
Reactivity and Local Confluence

1

Termination and Local confluence

• In rewriting theory, local confluence is the following condition:

t→ t1, t→ t2

∃ s (t1
∗→ s, t2

∗→ s)

Thus with local confluence we just have to close one step
diagrams.

• Newman’s lemma states that local confluence plus termination
entails confluence.

• We present a suitable generalisation of this result to our
framework.

• We begin by recalling the classic proof of Newman’s lemma.

2

Well-founded sets and induction principle

Well-founded set A well-founded set (W,>) is a set W equipped
with a transitive relation > which does not contain infinite
descending sequences:

x0 > x1 > x2 > · · ·

Hence > must be strict. If x ∈W let ↓ (x) = {y ∈W | x > y}.

Induction principle Let (W,>) be a well-founded set and let
A ⊆W .

∀x (↓ (x) ⊆ A ⊃ x ∈ A)

A = W

3

Exercice (general culture, optional)

Let (X, >) be a set X with a transitive relation >. Show that
(X, >) is well-founded if and only if the induction principle holds
on (X, >).

4

Local confluence and Newman lemma

Let (X,→) be a rewriting system, i.e., a set X with a binary
relation →. (X,→) is:

confluent if for all x ∈ X

x
∗→ x1, x

∗→ x2

∃ y (x1
∗→ y, x2

∗→ y)

locally confluent if for all x ∈ X

x→ x1, x→ x2

∃ y (x1
∗→ y, x2

∗→ y)

terminating if all reduction sequences x0 → x1 → · · · are finite.

5

Newman’s lemma

If a rewriting system is locally confluent and terminates then it is
confluent.

Proof

• Consider a rewriting system (X,→).

• If +→ denotes the transitive closure of → then (X,→)
terminates iff (X,

+→) is well-founded.

• Let A ⊆ X be the set of elements for which the confluence
condition holds.

6

• We know that (X,
+→) is well-founded. We show that A = X by

applying the induction principle.

∀x (↓ (x) ⊆ A ⊃ x ∈ A)

A = X

• If x is a normal form then x ∈ A.

7

• Otherwise, suppose

x→ x1
∗→ x2, x→ x3

∗→ y4

• By local confluence,

∃x5 (x1
∗→ x5, x3

∗→ x5)

• By inductive hypothesis on x1,

∃x6 (x2
∗→ x6, x5

∗→ x6)

• Again by inductive hypothesis on x3,

∃x7 (x6
∗→ x7, x4

∗→ x7)

8

Back to processes. . .

• A process P is terminating (or strongly normalising) if there is
no infinite sequence

P
τ→ P1

τ→ · · ·

• A process P is reactive (or fully terminating) if all its
derivatives are terminating.

9

Exercise

Consider again the process

A(a, b) = a.νc (A(a, c) | b.A(c, b))

Is the process A(a, b) reactive? Consider the cases a 6= b and a = b.

10

Exercise

Consider the process:

A = a.b + τ.(a.c + τ.A)

Check whether A is:

1. τ -inert,

2. locally confluent,

3. terminating.

4. reactive.

5. determinate.

6. confluent.

11

A generalisation of Newman’s lemma

• Suppose P is a reactive process and let W be the set of its
derivatives.

• For Q,Q′ ∈W write Q > Q′ if Q rewrites to Q′ by a positive
number of τ -actions.

• Then (W,>) is a well founded order.

Proposition If a process is reactive and locally confluent then it
is confluent.

12

Proof outline

Let B be the relation τ→ ∪(τ→)−1∪ ≈ (restricted to W) and B∗ its
reflexive and transitive closure. Note B∗ is symmetric too.

1. For every derivative Q of P it holds:

Q
τ⇒ Q1, Q

α⇒ Q2

∃Q3 (Q1
α⇒ Q3, Q2B

∗Q3)

2. The relation B∗ is a weak-bisimulation.

3. The process P is τ -inert.

4. The process P is confluent.

NB B∗ is a binary relation on W (the derivatives of P).

13

Step 1

For every derivative Q of P it holds:

Q
τ⇒ Q1, Q

α⇒ Q2

∃Q3 (Q1
α⇒ Q3, Q2B

∗Q3)

Proof By induction on the well founded order (W,>).

• If Q = Q1 then the statement holds trivially.

• So assume Q
τ→ Q3

τ⇒ Q1 and consider 2 cases.

