) is a function which assigns to each $x \in X$ a set of nodes, representing the nodes *connected* by x. We will also use the notation $x : n_1, \ldots, n_k$ to indicate $t(x) = \{n_1, \ldots, n_k\}$.

Definition (Automorphism)

The concept of graph automorphism extends naturally to hypergraphs: Given a hypergraph $H = \langle N, X, t \rangle$, an *automorphism* on H is a pair $\sigma = \langle \sigma_N, \sigma_X \rangle$ such that $\sigma_N : N \to N$ and $\sigma_X : X \to X$ are permutations which preserve the type of edges, namely for each $x \in X$, if $x : n_1, \ldots, n_k$, then $\sigma_X(x) : \sigma_N(n_1), \ldots, \sigma_N(n_k)$.

• The orbit $n \in X$ by σ is $O_{\sigma}(n) = \{n, \sigma(n), \sigma^2(n), \dots, \sigma^h(n)\}$ where *h* is the least power s.t. $\sigma^h = id$.

Encoding summations in $A\pi$. Electoral Systems in π

Background: Hypergraphs

- σ is *well-balanced* iff all of its orbits have the same cardinality.
- E.g., (1) and (2) have a one with a single orbit of size 6, (4) has none.

Encoding summations in $A\pi$. Electoral Systems in π

Networks

- A (process) network P of size k takes the form $P_1 \parallel \ldots \parallel P_k$.
- A *computation* C of the P takes the form:

$$\begin{array}{ccc} P_1|P_2|\dots|P_k & \xrightarrow{\mu^2} & P_1^1|P_2^1|\dots|P_k^1 \\ & \xrightarrow{\mu^2} & P_1^2|P_2^2|\dots|P_k^2 \\ & \vdots \\ & \vdots \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \begin{pmatrix} \mu^{n-1} \\ & \\ & \end{pmatrix} & P_1^n|P_2^n|\dots|P_k^n \\ & & \\ & & \\ & & \begin{pmatrix} \mu^n \\ & \\ & \\ & \end{pmatrix} & \dots \end{pmatrix} \end{array}$$

• *Proj*(*C*, *i*) is the contributions of *P_i* to *C*: The sequence of transitions performed by *P_i* in *C*.

$$P_i \stackrel{\tilde{\mu}^0}{\Longrightarrow} P_i^1 \stackrel{\tilde{\mu}^1}{\Longrightarrow} P_i^2 \stackrel{\tilde{\mu}^2}{\Longrightarrow} \dots \stackrel{\tilde{\mu}^{n-1}}{\Longrightarrow} P_i^n \stackrel{\tilde{\mu}^n}{\Longrightarrow} \dots)$$

Encoding summations in $A\pi$. Electoral Systems in π

Electoral Networks

- A (process) network P of size k takes the form $P_1 \parallel \ldots \parallel P_k$.
- A *computation* C of the P takes the form:

$$\begin{array}{ccc} P_1|P_2|\dots|P_k & \xrightarrow{\mu^2} & P_1^1|P_2^1|\dots|P_k^1 \\ & \xrightarrow{\mu^1} & P_1^2|P_2^2|\dots|P_k^2 \\ & \vdots \\ & \vdots \\ & & \\ & & \\ \frac{\mu^{n-1}}{\longrightarrow} & P_1^n|P_2^n|\dots|P_k^n \\ & & \\ & & (\xrightarrow{\mu^n} & \dots) \end{array}$$

• *Proj*(*C*, *i*) is the contributions of *P_i* to *C*: The sequence of transitions performed by *P_i* in *C*.

$$P_i \stackrel{\tilde{\mu}^0}{\Longrightarrow} P_i^1 \stackrel{\tilde{\mu}^1}{\Longrightarrow} P_i^2 \stackrel{\tilde{\mu}^2}{\Longrightarrow} \dots \stackrel{\tilde{\mu}^{n-1}}{\Longrightarrow} P_i^n \stackrel{\tilde{\mu}^n}{\Longrightarrow} \dots)$$

Encoding summations in $A\pi$. Electoral Systems in π

Electoral Networks in π

- A network P = P₁ || ... || P_k is an *electoral system* iff for every computation C of P:
 - C can be extended to a computation C' and
 - $\exists n \leq k$ (the "leader") s.t.,
 - $\forall i \leq k$: Proj(C', i) contains the action $\overline{out}n$, and
 - no extension of C' contains any action $\overline{out}m$ with $m \neq n$.
- The hypergraph of P, $H(P) = \langle N, X, t \rangle$ is given by:

•
$$t(x) = \{n \mid x \in fn(P_n) \}$$

Encoding summations in $A\pi$. Electoral Systems in π

Symmetric Electoral Networks in π

- Given $P = P_1 \parallel \ldots \parallel P_k$, let σ be an automorphism on H(P).
 - *P* is *symmetric* wrt σ iff for each $i \leq k$,
 - $P_{\sigma(i)} \equiv P_i \sigma$.
 - P is symmetric iff symmetric wrt all automorphism on H(P)
- Notice that P is symmetric wrt σ then it is symmetric wrt σⁱ (i > 1).
- Symmetric electoral system in π^{Σ} with ring structure:

Encoding summations in $A\pi$. Electoral Systems in π

Symmetric Electoral Networks in $A\pi$.

