
An introduction to synchrony

1



What is a synchronous model?

Concurrent/distributed systems are classified according to two
main parameters.

1. The relative speed of the processes (or threads, or components,
or. . .):

• asynchronous,

• synchronous,

• partially synchronous,

• . . .

2



2. The way the processes interact:

• shared memory,

• message based: rendez-vous (also known as synchronous) or
bounded/unbounded, ordered/unordered buffers,

• signals,

• . . .

See, e.g.

L. Lamport, N. Lynch. Distributed computing: models and
methods. Handbook of Theoretical Computer Science.

3



• So far we have considered models (CCS, the π-calculus) where:

– processes are asynchronous, i.e., proceed at independent
speeds,

– interaction is either rendez-vous/synchronous or
asynchronous message passing

NB In particular, processes can only synchronise through
communication.

4



• In the following we are going to discuss models where:

– processes are synchronous,

– interaction is either rendez-vous/synchronous or signal based.

5



• In first approximation, in a synchronous concurrent/distributed
system all processes proceed in lockstep (at the same speed).

• In other words, the computation is regulated by a notion of
instant (or round, or phase, or pulse,. . .). As we will see, what
constitutes an instant can vary considerably from one model to
another.

• Though synchronous circuits are typical examples of
synchronous systems, one should not conclude that
synchronous systems are hardware.

6



• Notions of synchrony are quite useful in the design of software
systems too.

• The programming of many problems in distributed/parallel
computation can be ‘simplified’ or even ‘made possible’ by a
synchronous assumption. E.g.

– Leader election.

– Minimum spanning tree.

– Consensus in the presence of failures.

In general, the notion of synchrony is a useful logical concept
that can make programming easier.

7



An example of synchronous model in distributed
algorithms

Synchronous network model described, e.g., in:
N. Lynch, Distributed algorithms. Morgan Kaufmann, and

G. Tel, Introduction to distributed algorithms. Cambridge University Press.

• Each node/process is a Moore automaton modulo the fact that
the sets of states, inputs, and outputs can be infinite.

• Each node/process has a set of states Q and an initial state
qo ∈ Q.

• Each node/process has m incoming edges (inputs) and n

outgoing edges (outputs).

• There is a set M of messages.

8



• Each node/process has:

– An output function out : Q → Mn.

– A next state function next : Q×Mm → Q.

• At each instant, each node/process being in state q:

– Computes out(q) and writes the ‘outputs’ in the n outgoing
edges.

– Reads the inputs x1, . . . , xm in the incoming edges and places
itself in the state next(q, x1, . . . , xm)

• The execution model guarantees that when a node tries to read
the inputs, all the other nodes have already written their
outputs.

• The execution of a network of synchronous processes is
(strongly) deterministic. There is essentially only one execution
path.

9



Remark

Models used to describe algorithms are usually over-simplified. For
instance, in this case:

• Fixed number of participants and fixed communication
topology.

• No explanation on how the algorithm interacts with the
external world (usually hard-coded in the initial and final
state).

10



A synchronous algorithm in the synchronous network
model

We describe a leader election algorithm (due to Le Lann et al.)

Ring topology Processes Zn = {0, 1, . . . , n− 1} are arranged in a
ring. Process i receives from process (i− 1) mod n and sends
to process (i + 1) mod n.

UID Processes do not know necessarily their position or the size of
the network but they do know a unique process identifier
(UID). UID’s can be compared.

Goal Run a protocol that will elect as leader the process with the
highest UID (and no other).

11



Informal description

1. Initially, all processes send their UID to the next process.

2. To compute the next state, each process i reads the UID u of
the previous process and compares it to its own UID umy :

u = umy : i becomes leader

u < umy : repeat step 2, sending nothing to the next process

u > umy : repeat step 2, sending u to the next process

12



Execution: an example

Processes 0, 1, 2, 3 with UID 5, 7, 4, 3:

Round 0(5) 1(7) 2(4) 3(3)

0 (?, 5) (?, 7) (?, 4) (?, 3)

1 (?, ) (?, ) (?, 7) (?, 4)

2 (?, ) (?, ) (?, ) (?, 7)

3 (?, 7) (?, ) (?, ) (?, )

4 (?, ) (L, ) (?, ) (?, )

NB Here termination for non-leader processes is implicit. To get
explicit termination, let the leader announce the result.