1. If Q
τ→ Q4

α⇒ Q2.
– By local confluence, Q3

τ⇒ Q5, Q4
τ⇒ Q6, and Q5 ≈ Q6.

– By ind. hyp., Q6
α⇒ Q7 and Q2B

∗Q7.
– By def. of bis. Q5

α⇒ Q8 and Q7 ≈ Q8.
– By ind. hyp., Q1

α⇒ Q9 and Q8B
∗Q9.

So Q2B
∗Q7 ≈ Q8B

∗Q9 and by def. of B, Q2B
∗Q9.

14

2. If Q
α→ Q4

τ⇒ Q2 with α 6= τ .
– By local confluence, Q3

α⇒ Q5, Q4
τ⇒ Q6, Q5 ≈ Q6.

– By ind. hyp., Q1
α⇒ Q7 and Q5B

∗Q7.
So Q2

τ⇐ Q4
τ⇒ Q6 ≈ Q5B

∗Q7. Hence Q2B
∗Q7.

15

Step 2

The relation B∗ is a weak-bisimulation.

Proof Suppose Q0BQ1 · · ·BQnBQn+1 and Q0
α⇒ Q′

0. Proceed
by ind. on n and case analysis on QnBQn+1. By ind. hyp. we
know that Qn

α⇒ Q′
n and Q′

0B
∗Q′

n.

1. If Qn ≈ Qn+1 then Qn+1
α⇒ Q′

n+1 and Q′
n ≈ Q′

n+1. So
Q′

0B
∗Q′

n ≈ Q′
n+1 and we use B∗◦ ≈⊆ B∗.

2. If Qn
τ← Qn+1 then Qn+1

α⇒ Q′
n.

3. If Qn
τ→ Qn+1 then by Step (1), Qn+1

α⇒ Q′
n+1 and

Q′
nB∗Q′

n+1.

So Q′
0B

∗Q′
nB∗Q′

n+1 and we use B∗ ◦B∗ ⊆ B∗.

16

Step 3

The process P is τ -inert.

Proof By def., τ→⊆ B∗ and by Step (2), B∗ ⊆≈.

17

Step 4

The processe P is confluent.

Proof By ind. on the well-founded order.

1. Suppose Q
α→ Q3

τ⇒ Q1 and Q
β→ Q4

τ⇒ Q2, with α, β 6= τ .

• By local confluence, Q3
β\α⇒ Q5, Q4

α\β⇒ Q6, and Q5 ≈ Q6.

• By Step (3), Q4 ≈ Q2, and by weak bis., Q2
α\β⇒ Q8,

Q6 ≈ Q8.

• By Step (3), Q3 ≈ Q1, and by weak bis., Q1
β\α⇒ Q7,

Q5 ≈ Q7.

So we have Q8 ≈ Q6 ≈ Q5 ≈ Q7 as required.

18

2. Suppose Q
τ→ Q3

α⇒ Q1 and Q
β⇒ Q2.

• By Step (3), Q ≈ Q3, and by weak bis., Q3
β⇒ Q5, Q2 ≈ Q5.

• By ind. hyp., Q1
β\α⇒ Q6, Q5

α\β⇒ Q7, and Q6 ≈ Q7.

• By weak bis., Q2
α\β⇒ Q4 and Q4 ≈ Q7.

So Q4 ≈ Q7 ≈ Q6 as required.

19

Summary on confluence

1. We have 3 alternative characterisations of confluence.

2. A confluent process is always τ -inert and determinate.

3. Restricted parallel composition preserves confluence.

4. A reactive and locally confluent process is confluent.

20

A typing approach to determinacy:

the case of the π-calculus

21

Confluence in CCS with value passing

Consider the process P

P = a(b).ab

• It seems reasonable to regard P as determinate.

• However, according to a straightforward extension of the
concept of confluence to CCS with values, P is not confluent.

• Possible relaxation: do not require confluence for distinct input
actions with the same subject.

22

Confluence in the π-calculus

• Consider
P = νa (ba | ca)

• Again, a straightforward definition of confluence would lead us
to conclude that P is not confluent.

• One has to take into account the fact that an output may free
names bound in another output action.

This is a bit ad hoc and does not scale up very well.

23

Two approaches to determinacy

As a property of the lts

• Define determinacy/confluence at the level of the lts.

• Show that certain constructions preserve confluence of the
lts.

Typing processes

• Define well-typed processes. Note that the typing rules
provide a way to build processes.