Theorem (Impossibility of electoral systems)

Let $P = P_1 \parallel ... \parallel P_k$ be a $A\pi$ network so that H(P) is a ring with k > 1. Assume that P is symmetric wrt σ where σ has a single orbit on H(P). Then P cannot be an electoral system.

The proof strategy involves:

- Building a computation $P \xrightarrow{\mu_1} P^1 \dots \xrightarrow{\mu_h} P^h$ so that P^h is a symmetric network for every h > 1.
- **2** Usind Diamond Lemma and Symmetry of P^{h-1} to build P^h .
- The symmetry cannot be broken, hence no leader can be selected.

Encoding summations in $A\pi$. Electoral Systems in π

Symmetric Electoral Networks in $A\pi$.

Corollary:

• There is no encoding $\llbracket \cdot \rrbracket : \pi^{\Sigma} \to A\pi$ such that

$$\begin{bmatrix} P & \| & Q \end{bmatrix} = \llbracket P \rrbracket & \| & \llbracket Q \end{bmatrix}$$

$$\mathbf{P}\sigma\mathbf{J} = \mathbf{P}\sigma\mathbf{J}\sigma$$

Preservation of obervables (actions on visible channels) on maximal computations.

Proof idea: (1) and (2) preserve symmetry and (3) distinguishes an electoral system from a non-electoral one.
Encoding summations in $A\pi$. Electoral Systems in π

Expressiveness Hierarchy

Summary

Encoding summations in $A\pi$. Electoral Systems in π

References

- Catuscia Palamidessi: Comparing The Expressive Power Of The Synchronous And Asynchronous Pi-Calculi. Mathematical Structures in Computer Science 13(5): 685-719 (2003).
- Uwe Nestmann: What is a "Good" Encoding of Guarded Choice? Inf. Comput. 156(1-2): 287-319 (2000).
- Uwe Nestmann, Benjamin C. Pierce: *Decoding Choice Encodings.* Inf. Comput. 163(1): 1-59 (2000)

Exercises: Non-Complete Encodings

Exercises :

- Show that the encoding $\llbracket \cdot \rrbracket : \pi^2 \to \pi$ is not complete. I.e., $P \cong^c Q$ does not imply $\llbracket P \rrbracket \cong^c \llbracket Q \rrbracket$.
 - Take $P = \overline{x} \langle yz \rangle .0 \parallel \overline{x} \langle yz \rangle .0$ and $Q = \overline{x} \langle yz \rangle .\overline{x} \langle yz \rangle .0$. Consider the context $K = [\cdot] \parallel x(u).x(w).\overline{t} \langle t \rangle$.
- Are the encodings $\llbracket \cdot \rrbracket : A\pi \to \pi$ by Boudol and Honda complete wrt \cong^{c} ? If not, prove it.
 - Boudol's as above and Honda's as above but with

$$P = x(y).0 \parallel x(y).0$$
 and $Q = x(y).x(y).0$.

- Define a weakly compositional encoding $\llbracket \cdot \rrbracket : K\pi \to \pi$ which is sound wrt \cong^{c} ? Is your encoding complete \cong^{c} ? If not, argue why.
 - Take the composite encoding $K\pi \to \pi^n \to \pi$. Notice that the polyadic communication occur on the private channels.

Exercises: Trios

A trios process is a polyadic π process whose prefixes are of the form $\pi'.\pi.\pi''.0$. Trios processes can encode arbitrary polyadic π processes [Parrow'01].

Exercise Give an encoding $\llbracket \cdot \rrbracket$ from π^0 processes into π^0 trios processes so that $\llbracket P \rrbracket \approx P$.

Exercises: Trios

A trios process is a polyadic π process whose prefixes are of the form $\pi'.\pi.\pi''.0$. Trios processes can encode arbitrary polyadic π processes [Parrow'01].

Exercise Give an encoding $\llbracket \cdot \rrbracket$ from π^0 processes into π^0 trios processes so that $\llbracket P \rrbracket \approx P$.

