
MPRI C-2-3- Concurrence - 2007-2008

Lectures 13-16 (Determinacy and Synchrony)

Roberto Amadio

Université Paris-Diderot

Laboratoire Preuves, Programmes et Systèmes

1

Programme of these lectures

We will cover the notions of:

• Determinacy, Confluence, and Linearity.

• Synchrony and Time.

In the framework of process calculi (specifically, CCS, π-calculus,
and variations thereof).

2

Determinacy

3

What is a deterministic system?

In automata theory, one can consider various definitions. For
instance, look at finite automata:

Def 1 There is no word w that admits two computation paths in
the graph such that one leads to an accepting state and the
other to a non-accepting state.

Def 2 Each reachable configuration admits at most one successor.

Def 3 For each state:

• either there is exactly one outgoing transition labelled with
ε,

• or all outgoing transitions are labelled with distinct symbols
of the input alphabet.

Thus one can go from ‘extensional’ conditions (intuitive but hard
to verify) to ‘syntactic’ conditions (verifiable but not as general).

4

Why did we allow non-determinism?

Race conditions Two clients request the same service.

νa (a.P1 | a.P2 | a)

General specification and portability We do not want to
commit on a particular behaviour. For instance, consider

νa, b (τ.a.b.c | a.b.d | b)

Depending on the compilation, the design of the virtual
machine, the processors timing,. . . we might always run d

rather than c (or the other way around).

5

Why is determinism desirable?

• Easier to test and debug.

• Easier to prove correct.

NB Often the implementation seems ‘deterministic’ because:

• either the program is inherently deterministic,

• or the scheduler determinizes the program’s behaviour.

6

Towards a definition of determinacy

• If P and P ′ are ‘equivalent’ then one is determinate if and only
if the other is.

• If we run an ‘experiment’ twice we always get the same ‘result’.

• If P is determinate and we run an experiment then the residual
of P after the experiment should still be determinate.

7

• For the time being, we will place ourselves in the context of a
simple model such as CCS.

• We take equivalent to mean weak bisimilar.

• We take experiment to be a finite sequence of labelled
transitions.

8

A formal definition of determinacy

• Denote with L the set of visible actions and co-actions with
generic elements `, `′, . . .

• Denote with Act = L ∪ {τ} the set of actions, with generic
elements α, β, . . .

• Let s ∈ L∗ denote a finite word over L. Then:

P
ε⇒ P ′ if P

τ⇒ P ′

P
`1...`n⇒ P ′, n ≥ 1 if P

`1⇒ · · · `n⇒ P ′

• If P
s⇒ Q we say that Q is a derivative of P .

9

Definition A process P is determinate if for any s ∈ L∗,

P
s⇒ P ′ P

s⇒ P ′′

P ′ ≈ P ′′

NB This definition relies on the notion of labelled transition system.
In P

`→ P ′, ` represents a minimal and deterministic interaction
with the environment and P ′ is the residual after the interaction.

10

Exercise

Are the following CCS processes determinate?

1. a.(b + c).

2. a.b + ac.

3. a + a.τ .

4. a + τ.a.

5. a + τ .

11

Proposition

1. If P is determinate and P
α→ P ′ then P ′ is determinate.

2. If P is determinate and P ≈ P ′ then P ′ is determinate.

12

Proof idea

1. Suppose P
α→ P ′ and P ′ s⇒ Pi for i = 1, 2.

• If α = τ then P
s⇒ Pi for i = 1, 2. Hence P1 ≈ P2.

• If α = ` then P
`·s⇒ Pi for i = 1, 2. Hence P1 ≈ P2.

13

2. Suppose P ≈ P ′ and P ′ s⇒ P ′
i for i = 1, 2.

• By definition of weak bisimulation:

P
s⇒ Pi and Pi ≈ P ′

i

for i = 1, 2.

• Since P is determinate, we have P1 ≈ P2.

• Therefore, we conclude by transitivity of ≈:

P ′
1 ≈ P1 ≈ P2 ≈ P ′

2

NB Most proofs in this lecture will be by diagram chasing.

14

τ-inertness and determinacy

Definition We say that a process P is τ -inert if for all its
derivatives Q, if Q

τ⇒ Q′ then Q ≈ Q′.

Proposition If P is determinate then it is τ -inert.

15

Proof idea

• Suppose P
s⇒ Q and Q

τ⇒ Q′.

• Then P
s⇒ Q and P

s⇒ Q′.

• Thus by determinacy, Q ≈ Q′.