• Restrict the attention to interactions with the environment
that respect the typing constraints.

• Require a form of typed equivalence (as opposed to a
type-free one).

24

Contrasting the two approaches (semi-formally)

Determinacy with respect to the lts A process P is
determinate if:

P
s⇒ P ′ P

s⇒ P ′′

P ′ ≈ P ′′

Determinacy with respect to a type system A typable
process P is determinate if

C static context C[P] typable C[P] τ⇒ P ′ C[P] τ⇒ P ′′

P ′ ≈typed P ′′

25

Example

• Suppose the typing system guarantees point-to-point
interaction and consider:

P = a(x).a(y).bx | a3

• With respect to the first definition, P fails to be deterministic
as:

P
a2⇒ b2 P

a2⇒ b3

• However, if the environment plays by the typing rules it should
not send a message on a.

• In other words C[P], where C = [] | a2 fails to be typable.

26

Exercise

In the context of CCS, suppose we decide that a ‘typable static
context’ C is defined as follows:

C ::= [] || `.C

Say that a process P is context-deterministic (c-deterministic for
short) if it satisfies:

C[P] τ⇒ P1 C[P] τ⇒ P2

P1 ≈ P2

1. Show that if P is c-deterministic and P
τ→ P ′ then P ≈ P ′.

2. Show the if P is c-deterministic and P
α→ P ′ or P ≈ P ′ then P ′

is c-deterministic.

3. Show that if P is c-deterministic then it is deterministic.

4. Is the converse true?

27

From sorting to affine resource usage

Initial goal Generalise the sorting system so that we keep the
invariant that on every channel, at any time, at most one process
can send and at most one process can receive.

28

Refining the goal: an example of process we want to type

P = νb ab.Prod(in, b)

Prod(in, b) = in(c).bc.Prod(in, b)

Q = a(b).Cons(b, out)

Cons(b, out) = b(c).outc.Cons(b, out)

Process P exports towards process Q a channel ‘b’ that will be used
in output by Prod and in input by Cons.

29

Affine channel usage

• Let L = {0, 1} with a partial addition operation such that

x⊕ 0 = 0⊕ x = x

and 1⊕ 1 is undefined. Notation: in the following, (X ⊕ Y) ↓
means that the sum is defined.

• A channel usage u is an element of L2. At any time, a channel
with usage (i, j) can be used by at most i processes to send and
at most j processes to receive.

• The addition operation ⊕ is extended to L2 componentwise.

• Substraction and inequlity are derived:

x	 y = z if x = y ⊕ z .

x ≥ y if ∃ z (x = y ⊕ z) .

30

• We annotate every channel type constructor Ch with a usage.
Thus the (monadic, simple) types are:

σ ::= o || Chu(σ)

• The addition operation ⊕ is extended to types so that:

o⊕ o = o, Chu1(σ)⊕ Chu2(σ) = Chu1⊕u2(σ)

(the sum being undefined otherwise).

• Similarly, for subtraction and inequality.

31

Type judgments

• As usual, a typing context has the shape:

Γ = a1 : σ1, . . . , a : σn

• The sum of contexts Γ1 ⊕ Γ2 is defined if

a : σ1 ∈ Γ1, a : σ2 ∈ Γ2 ⇒ (σ1 ⊕ σ2) ↓

• Type judment for channel names:

σ ≥ σ′

Γ, a : σ ` a : σ′

32

Type judgments (continued)

• Consider the following processes:

P ::= 0 || a(b).P || ab.P || νa : σ P || (P | P) || A(a)

We assume that generated names and process identifiers carry
a type annotation (νa : σ and A : (σ1, . . . , σn), respectively).

• The type judgment for processes is:

Γ ` P

33

• The typing rules are:

Γ ` 0

Γi ` Pi i = 1, 2

(Γ1 ⊕ Γ2) ` (P1 | P2)

Γ, a : σ ` P

Γ ` νa : σ P

A : (σ1, . . . , σn)

Γi ` bi : σi, i = 1, . . . , n

(Γ1 ⊕ · · · ⊕ Γn) ` A(b1, . . . , bn)

Γ ` a : Chu(σ)

π2(u) = 1 Γ, b : σ ` P

Γ ` a(b).P

Γ1 ` a : Chu(σ)

