
Paris, 3 Dec 2007 MPRI Course on Concurrency

MPRI – Course on Concurrency

Lecture 12

Probabilistic process calculi

Catuscia Palamidessi
LIX, Ecole Polytechnique

catuscia@lix.polytechnique.fr
www.lix.polytechnique.fr/~catuscia

Page of the course:
http://mpri.master.univ-paris7.fr/C-2-3.html

Paris, 3 Dec 2007 MPRI Course on Concurrency 2

Plan of the lecture

• Motivations

• The power of randomization

– Problems in distributed systems that can only
be solved with the use of randomization

•Dining Philosophers

• Probabilistic automata

– Examples

• Probabilistic CCS

– Operational rules

• Semantics

Paris, 3 Dec 2007 MPRI Course on Concurrency

Motivations

• Modeling: Often a system depends on complex phaenomena

whose behavior we cannot know in detail, but for which we

can give a quantitative extimation

– probability as abstraction

– examples: requests from users

• Expressiveness: Some problems in distributed computing can

only be solved by using randomization

– Dining Philosophers [LR81]

– Consensus (in presence of components that may fail)

[FLP85]

– Leader Election [B88]

3 Paris, 3 Dec 2007 MPRI Course on Concurrency 4

The power of randomization:

The dining philosophers

• Each philosopher needs exactly two forks

• Each fork is shared by exactly two philosophers

• A philosopher can access only one fork at the time

Paris, 3 Dec 2007 MPRI Course on Concurrency 5

• Progress: if there is a hungry philosopher, a philosopher will

eventually eat

– Note that we could require something stronger, i.e. Starvation

freedom: every hungry philosopher will eventually eat. However

we won’t consider this property here

• Works for all (fair) schedulers: A scheduler decides who does the

next move

• Fully distributed: no centralized control or memory, and no guarded

choice

• Symmetry:

– Symmetry of code: All philosophers run the same code (modulo

remaing of channels). Same for the forks.

– Symmetry of state: All philosophers are in the same initial state.

Same for the forks.

Intended properties of solution

Paris, 3 Dec 2007 MPRI Course on Concurrency 6

• The proof is due to Lehmann and Rabin [LR81]

• The idea is the following:

– Assume by contradicton that there exists a solution

– Construct a non terminating computation in which Progress does

not hold

– In the “solution”, let P1 be the first philosopher making a move

– The scheduler selects all the other philosophers P2,P3,...,Pn, in turn, and forces

them to make the same move. (This is possible by the symmetry of the codes). At

the end, the system is in a new state, but still symmetric. So symmetry is preserved

by this scheduler

– The computation cannot pass by a situation in which one philosopher eats, because

this would mean that at the end of the previous iteration one philosophers has 2

forks while another has 0 forks.

Proof that the DP does not have a solution
satisfying the intended properties

Paris, 3 Dec 2007 MPRI Course on Concurrency 7

• The proof is due to Lehmann and Rabin [LR81]

• The idea is the following:

– Assume by contradicton that there exists a solution

– Construct a non terminating computation in which Progress does

not hold

– In the “solution”, let P1 be the first philosopher making a move

– The scheduler selects all the other philosophers P2,P3,...,Pn, in turn, and forces

them to make the same move. (This is possible by the symmetry of the codes). At

the end, the system is in a new state, but still symmetric. So symmetry is preserved

by this scheduler

– The computation cannot pass by a situation in which one philosopher eats, because

this would mean that at the end of the previous iteration one philosophers has 2

forks while another has 0 forks.

Proof that the DP does not have a solution
satisfying the intended properties

Paris, 3 Dec 2007 MPRI Course on Concurrency

• Question: how does this result combine with the program seen at the

beginning of the course? (cfr. first lecture)

• Note: the program seen at the beginning of the course is similar to

the algorithm of Francez and Rodek [FR80]

8

Paris, 3 Dec 2007 MPRI Course on Concurrency

The randomized algorithm of Lehmann and Rabin

1. Think

2. randomly choose fork in {left,right} %commit

3. if taken(fork) then goto 3

4. else take(fork)

5. if taken(other(fork)) then {release(fork); goto 2}

6. else take(other(fork))

7. eat

8. release(other(fork))

9. release(fork)

10. goto 1

9 Paris, 3 Dec 2007 MPRI Course on Concurrency 10

Correctness of the randomized algorithm of Lehmann

and Rabin

• Lehmann and Rabin proved that their algorithm satisfies
Progress (when the scheduler is fair) with probability 1

Paris, 3 Dec 2007 MPRI Course on Concurrency

Bibliography

• [LR81] D.J. Lehmann and M.O. Rabin. The advantages of free choice: a

symmetric and fully distributed solution to the dining philosophers problem.

In Proceedings of the 8th annual ACM SIGACT-SIGPLAN Symposium on

principles of Programming Languages, pages 133--138. 1981.

• [FR80] N. Francez and M. Rodeh A Distributed Abstract Data Type

Implemented by a Probabilistic Communication Scheme. Proc. 21st

Ann. IEEE Symp. on Foundations of Computer Science. pp. 373-379,

1980.

• [FLP85] Michael J. Fischer, Nancy A. Lynch, Mike Paterson: Impossibility of

Distributed Consensus with One Faulty Process J. ACM 32(2): 374-382

(1985)

• [B88] Luc Bougé: On the Existence of Symmetric Algorithms to Find

Leaders in Networks of Communicating Sequential Processes. Acta Inf. 25

(2): 179-201 (1988)

11