13



Exercise

Formalise the algorithm in the synchronous network model.

14



Analysis (informal)

Let imax be the process with the largest UID umax and n the size
of the ring. Show that:

1. After r rounds, 0 ≤ r ≤ (n− 1), the process (imax + r) mod n

sends umax . Thus at round n, imax becomes leader.

2. imax never forwards a UID. So no other process different from
imax ever becomes leader.

15



The same algorithm in an asynchronous framework

• The same ‘algorithm’ works in an asynchronous network,
provided each channel is a FIFO queue holding up to n

messages (to avoid problems, one could use a Kahn network
here).

• It is an instructive exercise to prove the correctness in this
framework and compare the proof with the one in the
synchronous case.

• The analysis is at the level of the single events rather than at
the level of the rounds.

• For instance, the invariant needs to keep track of what is in the
queues and termination cannot rely on the number of rounds.

16



Synchrony in process calculi: SCCS

17



Goals

• Review possible formalisations of the concept of synchrony
from a process calculus perspective . . .

• . . . with an eye towards synchronous programming languages.

We will follow the historical development up to some recent
contributions.

18



SCCS: synchronous CCS (Milner 1983)

We now wish to discuss a calculus [. . .] It arose from the
author’s attempt to relate asynchrony to synchrony. The
contrast between these terms may be understood in more
than one way. Here, we mean the contrast between the
assumption which we have hitherto made that concurrent
agents proceed at indeterminate relative speeds
(asynchrony), and the alternative assumption that they
proceed in lockstep - i.e. that at every instant each agent
performs a single action (synchrony).

R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

19



SCCS: actions

• We start with a set of particulate actions A.

• An action is a function α : A → Z which is equal to 0 almost
everywhere.

• Actions constitute an abelian group:

(α · β)(a) = α(a) + β(a)

20



• This is the free abelian group generated by A.

• For instance, we can write α = aba for an action α such that

α(c) =


2 if c = a

−1 if c = b

0 otherwise

• Thus
(aba) · (abb) = ab = ba

• By convention we write 1 for the identity, i.e., for the action α

which is 0 everywhere.

21



• The CCS ‘special’ case is when α(a) ∈ {0, 1,−1}. But then we
do not have a group structure.

• A generalisation is to assume that on a subset A, α(a) is
non-negative which means that some actions have no inverse.
Then we have a commutative monoid structure with an abelian
subgroup.

22



SCCS: synchronous product

• Write α : P for the process that must do α in the first instant
and run P in the following. Thus

α : P
α→ P

• We also have the possibility of choosing among several actions

P
α→ P ′

P + Q
α→ P ′

• At each instant, each parallel component must do an action:

P
α→ P ′ Q

β→ Q′

P ×Q
α·β→ P ′ ×Q′

23



• If one process cannot perform an action the whole system is
stuck. Thus, if 0 is the usual process that does no action then:

P × 0 is equivalent to 0

• The neutral process is the one that runs the identity action at
each instant 1 = 1 : 1 : 1 : · · · and that can be defined
recursively:

P × 1 is equivalent to P

24



Example: product of actions

• Let α abbreviate α : 0.

• Consider:

P = (a+ c)× (b+ c)× (a+d)× (aa+a+1+ b)× (cc+ c+1+d)

• Do we have P
1→ P ′, for some P ′?

25



• Yes, if for instance we fire the subprocesses in red:

P = (a+ c)× (b+ c)× (a+d)× (aa+a+1+ b)× (cc+ c+1+d)

26



Bisimulation for SCCS

• The theory of bisimulation developed in the asynchronous case
applies equally well in the synchronous case.