π1(u) = 1 Γ2 ` b : σ Γ1 ` P

(Γ1 ⊕ Γ2) ` ab.P

34

Typing the motivating example

P = νb: Ch(1,1)(o) ab.Prod(in, b)

Prod(in, b) = in(c).bc.Prod(in, b)

Q = a(b).Cons(b, out)

Cons(b, out) = b(c).outc.Cons(b, out)

ΓP = a : Ch(1,0)(Ch(0,1)(o)), in : Ch(0,1)(o)

ΓQ = a : Ch(0,1)(Ch(0,1)(o)), out : Ch(1,0)(o)

Prod : (Ch(0,1)(o),Ch(1,0)(o))

Cons : (Ch(0,1)(o),Ch(1,0)(o))

35

Remarks

• We can split the usages of a channel (input/output).

• When we send, we consume the usage of the name we send.

• When we receive, we assume the usage of the name we receive.

• It is crucial that a name which is sent is received at most once,
otherwise the linearity information is lost.

36

Exercise

Suppose we have a situation where we import a channel on which
Prod and Cons will start interacting:

νb : Ch(1,1)(o) ab.0 | a(b).(Prod(in, b) | Cons(b, out))

Is there Γ such that Γ ` P?

37

Exercise

Suppose we emit twice a fresh name b as in the following process:

P = νb : Ch(1,1)(o) ab.0 | a′b.0 .

Is there a Γ such that Γ ` P?

38

Exercise

Suppose Γ ` P and P
τ→ Pi for i = 1, 2 and suppose that the two τ

transitions are generated by two distinct synchronisations.

• Explain why the transitions do not ‘superpose’ and conclude
that either P1 = P2 or ∃Q (P1

τ→ Q,P2
τ→ Q).

• Is this enough to conclude that typable processes are confluent
with respect to τ transitions?

39

Formal properties (outline)

A list of definitions and properties to show that typable processes
enjoy a strong confluence property with respect to typable
transitions.

1. Weakening.

2. Substitution.

3. Actions compatible with a given context.

4. Typed transitions.

5. Subject reduction.

6. Typed equivalence and strong confluence of typed transitions.

40

Weakening

Γ ` P (Γ⊕ Γ′) ↓

(Γ⊕ Γ′) ` P

Exercise Prove this by induction on Γ ` P . For instance,
consider the case where (Γ1 ⊕ Γ2) ` ab.P .

41

Substitution

Γ, a : σ ` P Γ′ ` b : σ (Γ⊕ Γ′) ↓

(Γ⊕ Γ′) ` [b/a]P

Exercise Prove this by induction on Γ, a : σ ` P . For instance,
consider the case where Γ, a : Chu(σ) ` a(c).P .

42

Actions compatible with a given context

We define Pα as a ‘minimal’ environment that allows the action α

to happen:

Pα =

0 if α = τ

a(b).0 if α = ab or α = νbab

ab.0 if α = ab

Then we use this to define when an action is compatible with a
given typing context:

(Γ, α) ↓ if ∃Γ′ (Γ′ ` Pα and (Γ⊕ Γ′) ↓)

43

Exercise

Suppose Γ = a : Ch(1,0)(Ch(0,1)(o)), b : Ch(1,0)(Ch(0,1)(o)). Prove or
disprove the following:

1. (Γ, ac) ↓

2. (Γ, ac) ↓.

44

Typed transitions

We introduce a notion of ‘typed’ transition.

P
Γ,α→ P ′ if P

α→ P ′, Γ ` P, and (Γ, α) ↓

45

Subject reduction

Suppose (Γ, α) ↓. We define the residual Γ(α) of Γ after the action
α:

Γ(α) =

Γ if α = τ

Γ⊕ (b : σ) if α = ab,Γ ` a : Chu(σ)

Γ	 (b : σ) if α = ab,Γ ` a : Chu(σ)

(Γ, b : σ′)	 (b : σ) if α = νb : σ′ab,Γ ` a : Chu(σ)

46

Subject reduction (continued)

Typing is preserved by typed transitions.

P
Γ,α→ P ′

Γ(α) ` P ′

Exercise Prove this by induction on P
α→ P ′. For instance,

consider the case where P
Γ,τ→ P ′ by a synchronisation action.

47

Typed bisimulation

• We can define a notion of typed equivalence as a family of
symmetric relations {SΓ | Γ context} such that:

1. (P,Q) ∈ SΓ implies that P and Q are typable in the context
Γ, and

2. a typed transition of P with respect to the context Γ is
matched by a typed transition of Q in the usual way.