16

Trace equivalence

We define the traces of a process P as

tr(P) = {s ∈ L∗ | P s⇒ ·}

and say that two processes P,Q are trace equivalent if
tr(P) = tr(Q).

NB The traces of a process form a non-empty, prefix-closed set of
finite words over L.

17

Exercise

Are the following equations valid for trace equivalence and/or weak
bisimulation?

1. a + τ = a.

2. α.(P + Q) = α.P + α.Q.

3. (P + Q) | R = P | R + Q | R.

4. P = τ.P .

18

Proposition

1. If P ≈ Q then tr(P) = tr(Q).

2. Moreover, if P,Q are determinate then tr(P) = tr(Q) implies
P ≈ Q.

19

Proof idea

1. Suppose P ≈ Q and P
s⇒ ·. Then Q

s⇒ · by induction on |s|
using the properties of weak bisimulation.

2. Suppose P,Q determinate and tr(P) = tr(Q).

• We show that

{(P,Q) | tr(P) = tr(Q)}

is a bisimulation.

20

• If P
τ→ P ′ then P ≈ P ′ by determinacy.

• Thus taking Q
τ⇒ Q we have:

P ′ ≈ P tr(P) = tr(Q) .

• By (1), we conclude:

tr(P ′) = tr(P) = tr(Q) .

21

• If P
`→ P ′ then we note that:

tr(P) = {ε} ∪ {`} · tr(P ′) ∪
⋃

` 6=`′,P
`′⇒P ′′

{`′} · tr(P ′′)

• This is because all the processes P ′ such that P
`⇒ P ′ are

bisimilar, hence trace equivalent.

• A similar reasoning applies to tr(Q).

• Thus there must be a Q′ such that Q
`⇒ Q′ and

tr(P ′) = tr(Q′).

22

How do we build deterministic systems?

• Start with deterministic components.

• Look for methods to combine them that preserve determinacy.

23

Exercise

Consider the process P | Q where P,Q are as follows.

1. P = a.b, Q = a.

2. P = a, Q = a.

3. P = a + b, Q = a.

Are P , Q, and (P | Q) determinate?

24

Sorting

Sorting information is useful when trying to combine processes so
as to preserve some property such as determinacy.

Let L be the set of visible actions and L,L′, . . . range over 2L.

Definition We say that a process P has sort L if all the actions
performed by P and its derivatives lie in L ∪ {τ}.

25

Remarks on sorting

• In CCS, it is easy to provide an upper bound for sorting since:

P : fn(P) ∪ fn(P)

where fn(P) are the free names in P .

• Sorting is closed under intersection: if P : Li for i = 1, 2 then
P : L1 ∩ L2.

• Thus each process has a minimum sort.

• In general, the minimum sort cannot be computed because CCS
can simulate Turing machines (TM) and the firing of a
transition may correspond to the TM reaching the halting
state. . .

• We discuss a method to compute an over-approximation of the
minimum sort that we denote with L(P).

26

Computing the over-approximation

• Non-trivial programs in CCS are given via a system of
recursive equations:

A(a1, . . . , an) = P

where the names a1, . . . , an are all distinct and
fn(P) ⊆ {a1, . . . , an}.

• An assignment ρ is a function that associates with every thread
identifier A of arity n a function ρ(A) that takes a vector of n

names (b1, . . . , bn) and produces a subset ρ(A)(b1, . . . , bn) of

{b1, . . . , bn, b1, . . . bn}

• The least assignment ρ∅ is the function where the ‘subset’
produced is always the empty set: ρ∅(A)(b1, . . . , bn) = ∅.

27

• We define the sort [[P]]ρ of a process P relatively to an
assignment ρ:

[[0]]ρ = ∅

[[α.P]]ρ =

{
[[P]]ρ if α = τ

{α} ∪ [[P]]ρ otherwise

[[P1 + P2]]ρ = [[P1]]ρ ∪ [[P2]]ρ

[[P1 | P2]]ρ = [[P1]]ρ ∪ [[P2]]ρ

[[νa P]]ρ = [[P]]ρ\{a, a}

[[A(b)]]ρ = ρ(A)(b)

28

• Now we compute iteratively ρ0 = ρ∅ and ρn+1 so that:

ρn+1(A)(a) = [[P]]ρn

for all identifiers A defined by an equation A(a) = P .

• This defines a growing sequence (check this!) that is guaranteed
to converge after finitely many steps to a least fixed point ρ

since ρn(A)(a) ⊆ {a} ∪ {a} which is a finite set.