• Notice that in a synchronous calculus an observer has a way to
measure time

1 : a : 0 is observably different from a : 0

• Thus we cannot abstract away the actions 1. In other terms,
we rely on the strong labelled transition system.

• We regard two processes P,Q ‘equivalent’ if they are strongly
bisimilar and write P ∼ Q.

27



Exercise

1. Consider the following fragment of SCCS:

P ::= 0 || α : P || P × P

Can we regard these processes as deterministic?

2. Next, consider the following larger fragment of SCCS:

P ::= 0 || α : P || P + P || P × P

Can we regard these processes as deterministic?

28



3. Say that P is fireable if P
1→ P . Show that for the larger

fragment deciding whether P
1→ P ′ is an NP-complete problem

(by reduction of 3-SAT).

29



Programming a NOR gate in SCCS

a b c = NOR(a, b)

0 0 1

0 1 0

1 1 0

1 0 0

The process Ai for i = 0, 1 has 4 inputs a0, a1, b0, b1 and 2 outputs
c0, c1.

Ai = ci : 1 × Σi,j∈{0,1} ai · bj : ANOR(i,j) i = 0, 1

The result is emitted in the following instant.

30



Programming in SCCS is awkward

• We need two channels for every signal. This is because the
data representation is unary.

• For instance, to represent a 16 bits integer we need 216

channels. . .

• Worse, it is not possible to program the NOR gate. We have to
represent its truth table.

• Again, imagine what happens when the input is a 16 bits
integer. . .

• And what about infinite data domain?

31



Desynchronisation, or how to wait indefinitely?

• It may be hard to predict the exact computation time of each
thread.

• It may even be impossible if the event is generated from an
‘asynchronous’ component.

• We need to express the possibility to wait for an event an
arbitrary number of instants

32



Desynchronisation operators

Delay (délai) The first action can be delayed arbitrarily many
instants.

δP
1→ δP

P
α→ P ′

δP
α→ P ′

Asynchroniser (désynchronisation) After the first action, all
following actions can be delayed arbitrarily many instants.

P
α→ P ′

∆P
α→ δ∆P ′

33



Exercise

Prove or give a counter-example to the following equalities when
the equality is interpreted as strong bisimulation.

1. δδP = δP 2. δ∆P = ∆P

3. ∆∆P = ∆P 4. ∆δP = ∆P

5. δ(P + Q) = δP + δQ 6. ∆(P + Q) = ∆P + ∆Q

7. δ(P ×Q) = δP × δQ 8. ∆(P ×Q) = ∆P ×∆Q

34



Embedding CCS in SCCS

• Intuitively, the CCS process

a.b.0

corresponds to the SCCS process

δ(a : δ(b : (δ0)))

• Following this intuition, it is possible to encode CCS in SCCS.

NB Again, the delay/desynchronisation operators are not a
practical programming notation.

35



Meije, a complementary view of
SCCS

36



Meije (Austry-Boudol 1984)

We keep the same action structure. However:

• In SCCS, we start with a synchronous product and then we
introduce some desynchronisation operators.

• In Meije, we start with an asynchronous product and then we
introduce some synchronisation operators.

37



Meije operators: Asynchronous composition, Trigger, and
Driver

Asynchronous composition Components proceed at
independent speeds (but multi-way synchronisations are
possible):

P
α→ P ′

P ‖ Q
α→ P ′ ‖ Q

P
α→ P ′ Q

β→ Q′

P ‖ Q
α·β→ P ′ ‖ Q′

Trigger (Déclencheur) The first action is triggered by a
particulate action:

P
α→ P ′

(a ⇒ P ) aα→ P ′

38



Driver (Pilote) All actions are driven from a particulate action:

P
α→ P ′

(a ∗ P ) aα→ (a ∗ P ′)

39



Summary SCCS/Meije

Common part nil 0, prefix α : P , restriction νa P , and recursive
definitions A(a) = P .

SCCS operators sum +, synchronous composition ×, delay δ,
and asynchroniser ∆.

