Why Probability and Nondeterminism?
Concurrency Theory

- Nondeterminism
- Scheduling within parallel composition
- Unknown behavior of the environment
- Underspecification
- Probability
- Environment may be stochastic
- Processes may flip coins

MPRI 3 Dec 2007
Catuscia Palamidessi

	Automata
$A=\left(Q, q_{0}, E, H, D\right)$	

Probabilistic Automata
$P A=\left(Q, q_{0}, E, H, D\right)$

Measure Theory
Why not $F=2^{\Omega}$? Flip a fair coin infinitely many times $\Omega=\{h, t\}^{\infty}$ $\mu(\omega)=0$ for each $\omega \in \Omega$ $\mu($ first coin $h)=1 / 2$
Theorem: there is no probability measure on 2^{Ω} such that $\mu(\omega)=0$ for each $\omega \in \Omega$.
MPRI 3 Dec 2007

Measure Theory	
Sample set - Set of objects Ω - Sigma-field (σ-field) Subset F of 2^{Ω} satisfying - Inclusion of Ω - Closure under complement - Closure under countable union - Closure under countable intersection Measure on (Ω, F) - Function μ from F to $\Re \geq 0$ - For each countable collection $\left\{X_{i}\right\}_{1}$, of p - (Sub-)probability measure - Measure μ such that $\mu(\Omega)=1(\mu(\Omega) \leq 1)$ Sigma-field generated by $C \subseteq 2^{\Omega}$ Smallest σ-field that includes C	Example: set of executions Study probabilities of sets of executions which sets can I measure? se disjoint sets of $F, \mu\left(\cup_{r} X_{i}\right)=\Sigma_{\mu} \mu\left(X_{i}\right)$
MPRI 3 Dec 2007	Catuscia Palamidessi

Cones and Measures

- Cone of α

- Set of executions with prefix α
- Represent event " α occurs"

Examples of Events

- Eventually action a occurs
- Union of cones where action a occurs once
- Action a occurs at least n times
- Union of cones where action a occurs n times
- Action a occurs at most n times
- Complement of action a occurs at least $n+1$ times
- Action a occurs exactly n times
- Intersection of previous two events
- Action a occurs infinitely many times
- Intersection of action a occurs at least n times for all n
- Execution α occurs and nothing is scheduled after
- Set consisting of α only
- C_{α} intersected complement of cones that extend α

MPRI 3 Dec 2007
Catuscia Palamidessi

Schedulers - Resolution of nondeterminism

Scheduler
Function

Probabilistic execution generated by σ from state r

Measure	$\mu_{\mathrm{o}, r}\left(\mathrm{C}_{s}\right)=0$ if $r \neq s$
$\mu_{\text {б, } r}$	$\mu_{\mathrm{o}, r}\left(\mathrm{C}_{r}\right)=1$
	$\mu_{\mathrm{o}, r}\left(\mathrm{C}_{\mathrm{aaq}}\right)=\mu_{\mathrm{o}, r}\left(\mathrm{C}_{\alpha}\right) \cdot v(q)$ if $\quad \sigma(\alpha)=(q, a, v)$

MPRI 3 Dec 2007

Bisimulation Relations
We have the following objectives
- They should extend the corresponding
relations in the non probabilistic case
- Keep definitions simple
- Where are the key differences?
мPRI3 Decr2007