29

Example

• We consider the system composed of one equation:

A(a, b) = a.νc (A(a, c) | b.A(c, b))

• Then

ρ1(A)(a, b)

= [[a.νc (A(a, c) | b.A(c, b))]]ρ∅
= {a} ∪ (ρ∅(A)(a, c) ∪ {b} ∪ ρ∅(A)(c, b))\{c, c}
= {a, b}

30

• The following iteration reaches the fixed point:

ρ2(A)(a, b)

= [[a.νc (A(a, c) | b.A(c, b))]]ρ1

= {a} ∪ (ρ1(A)(a, c) ∪ {b} ∪ ρ1(A)(c, b))\{c, c}
= {a} ∪ ({a, c} ∪ {b} ∪ {c, b})\{c, c}
= {a, b}

Thus L(P) = {a, b}.

31

Some sufficient conditions for building determinate
processes

Proposition Suppose P,Q, Pi are determinate processes for
i ∈ I. Then:

1. 0, α.P, νa P are determinate.

2. Σi∈I`i.Pi is determinate if the `i are all distinct.

3. P | Q is determinate if P,Q do not communicate and do not
share actions (that is L(P) ∩ L(Q) = ∅ and L(P) ∩ L(Q) = ∅).

4. σP is determinate if σ is an injective substitution on the free
names in P .

32

Proof idea

1. For instance, for νa P one checks that if νa P
s⇒ Q then

P
s⇒ P ′ and Q = νa P ′.

2. Routine. Note that it is essential that all the actions are
distinct and visible.

3. Because of the hypothesis on the sorting, an action of (P1 | P2)
can be attributed uniquely to either P1 or P2. Then we can rely
on the determinacy of P1 and P2.

4. The transitions of P and σP are in perfect correspondence as
long as σ is injective. Note that if σ is not injective then σP

could perform some additional synchronisations.

33

Summary on determinacy

1. Deterministic processes are τ -inert

P
s⇒ P ′ τ⇒ P ′′ ⇒ P ′ ≈ P ′′

2. For deterministic processes,

bisimulation = trace equivalence.

3. A simple iterative method to extract from a process P an
approximated sorting information

L(P) ⊆ fn(P) ∪ fn(P) .

4. We rely on the approximated sorting information to build
deterministic processes.

5. Unfortunately, rules for parallel composition are too restrictive:
no synchronisation.

34

Confluence

35

Refining the conditions

We want to allow some form of communication, but. . .

• We have to avoid race conditions: two processes compete on
the same resource.

• We also have to avoid that an action preempts other actions.

• We introduce a notion of confluence that strengthens
determinacy and is preserved by some form of communication
(parallel composition + restriction).

• For instance,
νa ((a + b) | a)

will be rejected because a + b is not confluent (while being
deterministic).

36

Confluence: rewriting vs. concurrency

• Notion reminiscent of confluence in term rewriting systems and
λ-calculus (Church-Rosser theorem)

t
∗→ t1, t

∗→ t2

∃ s (t1
∗→ s, t2

∗→ s)

• By analogy one calls confluence the related theory in process
calculi but bear in mind that:

1. Confluence is relative to a labelled transition system.

2. We close diagrams up to equivalence.

37

Definition of confluence

We define a notion of action difference:

α\β =

 α if α 6= β

τ otherwise

Definition (Conf 0) A process P is confluent if for every
derivative Q of P we have:

Q
α⇒ Q1 Q

β⇒ Q2

∃Q′
1, Q

′
2 (Q1

β\α⇒ Q′
1 Q2

α\β⇒ Q′
2 Q′

1 ≈ Q′
2)

NB If α = β then we close the diagram with τ actions only.

38

Some properties

A first sanity check is to verify that the definition is invariant under
transitions and equivalence.

Proposition

1. If P is confluent and P
α→ P ′ then P ′ is confluent.

2. If P is confluent and P ≈ P ′ then P ′ is confluent.

39

Proof idea (cf. similar proof for determinacy)

1. If Q is a derivative of P ′ then it is also a derivative of P .

2. It is enough to apply the fact that:

(P ≈ P ′ and P
α⇒ P1) implies (P ′ α⇒ P ′

1 and P1 ≈ P ′
1)

and the transitivity of ≈.

40

Determinacy vs. Confluence

Confluence implies τ -inertness, and from this we can show that it
implies determinacy too.

Proposition Suppose P is confluent. Then P is:

1. τ -inert, and

2. determinate.