Solution

Definition 6. Given a CCS₁ process P, $[\![P]\!]$ is the trios-process $(\nu l)(\tau.\tau.\overline{l} \mid [\![P]\!]_l)$ where $[\![P]\!]_l$, with $l \notin n(P)$, is inductively defined as follows:

$$\begin{split} & \llbracket 0 \rrbracket_{l} = 0 \\ & \llbracket \alpha.P \rrbracket_{l} = (\nu \, l')(l.\alpha.\overline{l'} \mid \llbracket P \rrbracket_{l'}) \text{ where } l' \notin n(P) \\ & \llbracket P \mid Q \rrbracket_{l} = (\nu \, l', l'')(l.\overline{l'} \cdot \overline{l''} \mid \llbracket P \rrbracket_{l'} \mid \llbracket P \rrbracket_{l''}) \text{ where } l', l'' \notin n(P) \cup n(Q) \\ & \llbracket P \rrbracket_{l} = (\nu \, l')(!l.\overline{l'} \cdot \overline{l} \mid ! \llbracket P \rrbracket_{l'}) \text{ where } l' \notin n(P) \\ & \llbracket (\nu \, x)P \rrbracket_{l} = (\nu \, x) \llbracket P \rrbracket_{l} \end{aligned}$$

Exercises: Language of Processes

Exercises:

• Write a CCS! process P such that $L(P) = a^*c$.

•
$$P = (\nu I)(I \parallel ! (I.a.I) \parallel I.c)$$

• Write a CCS! process Q such that $L(Q) = a^n b^n$.

•
$$P = (\nu I)(\bar{I} \parallel!(I.a.(\bar{I} \parallel u)) \parallel I.!u.b)$$

Exercises: Properties of $A\pi$

In $A\pi$ the following holds:

• If
$$P \xrightarrow{\overline{x}\langle y \rangle} P'$$
 then $P \equiv \overline{x}\langle y \rangle \parallel P'$.
• If $P \xrightarrow{\overline{x}\langle y \rangle} \xrightarrow{\alpha} P'$ then $P \xrightarrow{\alpha} \xrightarrow{\overline{x}\langle y \rangle} P' \equiv P'$.
• $x(y).\overline{x}\langle y \rangle \cong^{c}{}_{a} 0.$

Exercise: Show (1) and (2) then Theorem below. Also show (3).

Theorem (Diamond Property for $A\pi$)

Frank D. Valencia CNRS-LIX Ecole Polytechnique Expressiveness

Exercises for Choice Operators.

In the blind-choice $\pi\text{-calculus, summation takes the form }\sum_{i\in I} \tau.P_i$.

Exercises:

- Give an encoding $\llbracket \cdot \rrbracket : A\pi^{\Sigma\tau} \to A\pi$ from asynchronous π with blind-choice to $A\pi$ such that $\llbracket P \rrbracket \sim P$.
- Show that there cannot be an encoding $\llbracket \cdot \rrbracket : A\pi^{\Sigma} \to A\pi$ from asynchronous π with choice to $A\pi$ such that $\llbracket P \rrbracket \sim P$.

Exercises for Choice Operators

Encoding into Asynchronous (polyadic) π

 $FAIL(\ell) \stackrel{\text{def}}{=} \ell(p, f). \overline{f}$.

$$\begin{split} & [\Sigma_{i} x_{i}(z), P_{i}] \stackrel{\text{det}}{=} \nu \ell \left(\begin{array}{c} \text{PROCEED} \left(\ell \right) \\ & |\Pi_{i} x_{i}(z), \left(\nu p, f \right) \left(\overline{\ell} \langle p, f \rangle \mid p, \left(\text{FAIL} \left(\ell \right) \mid [P_{i}] \right) \\ & | f, \left(\text{FAIL} \left(\ell \right) \mid \overline{x_{i}}(z) \right) \right) \\ & \text{where } \ell, p, \text{ and } f \text{ are fresh and} \\ & \text{PROCEED} \left(\ell \right) \stackrel{\text{def}}{=} \ell(p, f), \overline{p} \end{split}$$

Exercises:

- **(**) Let \mathcal{E} be the above encoding. Show that $\exists P : \mathcal{E}(P) \not\approx_a P$.
- \bigcirc Then show that $\mathcal E$ is neither sound nor complete.
 - Hint: Consider $P = \overline{x}\langle z \rangle \parallel x(y).\overline{y} + w(y).0$ to show $\mathcal{E}(P) \not\approx_{a} P$.
 - Hint: Note that \mathcal{E} acts as the identity on its images. So $\mathcal{E}(\mathcal{E}(P)) = \mathcal{E}(P)$ and $\mathcal{E}(\mathcal{E}'(P)) = \mathcal{E}'(P)$.