Meije operators asynchronous composition ‖, trigger (a ⇒ P ),
and driver (a ∗ P ).

40



Definability

• We show that SCCS and Meije operators are inter-definable.

• But what does definability mean exactly ?

41



Example

• Suppose we want to define an operator (P I Q) that interleaves
the actions of P and Q.

• We can describe I with the rules:

P
α→ P ′

(P I Q) α→ (P ′ I Q)

Q
α→ Q′

(P I Q) α→ (P I Q′)

• Now we can actually define the interleaving operator as follows:

P I Q = νa, b ((a ∗ P ) ‖ (b ∗Q) ‖ S(a, b))

where S(a, b) = a : S(a, b) + b : S(a, b).

42



• We have actually built a λ-term F : Pr → Pr → Pr :

F = λx.λy.νa, b ((a ∗ x) ‖ (b ∗ y) ‖ S(a, b))

that for any pair of processes P,Q builds a process F (P,Q)
that behaves as P I Q.

• More precisely, for any P,Q the transition diagram associated
with F (P,Q) is strongly bisimilar to the one associated with
P I Q.

43



• Note that the λ-term F does not depend on P,Q.

• A weaker definition of definability could require that for all
P,Q there is a process FP,Q that behaves as P I Q.

• For instance, in this weaker sense the operator δ could be
defined as follows.

– Given P we introduce a fresh identifier A with parameters
{a} = fn(P ) and a new equation:

A(a) = 1 : A(a) + P

– Then δP is strongly bisimilar to A(a).

44



Representing SCCS in Meije

• Let Tα = α : Tα for α action.

• We want to define +,×, δ, ∆ from ‖, (a ⇒ ), and (a ∗ ).

• Any guesses?

45



P + Q = νa((a ⇒ P ) ‖ (a ⇒ Q) | a : 0)

P ×Q = νa ((a ∗ P ) ‖ (a ∗Q) ‖ Taa)

46



δP = νa((a ⇒ P ) ‖ D(a))

where: D(a) = (1 : D(a) + a : 0).

∆P = νa ((a ∗ P ) ‖ a : S(a))

where: S(a) = 1 : S(a) + a : S(a).

47



Exercise

Check that strong bisimulation holds.

48



Representing Meije in SCCS

• We want to define ‖, (a ⇒ ), and (a ∗ ) from +,×,δ, and ∆.

• Any guesses?

49



(a ⇒ P ) = a : T1 × P

(a ∗ P ) = Ta × P

Also let ∇P = δ∆P .

50



P ‖ Q = νa, b ( ∇(a ∗ P )×∇(b ∗Q)× S(a, b) )

where: S(a, b) = a : S(a, b) + b : S(a, b) + ab : S(a, b).

51



Exercise

Again check that strong bisimulation holds.

52



A methodological remark

In truth, there is nothing canonical about our choice of
basic combinators [in CCS], even though they were chosen
with great attention to economy. What characterises our
calculus is not the exact choice of combinators, but rather
the choice of interpretation and of mathematical framework.

R. Milner, Communication and Concurrency, Prentice-Hall, 1989,
page 195.

So CCS should not be regarded as a canonical calculus but rather
as an inspiring example.

53



Some limitations of the SCCS/Meije model

1. Not a programming notation.

2. Implementation model?

3. Generalisation to infinite data domain?

May be we are too short-sighted, but the fact is that more than 20
years later, there is no synchronous programming language that
builds directly on the SCCS/Meije model.

54



Main references

• R. Milner, Calculi for synchrony and asynchrony, TCS, 25,
1983.

Introduces SCCS and shows how CCS can be embedded
into it.

• D. Austry and G. Boudol, Algèbre de processus et
synchronisation, TCS, 30, 1984.

Introduces Meije and shows that it is equivalent to
SCCS.

• R. De Simone, Higher-level synchronising devices in
Meije-SCCS, TCS, 37, 1985.

Shows that a whole class of finitely presented operators
can be realised in SCCS/Meije.

55