41

Reminder

A relation R is a weak bisimulation up to ≈ if

P R Q P
α⇒ P ′

Q
α⇒ Q′ P ′(≈ ◦R◦ ≈)Q′

(and symmetrically for Q).

NB It is important that we work with the weak moves on both
sides, otherwise the relation R is not guaranteed to be contained in
≈. E.g. consider

R = {(τ.a, 0)}

42

Proof idea

1. We want to show that P
τ⇒ Q implies P ≈ Q.

• We show that
R = {(P,Q) | P τ⇒ Q}

is a weak bisimulation up to ≈.

• It is clear that whatever Q does, P can do too with some
extra moves.

• Suppose, for instance, P
α⇒ P1 with α 6= τ (case α = τ left

as exercise).

• By (Conf 0),

Q
α⇒ Q1 P1

τ⇒ P2 Q1 ≈ P2

• That is
P1(R◦ ≈)Q1

43

2. We want to show that if P is confluent then it is determinate.

• Suppose P
s⇒ Pi for i = 1, 2 and s ∈ L∗.

• We proceed by induction on the length |s| of s.

• If |s| = 0 and P
τ⇒ Pi for i = 1, 2 then by τ -inertness

P1 ≈ P ≈ P2 .

44

• For the inductive case, suppose P
`⇒ P ′

i
r⇒ Pi for i = 1, 2.

• By confluence and τ -inertness, we derive that P ′
1 ≈ P ′

2.

• By weak bisimulation, P ′
2

r⇒ P ′′
2 and P ′′

2 ≈ P1.

• By inductive hypothesis, P2 ≈ P ′′
2 .

• Thus P2 ≈ P ′′
2 ≈ P1 as required.

45

Exercise

We have seen that confluence implies determinacy which implies
τ -inertness. Give examples that show that these implications
cannot be reversed.

46

Characterisations of Confluence

47

A first characterisation

We consider a first ‘asymmetric’ characterisation where the move
from Q to Q1 just concerns a single action.

Proposition (Conf 1) A process P is confluent iff for every
derivative Q of P , we have:

Q
α→ Q1 Q

β⇒ Q2

∃Q′
1, Q

′
2 (Q1

β\α⇒ Q′
1 Q2

α\β⇒ Q′
2 Q′

1 ≈ Q′
2)

48

Proof idea

• The diagrams of (Conf 1) are a particular case of (Conf 0).

• Thus we just have to show that the diagrams of (Conf 1) suffice
to complete the diagrams of (Conf 0).

• We may proceed by induction on the length of the transition
Q

α⇒ Q1. For instance suppose α 6= β, β 6= τ , and

Q
τ→ Q1

α⇒ Q2 Q
β⇒ Q3

• By (Conf 1),

Q1
β⇒ Q4 Q3

τ⇒ Q5 Q4 ≈ Q5

49

• By inductive hypothesis

Q2
β⇒ Q6 Q4

α⇒ Q7 Q4 ≈ Q7

• From Q4 ≈ Q5 and Q4
α⇒ Q7 we derive

Q5
α⇒ Q8 Q7 ≈ Q8

50

• Therefore
Q2

β⇒ Q6 Q3
α⇒ Q8 Q6 ≈ Q8

as required.

51

Exercise

Consider another case of the proof. For instance, when
Q

α→ Q1
τ⇒ Q2.

52

Difference of sequences

In another direction we seek a more general definition of confluence
where one commutes sequences of actions.

• Let r, s ∈ L∗. To compute the difference r\s of r by s we scan
r from left to right deleting each label which occurs in s taking
into account the multiplicities (cf. difference of multi-sets).

(ε\s) = ε

(`r\s) =

 ` · (r\s) if ` /∈ s

r\(s1 · s2) if s = s1`s2, ` /∈ s1

• For instance
aba\ca = ba ca\aba = c

53

Exercise

Let r, s, t ∈ L∗. Show that:

1. (rs)\(rt) = s\t.

2. r\(st) = (r\s)\t.

3. (rs)\t = (r\t)(s\(t\r)).

54

A final characterisation of confluence

Proposition (Conf 2) A process P is confluent iff for all
r, s ∈ L∗ we have:

P
r⇒ P1 P

s⇒ P2

∃P ′
1, P

′
2 P1

s\r⇒ P ′
1 P2

r\s⇒ P ′
2 P ′

1 ≈ P ′
2

55

Proof idea

(⇐) It suffices to check that if P has property (Conf 2) then its
derivatives have it too.