• With respect to this notion of typed equivalence we would like

to show that P
Γ,τ→ Q implies P ≈Γ Q.

NB We omit the formal development of this part because it is a bit
technical and conceptually quite close to the one for the ‘type-free’
case.

48

Key commutation property

Typed transitions enjoy a strong confluence property.

P
Γ,τ→ Q P

Γ,α→ P ′

∃P ′ (P ′ Γ(α),τ→= P ′ Q
Γ,α→= P ′)

NB Strong confluence of τ transitions is a special case.

49

References and historical remarks

• The notions of determinacy and confluence presented are based
on chapter 11 of:

Robin Milner. Communication and Concurrency,
Prentice-Hall, 1989.

50

• Amazingly, this book does not refer to Kahn networks which
were introduced in:

Gilles Kahn. The semantics of a simple language for parallel
programming, IFIP Conf. on Information Processing 74,
North-Holland, 1974.

Incidentally, synchronous data flow languages such as Lustre

can be regarded as a refinement of this model.

51

• A rather complete study of the notion of confluence in the
more general framework of the π-calculus is in:

Anna Philippou, David Walker. On confluence in the
pi-Calculus. ICALP 1997: 314-324. (See also Anna
Philippou PhD thesis, University of Warwick 1996).

• This builds on the PhD thesis of Sanderson and Tofts (in
Edinburgh in the early 90’s) where notions of confluence for
CCS with value passing were proposed.

• The presented generalisation of Newman’s lemma is due to

J. Groote, M. Sellink. Confluence for process verification.
Theor. Comput. Sci. 170(1-2):47-81, 1996.

52

• The classical reference for Linear Logic is:

J.-Y. Girard. Linear Logic. Theoretical Computer
Science, 50(1), 1987.

Several up-to-date tutorials on this topic are available (Curien,
Danos-Di Cosmo,. . .)

• This work has influenced a number of works on the static
analysis of programs which exploit the notion of linearity. An
early example in the framework of the π-calculus is:

Naoki Kobayashi, Benjamin C. Pierce, David N. Turner.
Linearity and the pi-calculus. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(5),
1999.

53

• The type system discussed here is a bit different in that:

– the usage of resources in the typing is affine (at most once)
rather than linear (exactly once).

– we maintain the invariant:
At any time at most one process can send (receive) on a
channel.

rather than:
a channel is used at most once to send (receive).

(which is more in line with the sorting system we have
previously considered).

54

• Beware that going from logic to programming some properties
are lost. For instance, intuititionistic logic inspires ML type
systems. However in ML, all types are inhabited and programs
do not always normalise!

55

Exercise (revision)

Suppose P is a CCS process that is reactive and such that for every
derivative Q of P we have:

Q
τ→ Q1 Q

τ→ Q2

Q1 ≈ Q2

Show that this implies that for every derivative Q of P we have:

Q
τ⇒ Q1 and Q

τ⇒ Q2

∃Q′
1, Q

′
2 (Q1

τ⇒ Q′
1, Q2

τ⇒ Q′
2, and Q′

1 ≈ Q′
2)

56

Exercise (revision)

We consider a linear variant of the typing system.

A type is neutral if it is either o or Ch(0,0)(σ). Thus if σ is neutral
and σ ⊕ σ′ is defined then σ ⊕ σ′ = σ′.

A context is neutral if it contains only neutral types.

The rule for typing names is:

Γ neutral

Γ, a : σ ` a : σ

57

The rules for (some of) the processes are:

Γ neutral

Γ ` 0

Γi ` Pi i = 1, 2

(Γ1 ⊕ Γ2) ` (P1 | P2)

Γ1 ` a : Ch(0,1)(σ)

Γ2, b : σ ` P

Γ1 ⊕ Γ2 ` a(b).P

Γ1 ` a : Ch(1,0)(σ)

Γ2 ` b : σ Γ3 ` P

(Γ1 ⊕ Γ2 ⊕ Γ3) ` ab.P

For this system, prove the following versions of weakening and
substitution:

Γ ` P Γ′ neutral (Γ⊕ Γ′) ↓

(Γ⊕ Γ′) ` P

Γ, a : σ ` P Γ′ ` b : σ (Γ⊕ Γ′) ↓

(Γ⊕ Γ′) ` [b/a]P

What’s wrong with the weakening rule for the affine system?

58