• Suppose P
t⇒ Q for t ∈ L∗.

• Suppose further Q
r⇒ Q1 and Q

s⇒ Q2.

• By composing diagrams and applying (Conf 2) we get:

Q1
(ts\tr)⇒ Q′

1 Q2
(tr\ts)⇒ Q′

2 Q′
1 ≈ Q′

2

• Applying the previous exercise we derive, e.g.:

ts\tr = s\r

56

(⇒) We proceed in three steps.

1. By induction on |s| we show that:

P
τ⇒ P1 P

s⇒ P2

∃P ′
1, P

′
2 P1

s⇒ P ′
1 P2

τ⇒ P ′
2 P ′

1 ≈ P ′
2

2. Then, again by induction on |s|, we show that:

P
`⇒ P1 P

s⇒ P2

∃P ′
1, P

′
2 P1

s\`⇒ P ′
1 P2

`\s⇒ P ′
2 P ′

1 ≈ P ′
2

3. Finally we prove the commutation of diagram (Conf 2) by
induction on |r| when P

r⇒ P1

57

Exercise

Complete the proof.

58

Building confluent processes

59

Building confluent processes

Next, we return to the issue of building confluent (and therefore
determinate) processes.

Proposition If P,Q are confluent processes then so are:

1. 0, α.P .

2. νa P .

3. σP where σ is an injective substitution on the free names of P .

Proof Routine analysis of transitions (cf. similar statement for
determinacy).

60

Remark on sum

• In general, a + b is determinate but it is not confluent for a 6= b

• To have confluence, one may consider a special kind of
‘commuting sum’

(a | b).P =def a.b.P + b.a.P

61

Restricted composition

We allow a parallel composition with restriction

νa1, . . . , an (P | Q)

when:

1. P and Q do not share visible actions:

L(P) ∩ L(Q) = ∅

2. P and Q may interact only on the names in {a}:

L(P) ∩ L(Q) ⊆ {a1, . . . , an}

62

Proposition Confluence is preserved by restricted composition.

Proof idea

• First we observe that any derivative of νa (P | Q) will have the
shape νa (P ′ | Q′) where P ′ is a derivative of P and Q′ is a
derivative of Q.

• Since sorting is preserved by transitions, the two conditions on
sorting will be satisfied.

• Therefore, it is enough to show that the diagrams in (Conf 1)
commute for processes of the shape R = νa (P | Q) under the
given hypotheses.

63

• We consider one case. Suppose:

R
`→ νa (P1 | Q), because P

`→ P1

• Also assume:
R

`⇒ νa (P2 | Q2)

because P
s`r⇒ P2 and Q

s·r⇒ Q2 with s · r ∈ {a,a}∗ and
` /∈ {a,a}.

• Since P is confluent we have:

P
`→ P1 P

s`r⇒ P2

P1
sr⇒ P ′

1 P2
τ⇒ P ′

2 P ′
1 ≈ P ′

2

64

• Then we have that:

νa (P1 | Q) τ⇒ νa (P ′
1 | Q2) ≈ νa (P ′

2 | Q2)

thus closing the diagram (note that we use the congruence
properties of ≈).

65

Exercise

Consider another case of the proof, for instance:

νa (P | Q) τ→ νa (P | Q) as P
a→ P1, Q

a→ Q1

νa (P | Q) τ⇒ νa (P2 | Q2) as P
s→ P2, Q

s⇒ Q2

66

A case study: Kahn networks

Point-to-point communication for every channel there is at
most one sender and one receiver.

Ordered buffers of unbounded capacity send is non blocking
and the order of emission is preserved at the reception.

Each thread may:

1. perform arbitrary sequential deterministic computation,

2. insert a message in a buffer,

3. receive a message from a buffer. If the buffer is empty then the
thread must suspend,

A thread cannot try to receive a message from several channels at
once.

67

Semantics (informal)

• We regard the unbounded buffers as finite or infinite words
over some data domain.

• The nodes of the networks are functions over words.

• Kahn observes that the associated system of equations has a
least fixed point.

68

• Kahn networks is an important (practical) case where
concurrency and determinism coexist. For instance, they are
frequently used in the signal processing community.

• We refer to the course on Synchronous Systems for more
information on Kahn networks and related applications.

• Our modest goal is to:

1. Formalise Kahn networks as a fragment of CCS.

2. Apply the developed theory to show that the fragment is
confluent and therefore deterministic.

69

CCS formalisation of Kahn networks

• We will work with a ‘data domain’ that contains just one
element.

• The generalisation to arbitrary data domains is not difficult,
but we would need to formalise determinacy and confluence in
the framework of CCS with values (a word on this later. . .).

• First problem: how do we model unbounded buffers in CCS?

70

Representing an unbounded buffer in CCS

A unbounded buffer taking inputs on a and producing outputs on b

can be written as (yes, you have already seen this!):

Buf (a, b) = a.νc (Buf (a, c) | b.Buf (c, b))

• We will write more suggestively a 7→ b for Buf (a, b), assuming
a 6= b.

• We have already analysed the sorting of this system:

L(a 7→ b) = {a, b}

• Moreover, this system falls within the class of confluent
processes we have considered as it relies on restricted
composition:

L(a 7→ c) ∩ L(b.c 7→ b) = ∅
L(a 7→ c) ∩ L(b.c 7→ b) ⊆ {c, c}

71

• We would like to show that a 7→ b works indeed as an
unbounded buffer.

• Let cn = c . . . c, n times, n ≥ 0.

• We should have:

P (n) = νa (an | a 7→ b) ≈ b
n

• This is an interesting exercise because:

– The process P (n) has a non trivial dynamics.

– We can prove the statement just by considering finite traces.

72

Computing the trace of P (n)

• Obviously:
tr(b

n
) = {ε, b, bb, . . . , bn}

• We have L(P (n)) = {b}, thus tr(P (n)) is a non-empty prefix
closed set of finite words over b.

• For n = 0, P (n) can do no transition.

• For n > 0 we need to generalise a bit the form of the process
P (n). Let Q(n, m) be a process of the form:

Q(n, m) = νa, c1, . . . , cm (an | a 7→ c1 | · · · | cm 7→ b)

for m ≥ 0. Note that P (n) = Q(n, 0) and Q(0, k) ≈ 0 for any k.

73

• Moreover

Q(n, m) b⇒ Q(n− 1, 2m + 1)

• Thus

P (n) b⇒ · · · b⇒ Q(0, 2n − 1) ≈ 0

• Because P (n) is confluent we can conclude that:

tr(P (n)) = tr(b
n
)

74

CCS processes representing Kahn networks

We define a class of CCS processes sufficient to represent Kahn
networks.

• Let KP be the least set of processes such that 0 ∈ KP and if
P,Q ∈ KP and α is an action then

1. α.P ∈ KP ,

2. νa (P | Q) ∈ KP provided L(P) ∩ L(Q) = ∅ and
L(P) ∩ L(Q) ⊆ {a,a},

3. B(b) ∈ KP if the names b are all distinct.

• We admit a recursive equation A(a) = P only if P ∈ KP .

• We admit processes that are in KP and that depend on
recursive equations of the shape above.

• It is easily checked that a 7→ b is admissible and that Kahn
processes are confluent.

75

From a Kahn network to CCS process

Suppose we have a Kahn network with three nodes, and the
following ports and behaviours where we use ! for output and ? for
input.

Node Ports Behaviours

1 ?a, ?b, ?c, !d, !e, !f A1 =?a.!d.!e.?b.?c.!f.A1

2 !b, ?d A2 =?d.!b.A2

3 !c, ?e A3 =?e.!c.A3

76

The corresponding CCS system relies on the equations for Buf plus:

A1(a, b, c, d, e, f) = a.d.e.b.c.f .A1(a, b, c, d, e, f)

A2(b, d) = d.b.A2(b, d)

A3(c, e) = e.c.A3(c, e)

The sorting is easily derived:

L(A1(a, b, c, d, e, f) = {a, b, c, d, e, f}
L(A2(b, d)) = {b, d}
L(A3(c, e)) = {c, e}

77

To build the system, we have to introduce a buffer before every
input channel. Thus the initial configuration is:

νa′, b, b′, c, c′, d, d′, e, e′

(a 7→ a′ | b 7→ b′ | c 7→ c′ | d 7→ d′ | e 7→ e′ |
A1(a′, b′, c′, d, e, f) | A2(b, d′) | A3(c, e′))

It is easily checked that the resulting processes belong to the class
KP.

NB Via recursion, we can represent Kahn networks with a
dynamically changing number of nodes (e.g., the buffer).

78

Summary on building confluent processes

To build confluent processes we can use:

• nil and input prefix,

• restricted composition,

• injective recursive calls,

• recursive equations A(a) = P , where P is built according to the
rules above.

This class of processes is enough to represent Kahn networks.

79

